/* * Simple MTD partitioning layer * * (C) 2000 Nicolas Pitre <nico@cam.org> * * This code is GPL * * 02-21-2002 Thomas Gleixner <gleixner@autronix.de> * added support for read_oob, write_oob */ #include <common.h> #include <malloc.h> #include <asm/errno.h> #include <linux/types.h> #include <linux/list.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/mtd/compat.h> /* Our partition linked list */ struct list_head mtd_partitions; /* Our partition node structure */ struct mtd_part { struct mtd_info mtd; struct mtd_info *master; u_int32_t offset; int index; struct list_head list; int registered; }; /* * Given a pointer to the MTD object in the mtd_part structure, we can retrieve * the pointer to that structure with this macro. */ #define PART(x) ((struct mtd_part *)(x)) /* * MTD methods which simply translate the effective address and pass through * to the _real_ device. */ static int part_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); int res; if (from >= mtd->size) len = 0; else if (from + len > mtd->size) len = mtd->size - from; res = part->master->read (part->master, from + part->offset, len, retlen, buf); if (unlikely(res)) { if (res == -EUCLEAN) mtd->ecc_stats.corrected++; if (res == -EBADMSG) mtd->ecc_stats.failed++; } return res; } #ifdef MTD_LINUX static int part_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, void **virt, resource_size_t *phys) { struct mtd_part *part = PART(mtd); if (from >= mtd->size) len = 0; else if (from + len > mtd->size) len = mtd->size - from; return part->master->point (part->master, from + part->offset, len, retlen, virt, phys); } static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) { struct mtd_part *part = PART(mtd); part->master->unpoint(part->master, from + part->offset, len); } #endif static int part_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct mtd_part *part = PART(mtd); int res; if (from >= mtd->size) return -EINVAL; if (ops->datbuf && from + ops->len > mtd->size) return -EINVAL; res = part->master->read_oob(part->master, from + part->offset, ops); if (unlikely(res)) { if (res == -EUCLEAN) mtd->ecc_stats.corrected++; if (res == -EBADMSG) mtd->ecc_stats.failed++; } return res; } static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->read_user_prot_reg (part->master, from, len, retlen, buf); } static int part_get_user_prot_info (struct mtd_info *mtd, struct otp_info *buf, size_t len) { struct mtd_part *part = PART(mtd); return part->master->get_user_prot_info (part->master, buf, len); } static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->read_fact_prot_reg (part->master, from, len, retlen, buf); } static int part_get_fact_prot_info (struct mtd_info *mtd, struct otp_info *buf, size_t len) { struct mtd_part *part = PART(mtd); return part->master->get_fact_prot_info (part->master, buf, len); } static int part_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (to >= mtd->size) len = 0; else if (to + len > mtd->size) len = mtd->size - to; return part->master->write (part->master, to + part->offset, len, retlen, buf); } #ifdef MTD_LINUX static int part_panic_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (to >= mtd->size) len = 0; else if (to + len > mtd->size) len = mtd->size - to; return part->master->panic_write (part->master, to + part->offset, len, retlen, buf); } #endif static int part_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (to >= mtd->size) return -EINVAL; if (ops->datbuf && to + ops->len > mtd->size) return -EINVAL; return part->master->write_oob(part->master, to + part->offset, ops); } static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); return part->master->write_user_prot_reg (part->master, from, len, retlen, buf); } static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len) { struct mtd_part *part = PART(mtd); return part->master->lock_user_prot_reg (part->master, from, len); } #ifdef MTD_LINUX static int part_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; return part->master->writev (part->master, vecs, count, to + part->offset, retlen); } #endif static int part_erase (struct mtd_info *mtd, struct erase_info *instr) { struct mtd_part *part = PART(mtd); int ret; if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (instr->addr >= mtd->size) return -EINVAL; instr->addr += part->offset; ret = part->master->erase(part->master, instr); if (ret) { if (instr->fail_addr != 0xffffffff) instr->fail_addr -= part->offset; instr->addr -= part->offset; } return ret; } void mtd_erase_callback(struct erase_info *instr) { if (instr->mtd->erase == part_erase) { struct mtd_part *part = PART(instr->mtd); if (instr->fail_addr != 0xffffffff) instr->fail_addr -= part->offset; instr->addr -= part->offset; } if (instr->callback) instr->callback(instr); } #ifdef MTD_LINUX EXPORT_SYMBOL_GPL(mtd_erase_callback); #endif #ifdef MTD_LINUX static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len) { struct mtd_part *part = PART(mtd); if ((len + ofs) > mtd->size) return -EINVAL; return part->master->lock(part->master, ofs + part->offset, len); } static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len) { struct mtd_part *part = PART(mtd); if ((len + ofs) > mtd->size) return -EINVAL; return part->master->unlock(part->master, ofs + part->offset, len); } #endif static void part_sync(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); part->master->sync(part->master); } #ifdef MTD_LINUX static int part_suspend(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); return part->master->suspend(part->master); } static void part_resume(struct mtd_info *mtd) { struct mtd_part *part = PART(mtd); part->master->resume(part->master); } #endif static int part_block_isbad (struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = PART(mtd); if (ofs >= mtd->size) return -EINVAL; ofs += part->offset; return part->master->block_isbad(part->master, ofs); } static int part_block_markbad (struct mtd_info *mtd, loff_t ofs) { struct mtd_part *part = PART(mtd); int res; if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (ofs >= mtd->size) return -EINVAL; ofs += part->offset; res = part->master->block_markbad(part->master, ofs); #ifdef MTD_LINUX if (!res) mtd->ecc_stats.badblocks++; #endif return res; } /* * This function unregisters and destroy all slave MTD objects which are * attached to the given master MTD object. */ int del_mtd_partitions(struct mtd_info *master) { struct list_head *node; struct mtd_part *slave; for (node = mtd_partitions.next; node != &mtd_partitions; node = node->next) { slave = list_entry(node, struct mtd_part, list); if (slave->master == master) { struct list_head *prev = node->prev; __list_del(prev, node->next); if(slave->registered) del_mtd_device(&slave->mtd); kfree(slave); node = prev; } } return 0; } /* * This function, given a master MTD object and a partition table, creates * and registers slave MTD objects which are bound to the master according to * the partition definitions. * (Q: should we register the master MTD object as well?) */ int add_mtd_partitions(struct mtd_info *master, const struct mtd_partition *parts, int nbparts) { struct mtd_part *slave; u_int32_t cur_offset = 0; int i; /* * Need to init the list here, since LIST_INIT() does not * work on platforms where relocation has problems (like MIPS * & PPC). */ if (mtd_partitions.next == NULL) INIT_LIST_HEAD(&mtd_partitions); printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); for (i = 0; i < nbparts; i++) { /* allocate the partition structure */ slave = kzalloc (sizeof(*slave), GFP_KERNEL); if (!slave) { printk ("memory allocation error while creating partitions for \"%s\"\n", master->name); del_mtd_partitions(master); return -ENOMEM; } list_add(&slave->list, &mtd_partitions); /* set up the MTD object for this partition */ slave->mtd.type = master->type; slave->mtd.flags = master->flags & ~parts[i].mask_flags; slave->mtd.size = parts[i].size; slave->mtd.writesize = master->writesize; slave->mtd.oobsize = master->oobsize; slave->mtd.oobavail = master->oobavail; slave->mtd.subpage_sft = master->subpage_sft; slave->mtd.name = parts[i].name; slave->mtd.owner = master->owner; slave->mtd.read = part_read; slave->mtd.write = part_write; #ifdef MTD_LINUX if (master->panic_write) slave->mtd.panic_write = part_panic_write; if(master->point && master->unpoint){ slave->mtd.point = part_point; slave->mtd.unpoint = part_unpoint; } #endif if (master->read_oob) slave->mtd.read_oob = part_read_oob; if (master->write_oob) slave->mtd.write_oob = part_write_oob; if(master->read_user_prot_reg) slave->mtd.read_user_prot_reg = part_read_user_prot_reg; if(master->read_fact_prot_reg) slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg; if(master->write_user_prot_reg) slave->mtd.write_user_prot_reg = part_write_user_prot_reg; if(master->lock_user_prot_reg) slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg; if(master->get_user_prot_info) slave->mtd.get_user_prot_info = part_get_user_prot_info; if(master->get_fact_prot_info) slave->mtd.get_fact_prot_info = part_get_fact_prot_info; if (master->sync) slave->mtd.sync = part_sync; #ifdef MTD_LINUX if (!i && master->suspend && master->resume) { slave->mtd.suspend = part_suspend; slave->mtd.resume = part_resume; } if (master->writev) slave->mtd.writev = part_writev; if (master->lock) slave->mtd.lock = part_lock; if (master->unlock) slave->mtd.unlock = part_unlock; #endif if (master->block_isbad) slave->mtd.block_isbad = part_block_isbad; if (master->block_markbad) slave->mtd.block_markbad = part_block_markbad; slave->mtd.erase = part_erase; slave->master = master; slave->offset = parts[i].offset; slave->index = i; if (slave->offset == MTDPART_OFS_APPEND) slave->offset = cur_offset; if (slave->offset == MTDPART_OFS_NXTBLK) { slave->offset = cur_offset; if ((cur_offset % master->erasesize) != 0) { /* Round up to next erasesize */ slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize; printk(KERN_NOTICE "Moving partition %d: " "0x%08x -> 0x%08x\n", i, cur_offset, slave->offset); } } if (slave->mtd.size == MTDPART_SIZ_FULL) slave->mtd.size = master->size - slave->offset; cur_offset = slave->offset + slave->mtd.size; printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset, slave->offset + slave->mtd.size, slave->mtd.name); /* let's do some sanity checks */ if (slave->offset >= master->size) { /* let's register it anyway to preserve ordering */ slave->offset = 0; slave->mtd.size = 0; printk ("mtd: partition \"%s\" is out of reach -- disabled\n", parts[i].name); } if (slave->offset + slave->mtd.size > master->size) { slave->mtd.size = master->size - slave->offset; printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n", parts[i].name, master->name, slave->mtd.size); } if (master->numeraseregions>1) { /* Deal with variable erase size stuff */ int i; struct mtd_erase_region_info *regions = master->eraseregions; /* Find the first erase regions which is part of this partition. */ for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++) ; for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) { if (slave->mtd.erasesize < regions[i].erasesize) { slave->mtd.erasesize = regions[i].erasesize; } } } else { /* Single erase size */ slave->mtd.erasesize = master->erasesize; } if ((slave->mtd.flags & MTD_WRITEABLE) && (slave->offset % slave->mtd.erasesize)) { /* Doesn't start on a boundary of major erase size */ /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */ slave->mtd.flags &= ~MTD_WRITEABLE; printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", parts[i].name); } if ((slave->mtd.flags & MTD_WRITEABLE) && (slave->mtd.size % slave->mtd.erasesize)) { slave->mtd.flags &= ~MTD_WRITEABLE; printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", parts[i].name); } slave->mtd.ecclayout = master->ecclayout; if (master->block_isbad) { uint32_t offs = 0; while(offs < slave->mtd.size) { if (master->block_isbad(master, offs + slave->offset)) slave->mtd.ecc_stats.badblocks++; offs += slave->mtd.erasesize; } } #ifdef MTD_LINUX if (parts[i].mtdp) { /* store the object pointer * (caller may or may not register it */ *parts[i].mtdp = &slave->mtd; slave->registered = 0; } else { /* register our partition */ add_mtd_device(&slave->mtd); slave->registered = 1; } #else /* register our partition */ add_mtd_device(&slave->mtd); slave->registered = 1; #endif } return 0; } #ifdef MTD_LINUX EXPORT_SYMBOL(add_mtd_partitions); EXPORT_SYMBOL(del_mtd_partitions); #endif