/* * Copyright 2008, Freescale Semiconductor, Inc * Andy Fleming * * Based vaguely on the Linux code * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <config.h> #include <common.h> #include <command.h> #include <mmc.h> #include <part.h> #include <malloc.h> #include <linux/list.h> #include <div64.h> /* Set block count limit because of 16 bit register limit on some hardware*/ #ifndef CONFIG_SYS_MMC_MAX_BLK_COUNT #define CONFIG_SYS_MMC_MAX_BLK_COUNT 65535 #endif static struct list_head mmc_devices; static int cur_dev_num = -1; int __board_mmc_getcd(u8 *cd, struct mmc *mmc) { return -1; } int board_mmc_getcd(u8 *cd, struct mmc *mmc)__attribute__((weak, alias("__board_mmc_getcd"))); int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { #ifdef CONFIG_MMC_TRACE int ret; int i; u8 *ptr; printf("CMD_SEND:%d\n", cmd->cmdidx); printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg); printf("\t\tFLAG\t\t\t %d\n", cmd->flags); ret = mmc->send_cmd(mmc, cmd, data); switch (cmd->resp_type) { case MMC_RSP_NONE: printf("\t\tMMC_RSP_NONE\n"); break; case MMC_RSP_R1: printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n", cmd->response[0]); break; case MMC_RSP_R1b: printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n", cmd->response[0]); break; case MMC_RSP_R2: printf("\t\tMMC_RSP_R2\t\t 0x%08X \n", cmd->response[0]); printf("\t\t \t\t 0x%08X \n", cmd->response[1]); printf("\t\t \t\t 0x%08X \n", cmd->response[2]); printf("\t\t \t\t 0x%08X \n", cmd->response[3]); printf("\n"); printf("\t\t\t\t\tDUMPING DATA\n"); for (i = 0; i < 4; i++) { int j; printf("\t\t\t\t\t%03d - ", i*4); ptr = &cmd->response[i]; ptr += 3; for (j = 0; j < 4; j++) printf("%02X ", *ptr--); printf("\n"); } break; case MMC_RSP_R3: printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n", cmd->response[0]); break; default: printf("\t\tERROR MMC rsp not supported\n"); break; } return ret; #else return mmc->send_cmd(mmc, cmd, data); #endif } int mmc_send_status(struct mmc *mmc, int timeout) { struct mmc_cmd cmd; int err; #ifdef CONFIG_MMC_TRACE int status; #endif cmd.cmdidx = MMC_CMD_SEND_STATUS; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; cmd.flags = 0; do { err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; else if (cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) break; udelay(1000); if (cmd.response[0] & MMC_STATUS_MASK) { printf("Status Error: 0x%08X\n", cmd.response[0]); return COMM_ERR; } } while (timeout--); #ifdef CONFIG_MMC_TRACE status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9; printf("CURR STATE:%d\n", status); #endif if (!timeout) { printf("Timeout waiting card ready\n"); return TIMEOUT; } return 0; } int mmc_set_blocklen(struct mmc *mmc, int len) { struct mmc_cmd cmd; cmd.cmdidx = MMC_CMD_SET_BLOCKLEN; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = len; cmd.flags = 0; return mmc_send_cmd(mmc, &cmd, NULL); } struct mmc *find_mmc_device(int dev_num) { struct mmc *m; struct list_head *entry; list_for_each(entry, &mmc_devices) { m = list_entry(entry, struct mmc, link); if (m->block_dev.dev == dev_num) return m; } printf("MMC Device %d not found\n", dev_num); return NULL; } static ulong mmc_erase_t(struct mmc *mmc, ulong start, lbaint_t blkcnt) { struct mmc_cmd cmd; ulong end; int err, start_cmd, end_cmd; if (mmc->high_capacity) end = start + blkcnt - 1; else { end = (start + blkcnt - 1) * mmc->write_bl_len; start *= mmc->write_bl_len; } if (IS_SD(mmc)) { start_cmd = SD_CMD_ERASE_WR_BLK_START; end_cmd = SD_CMD_ERASE_WR_BLK_END; } else { start_cmd = MMC_CMD_ERASE_GROUP_START; end_cmd = MMC_CMD_ERASE_GROUP_END; } cmd.cmdidx = start_cmd; cmd.cmdarg = start; cmd.resp_type = MMC_RSP_R1; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) goto err_out; cmd.cmdidx = end_cmd; cmd.cmdarg = end; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) goto err_out; cmd.cmdidx = MMC_CMD_ERASE; cmd.cmdarg = SECURE_ERASE; cmd.resp_type = MMC_RSP_R1b; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) goto err_out; return 0; err_out: puts("mmc erase failed\n"); return err; } static unsigned long mmc_berase(int dev_num, unsigned long start, lbaint_t blkcnt) { int err = 0; struct mmc *mmc = find_mmc_device(dev_num); lbaint_t blk = 0, blk_r = 0; if (!mmc) return -1; if ((start % mmc->erase_grp_size) || (blkcnt % mmc->erase_grp_size)) printf("\n\nCaution! Your devices Erase group is 0x%x\n" "The erase range would be change to 0x%lx~0x%lx\n\n", mmc->erase_grp_size, start & ~(mmc->erase_grp_size - 1), ((start + blkcnt + mmc->erase_grp_size) & ~(mmc->erase_grp_size - 1)) - 1); while (blk < blkcnt) { blk_r = ((blkcnt - blk) > mmc->erase_grp_size) ? mmc->erase_grp_size : (blkcnt - blk); err = mmc_erase_t(mmc, start + blk, blk_r); if (err) break; blk += blk_r; } return blk; } static ulong mmc_write_blocks(struct mmc *mmc, ulong start, lbaint_t blkcnt, const void*src) { struct mmc_cmd cmd; struct mmc_data data; int timeout = 1000; if ((start + blkcnt) > mmc->block_dev.lba) { printf("MMC: block number 0x%lx exceeds max(0x%lx)\n", start + blkcnt, mmc->block_dev.lba); return 0; } if (blkcnt > 1) cmd.cmdidx = MMC_CMD_WRITE_MULTIPLE_BLOCK; else cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK; if (mmc->high_capacity) cmd.cmdarg = start; else cmd.cmdarg = start * mmc->write_bl_len; cmd.resp_type = MMC_RSP_R1; cmd.flags = 0; data.src = src; data.blocks = blkcnt; data.blocksize = mmc->write_bl_len; data.flags = MMC_DATA_WRITE; if (mmc_send_cmd(mmc, &cmd, &data)) { printf("mmc write failed\n"); return 0; } /* SPI multiblock writes terminate using a special * token, not a STOP_TRANSMISSION request. */ if (!mmc_host_is_spi(mmc) && blkcnt > 1) { cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_R1b; cmd.flags = 0; if (mmc_send_cmd(mmc, &cmd, NULL)) { printf("mmc fail to send stop cmd\n"); return 0; } /* Waiting for the ready status */ mmc_send_status(mmc, timeout); } return blkcnt; } static ulong mmc_bwrite(int dev_num, ulong start, lbaint_t blkcnt, const void*src) { lbaint_t cur, blocks_todo = blkcnt; struct mmc *mmc = find_mmc_device(dev_num); if (!mmc) return 0; if (mmc_set_blocklen(mmc, mmc->write_bl_len)) return 0; do { cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo; if(mmc_write_blocks(mmc, start, cur, src) != cur) return 0; blocks_todo -= cur; start += cur; src += cur * mmc->write_bl_len; } while (blocks_todo > 0); return blkcnt; } int mmc_read_blocks(struct mmc *mmc, void *dst, ulong start, lbaint_t blkcnt) { struct mmc_cmd cmd; struct mmc_data data; int timeout = 1000; if (blkcnt > 1) cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK; else cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK; if (mmc->high_capacity) cmd.cmdarg = start; else cmd.cmdarg = start * mmc->read_bl_len; cmd.resp_type = MMC_RSP_R1; cmd.flags = 0; data.dest = dst; data.blocks = blkcnt; data.blocksize = mmc->read_bl_len; data.flags = MMC_DATA_READ; if (mmc_send_cmd(mmc, &cmd, &data)) return 0; if (blkcnt > 1) { cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_R1b; cmd.flags = 0; if (mmc_send_cmd(mmc, &cmd, NULL)) { printf("mmc fail to send stop cmd\n"); return 0; } /* Waiting for the ready status */ mmc_send_status(mmc, timeout); } return blkcnt; } static ulong mmc_bread(int dev_num, ulong start, lbaint_t blkcnt, void *dst) { lbaint_t cur, blocks_todo = blkcnt; if (blkcnt == 0) return 0; struct mmc *mmc = find_mmc_device(dev_num); if (!mmc) return 0; if ((start + blkcnt) > mmc->block_dev.lba) { printf("MMC: block number 0x%lx exceeds max(0x%lx)\n", start + blkcnt, mmc->block_dev.lba); return 0; } if (mmc_set_blocklen(mmc, mmc->read_bl_len)) return 0; do { cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo; if(mmc_read_blocks(mmc, dst, start, cur) != cur) return 0; blocks_todo -= cur; start += cur; dst += cur * mmc->read_bl_len; } while (blocks_todo > 0); return blkcnt; } int mmc_go_idle(struct mmc* mmc) { struct mmc_cmd cmd; int err; udelay(1000); cmd.cmdidx = MMC_CMD_GO_IDLE_STATE; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_NONE; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; udelay(2000); return 0; } int sd_send_op_cond(struct mmc *mmc) { int timeout = 1000; int err; struct mmc_cmd cmd; do { cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; /* * Most cards do not answer if some reserved bits * in the ocr are set. However, Some controller * can set bit 7 (reserved for low voltages), but * how to manage low voltages SD card is not yet * specified. */ cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 : (mmc->voltages & 0xff8000); if (mmc->version == SD_VERSION_2) cmd.cmdarg |= OCR_HCS; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; udelay(1000); } while ((!(cmd.response[0] & OCR_BUSY)) && timeout--); if (timeout <= 0) return UNUSABLE_ERR; if (mmc->version != SD_VERSION_2) mmc->version = SD_VERSION_1_0; if (mmc_host_is_spi(mmc)) { /* read OCR for spi */ cmd.cmdidx = MMC_CMD_SPI_READ_OCR; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; } mmc->ocr = cmd.response[0]; mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); mmc->rca = 0; return 0; } int mmc_send_op_cond(struct mmc *mmc) { int timeout = 10000; struct mmc_cmd cmd; int err; /* Some cards seem to need this */ mmc_go_idle(mmc); /* Asking to the card its capabilities */ cmd.cmdidx = MMC_CMD_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; udelay(1000); do { cmd.cmdidx = MMC_CMD_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = (mmc_host_is_spi(mmc) ? 0 : (mmc->voltages & (cmd.response[0] & OCR_VOLTAGE_MASK)) | (cmd.response[0] & OCR_ACCESS_MODE)); if (mmc->host_caps & MMC_MODE_HC) cmd.cmdarg |= OCR_HCS; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; udelay(1000); } while (!(cmd.response[0] & OCR_BUSY) && timeout--); if (timeout <= 0) return UNUSABLE_ERR; if (mmc_host_is_spi(mmc)) { /* read OCR for spi */ cmd.cmdidx = MMC_CMD_SPI_READ_OCR; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; } mmc->version = MMC_VERSION_UNKNOWN; mmc->ocr = cmd.response[0]; mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); mmc->rca = 0; return 0; } int mmc_send_ext_csd(struct mmc *mmc, char *ext_csd) { struct mmc_cmd cmd; struct mmc_data data; int err; /* Get the Card Status Register */ cmd.cmdidx = MMC_CMD_SEND_EXT_CSD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; cmd.flags = 0; data.dest = ext_csd; data.blocks = 1; data.blocksize = 512; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); return err; } int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value) { struct mmc_cmd cmd; int timeout = 1000; int ret; cmd.cmdidx = MMC_CMD_SWITCH; cmd.resp_type = MMC_RSP_R1b; cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8); cmd.flags = 0; ret = mmc_send_cmd(mmc, &cmd, NULL); /* Waiting for the ready status */ mmc_send_status(mmc, timeout); return ret; } int mmc_change_freq(struct mmc *mmc) { char ext_csd[512]; char cardtype; int err; mmc->card_caps = 0; if (mmc_host_is_spi(mmc)) return 0; /* Only version 4 supports high-speed */ if (mmc->version < MMC_VERSION_4) return 0; mmc->card_caps |= MMC_MODE_4BIT; err = mmc_send_ext_csd(mmc, ext_csd); if (err) return err; cardtype = ext_csd[196] & 0xf; err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1); if (err) return err; /* Now check to see that it worked */ err = mmc_send_ext_csd(mmc, ext_csd); if (err) return err; /* No high-speed support */ if (!ext_csd[185]) return 0; /* High Speed is set, there are two types: 52MHz and 26MHz */ if (cardtype & MMC_HS_52MHZ) mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS; else mmc->card_caps |= MMC_MODE_HS; return 0; } int mmc_switch_part(int dev_num, unsigned int part_num) { struct mmc *mmc = find_mmc_device(dev_num); if (!mmc) return -1; return mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF, (mmc->part_config & ~PART_ACCESS_MASK) | (part_num & PART_ACCESS_MASK)); } int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp) { struct mmc_cmd cmd; struct mmc_data data; /* Switch the frequency */ cmd.cmdidx = SD_CMD_SWITCH_FUNC; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = (mode << 31) | 0xffffff; cmd.cmdarg &= ~(0xf << (group * 4)); cmd.cmdarg |= value << (group * 4); cmd.flags = 0; data.dest = (char *)resp; data.blocksize = 64; data.blocks = 1; data.flags = MMC_DATA_READ; return mmc_send_cmd(mmc, &cmd, &data); } int sd_change_freq(struct mmc *mmc) { int err; struct mmc_cmd cmd; uint scr[2]; uint switch_status[16]; struct mmc_data data; int timeout; mmc->card_caps = 0; if (mmc_host_is_spi(mmc)) return 0; /* Read the SCR to find out if this card supports higher speeds */ cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SEND_SCR; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; cmd.flags = 0; timeout = 3; retry_scr: data.dest = (char *)&scr; data.blocksize = 8; data.blocks = 1; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); if (err) { if (timeout--) goto retry_scr; return err; } mmc->scr[0] = __be32_to_cpu(scr[0]); mmc->scr[1] = __be32_to_cpu(scr[1]); switch ((mmc->scr[0] >> 24) & 0xf) { case 0: mmc->version = SD_VERSION_1_0; break; case 1: mmc->version = SD_VERSION_1_10; break; case 2: mmc->version = SD_VERSION_2; break; default: mmc->version = SD_VERSION_1_0; break; } if (mmc->scr[0] & SD_DATA_4BIT) mmc->card_caps |= MMC_MODE_4BIT; /* Version 1.0 doesn't support switching */ if (mmc->version == SD_VERSION_1_0) return 0; timeout = 4; while (timeout--) { err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1, (u8 *)&switch_status); if (err) return err; /* The high-speed function is busy. Try again */ if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY)) break; } /* If high-speed isn't supported, we return */ if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED)) return 0; err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)&switch_status); if (err) return err; if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000) mmc->card_caps |= MMC_MODE_HS; return 0; } /* frequency bases */ /* divided by 10 to be nice to platforms without floating point */ static const int fbase[] = { 10000, 100000, 1000000, 10000000, }; /* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice * to platforms without floating point. */ static const int multipliers[] = { 0, /* reserved */ 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; void mmc_set_ios(struct mmc *mmc) { mmc->set_ios(mmc); } void mmc_set_clock(struct mmc *mmc, uint clock) { if (clock > mmc->f_max) clock = mmc->f_max; if (clock < mmc->f_min) clock = mmc->f_min; mmc->clock = clock; mmc_set_ios(mmc); } void mmc_set_bus_width(struct mmc *mmc, uint width) { mmc->bus_width = width; mmc_set_ios(mmc); } int mmc_startup(struct mmc *mmc) { int err; uint mult, freq; u64 cmult, csize, capacity; struct mmc_cmd cmd; char ext_csd[512]; int timeout = 1000; #ifdef CONFIG_MMC_SPI_CRC_ON if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */ cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 1; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; } #endif /* Put the Card in Identify Mode */ cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID : MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */ cmd.resp_type = MMC_RSP_R2; cmd.cmdarg = 0; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; memcpy(mmc->cid, cmd.response, 16); /* * For MMC cards, set the Relative Address. * For SD cards, get the Relatvie Address. * This also puts the cards into Standby State */ if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR; cmd.cmdarg = mmc->rca << 16; cmd.resp_type = MMC_RSP_R6; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if (IS_SD(mmc)) mmc->rca = (cmd.response[0] >> 16) & 0xffff; } /* Get the Card-Specific Data */ cmd.cmdidx = MMC_CMD_SEND_CSD; cmd.resp_type = MMC_RSP_R2; cmd.cmdarg = mmc->rca << 16; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); /* Waiting for the ready status */ mmc_send_status(mmc, timeout); if (err) return err; mmc->csd[0] = cmd.response[0]; mmc->csd[1] = cmd.response[1]; mmc->csd[2] = cmd.response[2]; mmc->csd[3] = cmd.response[3]; if (mmc->version == MMC_VERSION_UNKNOWN) { int version = (cmd.response[0] >> 26) & 0xf; switch (version) { case 0: mmc->version = MMC_VERSION_1_2; break; case 1: mmc->version = MMC_VERSION_1_4; break; case 2: mmc->version = MMC_VERSION_2_2; break; case 3: mmc->version = MMC_VERSION_3; break; case 4: mmc->version = MMC_VERSION_4; break; default: mmc->version = MMC_VERSION_1_2; break; } } /* divide frequency by 10, since the mults are 10x bigger */ freq = fbase[(cmd.response[0] & 0x7)]; mult = multipliers[((cmd.response[0] >> 3) & 0xf)]; mmc->tran_speed = freq * mult; mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf); if (IS_SD(mmc)) mmc->write_bl_len = mmc->read_bl_len; else mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf); if (mmc->high_capacity) { csize = (mmc->csd[1] & 0x3f) << 16 | (mmc->csd[2] & 0xffff0000) >> 16; cmult = 8; } else { csize = (mmc->csd[1] & 0x3ff) << 2 | (mmc->csd[2] & 0xc0000000) >> 30; cmult = (mmc->csd[2] & 0x00038000) >> 15; } mmc->capacity = (csize + 1) << (cmult + 2); mmc->capacity *= mmc->read_bl_len; if (mmc->read_bl_len > 512) mmc->read_bl_len = 512; if (mmc->write_bl_len > 512) mmc->write_bl_len = 512; /* Select the card, and put it into Transfer Mode */ if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ cmd.cmdidx = MMC_CMD_SELECT_CARD; cmd.resp_type = MMC_RSP_R1b; cmd.cmdarg = mmc->rca << 16; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; } /* * For SD, its erase group is always one sector */ mmc->erase_grp_size = 1; mmc->part_config = MMCPART_NOAVAILABLE; if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) { /* check ext_csd version and capacity */ err = mmc_send_ext_csd(mmc, ext_csd); if (!err & (ext_csd[192] >= 2)) { /* * According to the JEDEC Standard, the value of * ext_csd's capacity is valid if the value is more * than 2GB */ capacity = ext_csd[212] << 0 | ext_csd[213] << 8 | ext_csd[214] << 16 | ext_csd[215] << 24; capacity *= 512; if ((capacity >> 20) > 2 * 1024) mmc->capacity = capacity; } /* * Check whether GROUP_DEF is set, if yes, read out * group size from ext_csd directly, or calculate * the group size from the csd value. */ if (ext_csd[175]) mmc->erase_grp_size = ext_csd[224] * 512 * 1024; else { int erase_gsz, erase_gmul; erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10; erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5; mmc->erase_grp_size = (erase_gsz + 1) * (erase_gmul + 1); } /* store the partition info of emmc */ if (ext_csd[160] & PART_SUPPORT) mmc->part_config = ext_csd[179]; } if (IS_SD(mmc)) err = sd_change_freq(mmc); else err = mmc_change_freq(mmc); if (err) return err; /* Restrict card's capabilities by what the host can do */ mmc->card_caps &= mmc->host_caps; if (IS_SD(mmc)) { if (mmc->card_caps & MMC_MODE_4BIT) { cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 2; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; mmc_set_bus_width(mmc, 4); } if (mmc->card_caps & MMC_MODE_HS) mmc_set_clock(mmc, 50000000); else mmc_set_clock(mmc, 25000000); } else { if (mmc->card_caps & MMC_MODE_4BIT) { /* Set the card to use 4 bit*/ err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_4); if (err) return err; mmc_set_bus_width(mmc, 4); } else if (mmc->card_caps & MMC_MODE_8BIT) { /* Set the card to use 8 bit*/ err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_8); if (err) return err; mmc_set_bus_width(mmc, 8); } if (mmc->card_caps & MMC_MODE_HS) { if (mmc->card_caps & MMC_MODE_HS_52MHz) mmc_set_clock(mmc, 52000000); else mmc_set_clock(mmc, 26000000); } else mmc_set_clock(mmc, 20000000); } /* fill in device description */ mmc->block_dev.lun = 0; mmc->block_dev.type = 0; mmc->block_dev.blksz = mmc->read_bl_len; mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len); sprintf(mmc->block_dev.vendor, "Man %06x Snr %08x", mmc->cid[0] >> 8, (mmc->cid[2] << 8) | (mmc->cid[3] >> 24)); sprintf(mmc->block_dev.product, "%c%c%c%c%c", mmc->cid[0] & 0xff, (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff, (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff); sprintf(mmc->block_dev.revision, "%d.%d", mmc->cid[2] >> 28, (mmc->cid[2] >> 24) & 0xf); init_part(&mmc->block_dev); return 0; } int mmc_send_if_cond(struct mmc *mmc) { struct mmc_cmd cmd; int err; cmd.cmdidx = SD_CMD_SEND_IF_COND; /* We set the bit if the host supports voltages between 2.7 and 3.6 V */ cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa; cmd.resp_type = MMC_RSP_R7; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if ((cmd.response[0] & 0xff) != 0xaa) return UNUSABLE_ERR; else mmc->version = SD_VERSION_2; return 0; } int mmc_register(struct mmc *mmc) { /* Setup the universal parts of the block interface just once */ mmc->block_dev.if_type = IF_TYPE_MMC; mmc->block_dev.dev = cur_dev_num++; mmc->block_dev.removable = 1; mmc->block_dev.block_read = mmc_bread; mmc->block_dev.block_write = mmc_bwrite; mmc->block_dev.block_erase = mmc_berase; if (!mmc->b_max) mmc->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; INIT_LIST_HEAD (&mmc->link); list_add_tail (&mmc->link, &mmc_devices); return 0; } #ifdef CONFIG_PARTITIONS block_dev_desc_t *mmc_get_dev(int dev) { struct mmc *mmc = find_mmc_device(dev); return mmc ? &mmc->block_dev : NULL; } #endif int mmc_init(struct mmc *mmc) { int err; if (mmc->has_init) return 0; err = mmc->init(mmc); if (err) return err; mmc_set_bus_width(mmc, 1); mmc_set_clock(mmc, 1); /* Reset the Card */ err = mmc_go_idle(mmc); if (err) return err; /* The internal partition reset to user partition(0) at every CMD0*/ mmc->part_num = 0; /* Test for SD version 2 */ err = mmc_send_if_cond(mmc); /* Now try to get the SD card's operating condition */ err = sd_send_op_cond(mmc); /* If the command timed out, we check for an MMC card */ if (err == TIMEOUT) { err = mmc_send_op_cond(mmc); if (err) { printf("Card did not respond to voltage select!\n"); return UNUSABLE_ERR; } } err = mmc_startup(mmc); if (err) mmc->has_init = 0; else mmc->has_init = 1; return err; } /* * CPU and board-specific MMC initializations. Aliased function * signals caller to move on */ static int __def_mmc_init(bd_t *bis) { return -1; } int cpu_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init"))); int board_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init"))); void print_mmc_devices(char separator) { struct mmc *m; struct list_head *entry; list_for_each(entry, &mmc_devices) { m = list_entry(entry, struct mmc, link); printf("%s: %d", m->name, m->block_dev.dev); if (entry->next != &mmc_devices) printf("%c ", separator); } printf("\n"); } int get_mmc_num(void) { return cur_dev_num; } int mmc_initialize(bd_t *bis) { INIT_LIST_HEAD (&mmc_devices); cur_dev_num = 0; if (board_mmc_init(bis) < 0) cpu_mmc_init(bis); print_mmc_devices(','); return 0; }