/* * (C) Copyright 2009 SAMSUNG Electronics * Minkyu Kang * Jaehoon Chung * Portions Copyright 2011-2013 NVIDIA Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; struct mmc mmc_dev[MAX_HOSTS]; struct mmc_host mmc_host[MAX_HOSTS]; #ifndef CONFIG_OF_CONTROL #error "Please enable device tree support to use this driver" #endif static void mmc_prepare_data(struct mmc_host *host, struct mmc_data *data, struct bounce_buffer *bbstate) { unsigned char ctrl; debug("buf: %p (%p), data->blocks: %u, data->blocksize: %u\n", bbstate->bounce_buffer, bbstate->user_buffer, data->blocks, data->blocksize); writel((u32)bbstate->bounce_buffer, &host->reg->sysad); /* * DMASEL[4:3] * 00 = Selects SDMA * 01 = Reserved * 10 = Selects 32-bit Address ADMA2 * 11 = Selects 64-bit Address ADMA2 */ ctrl = readb(&host->reg->hostctl); ctrl &= ~TEGRA_MMC_HOSTCTL_DMASEL_MASK; ctrl |= TEGRA_MMC_HOSTCTL_DMASEL_SDMA; writeb(ctrl, &host->reg->hostctl); /* We do not handle DMA boundaries, so set it to max (512 KiB) */ writew((7 << 12) | (data->blocksize & 0xFFF), &host->reg->blksize); writew(data->blocks, &host->reg->blkcnt); } static void mmc_set_transfer_mode(struct mmc_host *host, struct mmc_data *data) { unsigned short mode; debug(" mmc_set_transfer_mode called\n"); /* * TRNMOD * MUL1SIN0[5] : Multi/Single Block Select * RD1WT0[4] : Data Transfer Direction Select * 1 = read * 0 = write * ENACMD12[2] : Auto CMD12 Enable * ENBLKCNT[1] : Block Count Enable * ENDMA[0] : DMA Enable */ mode = (TEGRA_MMC_TRNMOD_DMA_ENABLE | TEGRA_MMC_TRNMOD_BLOCK_COUNT_ENABLE); if (data->blocks > 1) mode |= TEGRA_MMC_TRNMOD_MULTI_BLOCK_SELECT; if (data->flags & MMC_DATA_READ) mode |= TEGRA_MMC_TRNMOD_DATA_XFER_DIR_SEL_READ; writew(mode, &host->reg->trnmod); } static int mmc_wait_inhibit(struct mmc_host *host, struct mmc_cmd *cmd, struct mmc_data *data, unsigned int timeout) { /* * PRNSTS * CMDINHDAT[1] : Command Inhibit (DAT) * CMDINHCMD[0] : Command Inhibit (CMD) */ unsigned int mask = TEGRA_MMC_PRNSTS_CMD_INHIBIT_CMD; /* * We shouldn't wait for data inhibit for stop commands, even * though they might use busy signaling */ if ((data == NULL) && (cmd->resp_type & MMC_RSP_BUSY)) mask |= TEGRA_MMC_PRNSTS_CMD_INHIBIT_DAT; while (readl(&host->reg->prnsts) & mask) { if (timeout == 0) { printf("%s: timeout error\n", __func__); return -1; } timeout--; udelay(1000); } return 0; } static int mmc_send_cmd_bounced(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data, struct bounce_buffer *bbstate) { struct mmc_host *host = (struct mmc_host *)mmc->priv; int flags, i; int result; unsigned int mask = 0; unsigned int retry = 0x100000; debug(" mmc_send_cmd called\n"); result = mmc_wait_inhibit(host, cmd, data, 10 /* ms */); if (result < 0) return result; if (data) mmc_prepare_data(host, data, bbstate); debug("cmd->arg: %08x\n", cmd->cmdarg); writel(cmd->cmdarg, &host->reg->argument); if (data) mmc_set_transfer_mode(host, data); if ((cmd->resp_type & MMC_RSP_136) && (cmd->resp_type & MMC_RSP_BUSY)) return -1; /* * CMDREG * CMDIDX[13:8] : Command index * DATAPRNT[5] : Data Present Select * ENCMDIDX[4] : Command Index Check Enable * ENCMDCRC[3] : Command CRC Check Enable * RSPTYP[1:0] * 00 = No Response * 01 = Length 136 * 10 = Length 48 * 11 = Length 48 Check busy after response */ if (!(cmd->resp_type & MMC_RSP_PRESENT)) flags = TEGRA_MMC_CMDREG_RESP_TYPE_SELECT_NO_RESPONSE; else if (cmd->resp_type & MMC_RSP_136) flags = TEGRA_MMC_CMDREG_RESP_TYPE_SELECT_LENGTH_136; else if (cmd->resp_type & MMC_RSP_BUSY) flags = TEGRA_MMC_CMDREG_RESP_TYPE_SELECT_LENGTH_48_BUSY; else flags = TEGRA_MMC_CMDREG_RESP_TYPE_SELECT_LENGTH_48; if (cmd->resp_type & MMC_RSP_CRC) flags |= TEGRA_MMC_TRNMOD_CMD_CRC_CHECK; if (cmd->resp_type & MMC_RSP_OPCODE) flags |= TEGRA_MMC_TRNMOD_CMD_INDEX_CHECK; if (data) flags |= TEGRA_MMC_TRNMOD_DATA_PRESENT_SELECT_DATA_TRANSFER; debug("cmd: %d\n", cmd->cmdidx); writew((cmd->cmdidx << 8) | flags, &host->reg->cmdreg); for (i = 0; i < retry; i++) { mask = readl(&host->reg->norintsts); /* Command Complete */ if (mask & TEGRA_MMC_NORINTSTS_CMD_COMPLETE) { if (!data) writel(mask, &host->reg->norintsts); break; } } if (i == retry) { printf("%s: waiting for status update\n", __func__); writel(mask, &host->reg->norintsts); return TIMEOUT; } if (mask & TEGRA_MMC_NORINTSTS_CMD_TIMEOUT) { /* Timeout Error */ debug("timeout: %08x cmd %d\n", mask, cmd->cmdidx); writel(mask, &host->reg->norintsts); return TIMEOUT; } else if (mask & TEGRA_MMC_NORINTSTS_ERR_INTERRUPT) { /* Error Interrupt */ debug("error: %08x cmd %d\n", mask, cmd->cmdidx); writel(mask, &host->reg->norintsts); return -1; } if (cmd->resp_type & MMC_RSP_PRESENT) { if (cmd->resp_type & MMC_RSP_136) { /* CRC is stripped so we need to do some shifting. */ for (i = 0; i < 4; i++) { unsigned int offset = (unsigned int)(&host->reg->rspreg3 - i); cmd->response[i] = readl(offset) << 8; if (i != 3) { cmd->response[i] |= readb(offset - 1); } debug("cmd->resp[%d]: %08x\n", i, cmd->response[i]); } } else if (cmd->resp_type & MMC_RSP_BUSY) { for (i = 0; i < retry; i++) { /* PRNTDATA[23:20] : DAT[3:0] Line Signal */ if (readl(&host->reg->prnsts) & (1 << 20)) /* DAT[0] */ break; } if (i == retry) { printf("%s: card is still busy\n", __func__); writel(mask, &host->reg->norintsts); return TIMEOUT; } cmd->response[0] = readl(&host->reg->rspreg0); debug("cmd->resp[0]: %08x\n", cmd->response[0]); } else { cmd->response[0] = readl(&host->reg->rspreg0); debug("cmd->resp[0]: %08x\n", cmd->response[0]); } } if (data) { unsigned long start = get_timer(0); while (1) { mask = readl(&host->reg->norintsts); if (mask & TEGRA_MMC_NORINTSTS_ERR_INTERRUPT) { /* Error Interrupt */ writel(mask, &host->reg->norintsts); printf("%s: error during transfer: 0x%08x\n", __func__, mask); return -1; } else if (mask & TEGRA_MMC_NORINTSTS_DMA_INTERRUPT) { /* * DMA Interrupt, restart the transfer where * it was interrupted. */ unsigned int address = readl(&host->reg->sysad); debug("DMA end\n"); writel(TEGRA_MMC_NORINTSTS_DMA_INTERRUPT, &host->reg->norintsts); writel(address, &host->reg->sysad); } else if (mask & TEGRA_MMC_NORINTSTS_XFER_COMPLETE) { /* Transfer Complete */ debug("r/w is done\n"); break; } else if (get_timer(start) > 2000UL) { writel(mask, &host->reg->norintsts); printf("%s: MMC Timeout\n" " Interrupt status 0x%08x\n" " Interrupt status enable 0x%08x\n" " Interrupt signal enable 0x%08x\n" " Present status 0x%08x\n", __func__, mask, readl(&host->reg->norintstsen), readl(&host->reg->norintsigen), readl(&host->reg->prnsts)); return -1; } } writel(mask, &host->reg->norintsts); } udelay(1000); return 0; } static int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { void *buf; unsigned int bbflags; size_t len; struct bounce_buffer bbstate; int ret; if (data) { if (data->flags & MMC_DATA_READ) { buf = data->dest; bbflags = GEN_BB_WRITE; } else { buf = (void *)data->src; bbflags = GEN_BB_READ; } len = data->blocks * data->blocksize; bounce_buffer_start(&bbstate, buf, len, bbflags); } ret = mmc_send_cmd_bounced(mmc, cmd, data, &bbstate); if (data) bounce_buffer_stop(&bbstate); return ret; } static void mmc_change_clock(struct mmc_host *host, uint clock) { int div; unsigned short clk; unsigned long timeout; debug(" mmc_change_clock called\n"); /* * Change Tegra SDMMCx clock divisor here. Source is 216MHz, * PLLP_OUT0 */ if (clock == 0) goto out; clock_adjust_periph_pll_div(host->mmc_id, CLOCK_ID_PERIPH, clock, &div); debug("div = %d\n", div); writew(0, &host->reg->clkcon); /* * CLKCON * SELFREQ[15:8] : base clock divided by value * ENSDCLK[2] : SD Clock Enable * STBLINTCLK[1] : Internal Clock Stable * ENINTCLK[0] : Internal Clock Enable */ div >>= 1; clk = ((div << TEGRA_MMC_CLKCON_SDCLK_FREQ_SEL_SHIFT) | TEGRA_MMC_CLKCON_INTERNAL_CLOCK_ENABLE); writew(clk, &host->reg->clkcon); /* Wait max 10 ms */ timeout = 10; while (!(readw(&host->reg->clkcon) & TEGRA_MMC_CLKCON_INTERNAL_CLOCK_STABLE)) { if (timeout == 0) { printf("%s: timeout error\n", __func__); return; } timeout--; udelay(1000); } clk |= TEGRA_MMC_CLKCON_SD_CLOCK_ENABLE; writew(clk, &host->reg->clkcon); debug("mmc_change_clock: clkcon = %08X\n", clk); out: host->clock = clock; } static void mmc_set_ios(struct mmc *mmc) { struct mmc_host *host = mmc->priv; unsigned char ctrl; debug(" mmc_set_ios called\n"); debug("bus_width: %x, clock: %d\n", mmc->bus_width, mmc->clock); /* Change clock first */ mmc_change_clock(host, mmc->clock); ctrl = readb(&host->reg->hostctl); /* * WIDE8[5] * 0 = Depend on WIDE4 * 1 = 8-bit mode * WIDE4[1] * 1 = 4-bit mode * 0 = 1-bit mode */ if (mmc->bus_width == 8) ctrl |= (1 << 5); else if (mmc->bus_width == 4) ctrl |= (1 << 1); else ctrl &= ~(1 << 1); writeb(ctrl, &host->reg->hostctl); debug("mmc_set_ios: hostctl = %08X\n", ctrl); } static void mmc_reset(struct mmc_host *host) { unsigned int timeout; debug(" mmc_reset called\n"); /* * RSTALL[0] : Software reset for all * 1 = reset * 0 = work */ writeb(TEGRA_MMC_SWRST_SW_RESET_FOR_ALL, &host->reg->swrst); host->clock = 0; /* Wait max 100 ms */ timeout = 100; /* hw clears the bit when it's done */ while (readb(&host->reg->swrst) & TEGRA_MMC_SWRST_SW_RESET_FOR_ALL) { if (timeout == 0) { printf("%s: timeout error\n", __func__); return; } timeout--; udelay(1000); } } static int mmc_core_init(struct mmc *mmc) { struct mmc_host *host = (struct mmc_host *)mmc->priv; unsigned int mask; debug(" mmc_core_init called\n"); mmc_reset(host); host->version = readw(&host->reg->hcver); debug("host version = %x\n", host->version); /* mask all */ writel(0xffffffff, &host->reg->norintstsen); writel(0xffffffff, &host->reg->norintsigen); writeb(0xe, &host->reg->timeoutcon); /* TMCLK * 2^27 */ /* * NORMAL Interrupt Status Enable Register init * [5] ENSTABUFRDRDY : Buffer Read Ready Status Enable * [4] ENSTABUFWTRDY : Buffer write Ready Status Enable * [3] ENSTADMAINT : DMA boundary interrupt * [1] ENSTASTANSCMPLT : Transfre Complete Status Enable * [0] ENSTACMDCMPLT : Command Complete Status Enable */ mask = readl(&host->reg->norintstsen); mask &= ~(0xffff); mask |= (TEGRA_MMC_NORINTSTSEN_CMD_COMPLETE | TEGRA_MMC_NORINTSTSEN_XFER_COMPLETE | TEGRA_MMC_NORINTSTSEN_DMA_INTERRUPT | TEGRA_MMC_NORINTSTSEN_BUFFER_WRITE_READY | TEGRA_MMC_NORINTSTSEN_BUFFER_READ_READY); writel(mask, &host->reg->norintstsen); /* * NORMAL Interrupt Signal Enable Register init * [1] ENSTACMDCMPLT : Transfer Complete Signal Enable */ mask = readl(&host->reg->norintsigen); mask &= ~(0xffff); mask |= TEGRA_MMC_NORINTSIGEN_XFER_COMPLETE; writel(mask, &host->reg->norintsigen); return 0; } int tegra_mmc_getcd(struct mmc *mmc) { struct mmc_host *host = (struct mmc_host *)mmc->priv; debug("tegra_mmc_getcd called\n"); if (fdt_gpio_isvalid(&host->cd_gpio)) return fdtdec_get_gpio(&host->cd_gpio); return 1; } static int do_mmc_init(int dev_index) { struct mmc_host *host; char gpusage[12]; /* "SD/MMCn PWR" or "SD/MMCn CD" */ struct mmc *mmc; /* DT should have been read & host config filled in */ host = &mmc_host[dev_index]; if (!host->enabled) return -1; debug(" do_mmc_init: index %d, bus width %d " "pwr_gpio %d cd_gpio %d\n", dev_index, host->width, host->pwr_gpio.gpio, host->cd_gpio.gpio); host->clock = 0; clock_start_periph_pll(host->mmc_id, CLOCK_ID_PERIPH, 20000000); if (fdt_gpio_isvalid(&host->pwr_gpio)) { sprintf(gpusage, "SD/MMC%d PWR", dev_index); gpio_request(host->pwr_gpio.gpio, gpusage); gpio_direction_output(host->pwr_gpio.gpio, 1); debug(" Power GPIO name = %s\n", host->pwr_gpio.name); } if (fdt_gpio_isvalid(&host->cd_gpio)) { sprintf(gpusage, "SD/MMC%d CD", dev_index); gpio_request(host->cd_gpio.gpio, gpusage); gpio_direction_input(host->cd_gpio.gpio); debug(" CD GPIO name = %s\n", host->cd_gpio.name); } mmc = &mmc_dev[dev_index]; sprintf(mmc->name, "Tegra SD/MMC"); mmc->priv = host; mmc->send_cmd = mmc_send_cmd; mmc->set_ios = mmc_set_ios; mmc->init = mmc_core_init; mmc->getcd = tegra_mmc_getcd; mmc->getwp = NULL; mmc->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195; mmc->host_caps = 0; if (host->width == 8) mmc->host_caps |= MMC_MODE_8BIT; if (host->width >= 4) mmc->host_caps |= MMC_MODE_4BIT; mmc->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS | MMC_MODE_HC; /* * min freq is for card identification, and is the highest * low-speed SDIO card frequency (actually 400KHz) * max freq is highest HS eMMC clock as per the SD/MMC spec * (actually 52MHz) */ mmc->f_min = 375000; mmc->f_max = 48000000; mmc_register(mmc); return 0; } /** * Get the host address and peripheral ID for a node. * * @param blob fdt blob * @param node Device index (0-3) * @param host Structure to fill in (reg, width, mmc_id) */ static int mmc_get_config(const void *blob, int node, struct mmc_host *host) { debug("%s: node = %d\n", __func__, node); host->enabled = fdtdec_get_is_enabled(blob, node); host->reg = (struct tegra_mmc *)fdtdec_get_addr(blob, node, "reg"); if ((fdt_addr_t)host->reg == FDT_ADDR_T_NONE) { debug("%s: no sdmmc base reg info found\n", __func__); return -FDT_ERR_NOTFOUND; } host->mmc_id = clock_decode_periph_id(blob, node); if (host->mmc_id == PERIPH_ID_NONE) { debug("%s: could not decode periph id\n", __func__); return -FDT_ERR_NOTFOUND; } /* * NOTE: mmc->bus_width is determined by mmc.c dynamically. * TBD: Override it with this value? */ host->width = fdtdec_get_int(blob, node, "bus-width", 0); if (!host->width) debug("%s: no sdmmc width found\n", __func__); /* These GPIOs are optional */ fdtdec_decode_gpio(blob, node, "cd-gpios", &host->cd_gpio); fdtdec_decode_gpio(blob, node, "wp-gpios", &host->wp_gpio); fdtdec_decode_gpio(blob, node, "power-gpios", &host->pwr_gpio); debug("%s: found controller at %p, width = %d, periph_id = %d\n", __func__, host->reg, host->width, host->mmc_id); return 0; } /* * Process a list of nodes, adding them to our list of SDMMC ports. * * @param blob fdt blob * @param node_list list of nodes to process (any <=0 are ignored) * @param count number of nodes to process * @return 0 if ok, -1 on error */ static int process_nodes(const void *blob, int node_list[], int count) { struct mmc_host *host; int i, node; debug("%s: count = %d\n", __func__, count); /* build mmc_host[] for each controller */ for (i = 0; i < count; i++) { node = node_list[i]; if (node <= 0) continue; host = &mmc_host[i]; host->id = i; if (mmc_get_config(blob, node, host)) { printf("%s: failed to decode dev %d\n", __func__, i); return -1; } do_mmc_init(i); } return 0; } void tegra_mmc_init(void) { int node_list[MAX_HOSTS], count; const void *blob = gd->fdt_blob; debug("%s entry\n", __func__); count = fdtdec_find_aliases_for_id(blob, "sdhci", COMPAT_NVIDIA_TEGRA20_SDMMC, node_list, MAX_HOSTS); debug("%s: count of sdhci nodes is %d\n", __func__, count); if (process_nodes(blob, node_list, count)) { printf("%s: Error processing mmc node(s)!\n", __func__); return; } }