/* * (C) Copyright 2008-2010 Freescale Semiconductor, Inc. * Terry Lv * * Copyright 2008, Freescale Semiconductor, Inc * Andy Fleming * * Based vaguely on the Linux code * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <config.h> #include <common.h> #include <command.h> #include <mmc.h> #include <part.h> #include <malloc.h> #include <linux/list.h> #include <mmc.h> #include <div64.h> #include <fsl_esdhc.h> static struct list_head mmc_devices; static int cur_dev_num = -1; int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { return mmc->send_cmd(mmc, cmd, data); } int mmc_set_blocklen(struct mmc *mmc, int len) { struct mmc_cmd cmd; cmd.cmdidx = MMC_CMD_SET_BLOCKLEN; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = len; cmd.flags = 0; return mmc_send_cmd(mmc, &cmd, NULL); } struct mmc *find_mmc_device(int dev_num) { struct mmc *m; struct list_head *entry; list_for_each(entry, &mmc_devices) { m = list_entry(entry, struct mmc, link); if (m->block_dev.dev == dev_num) return m; } printf("MMC Device %d not found\n", dev_num); return NULL; } static ulong mmc_bwrite(int dev_num, ulong start, lbaint_t blkcnt, const void*src) { struct mmc_cmd cmd; struct mmc_data data; int err; int stoperr = 0; struct mmc *mmc = find_mmc_device(dev_num); int blklen; lbaint_t blk_offset = 0, blk_left = blkcnt; if (!mmc) return -1; blklen = mmc->write_bl_len; err = mmc_set_blocklen(mmc, mmc->write_bl_len); if (err) { puts("set write bl len failed\n\r"); return err; } do { cmd.cmdidx = (blk_left > 1) \ ? MMC_CMD_WRITE_MULTIPLE_BLOCK \ : MMC_CMD_WRITE_SINGLE_BLOCK; cmd.cmdarg = (mmc->high_capacity) \ ? (start + blk_offset) \ : ((start + blk_offset) * blklen); cmd.resp_type = MMC_RSP_R1; cmd.flags = 0; data.src = src + blk_offset * blklen; data.blocks = (blk_left > MAX_BLK_CNT) \ ? MAX_BLK_CNT : blk_left; data.blocksize = blklen; data.flags = MMC_DATA_WRITE; err = mmc_send_cmd(mmc, &cmd, &data); if (err) { puts("mmc write failed\n\r"); return err; } if (blk_left > 1) { cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_R1b; cmd.flags = 0; stoperr = mmc_send_cmd(mmc, &cmd, NULL); } if (blk_left > MAX_BLK_CNT) { blk_left -= MAX_BLK_CNT; blk_offset += MAX_BLK_CNT; } else break; } while (blk_left > 0); return blkcnt; } int mmc_read_block(struct mmc *mmc, void *dst, uint blocknum) { struct mmc_cmd cmd; struct mmc_data data; cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK; if (mmc->high_capacity) cmd.cmdarg = blocknum; else cmd.cmdarg = blocknum * mmc->read_bl_len; cmd.resp_type = MMC_RSP_R1; cmd.flags = 0; data.dest = dst; data.blocks = 1; data.blocksize = mmc->read_bl_len; data.flags = MMC_DATA_READ; return mmc_send_cmd(mmc, &cmd, &data); } int mmc_read(struct mmc *mmc, u64 src, uchar *dst, int size) { char *buffer; int i; int blklen = mmc->read_bl_len; int startblock = lldiv(src, mmc->read_bl_len); int endblock = lldiv(src + size - 1, mmc->read_bl_len); int err = 0; /* Make a buffer big enough to hold all the blocks we might read */ buffer = malloc(blklen); if (!buffer) { puts("Could not allocate buffer for MMC read!\n"); return -1; } /* We always do full block reads from the card */ err = mmc_set_blocklen(mmc, mmc->read_bl_len); if (err) return err; for (i = startblock; i <= endblock; i++) { int segment_size; int offset; err = mmc_read_block(mmc, buffer, i); if (err) goto free_buffer; /* * The first block may not be aligned, so we * copy from the desired point in the block */ offset = (src & (blklen - 1)); segment_size = MIN(blklen - offset, size); memcpy(dst, buffer + offset, segment_size); dst += segment_size; src += segment_size; size -= segment_size; } free_buffer: free(buffer); return err; } static ulong mmc_bread(int dev_num, ulong start, lbaint_t blkcnt, void *dst) { struct mmc_cmd cmd; struct mmc_data data; int err; int stoperr = 0; struct mmc *mmc = find_mmc_device(dev_num); int blklen; lbaint_t blk_offset = 0, blk_left = blkcnt; if (!mmc) return -1; blklen = mmc->read_bl_len; err = mmc_set_blocklen(mmc, blklen); if (err) { puts("set read bl len failed\n\r"); return err; } do { cmd.cmdidx = (blk_left > 1) \ ? MMC_CMD_READ_MULTIPLE_BLOCK \ : MMC_CMD_READ_SINGLE_BLOCK; cmd.cmdarg = (mmc->high_capacity) \ ? (start + blk_offset) \ : ((start + blk_offset) * blklen); cmd.resp_type = MMC_RSP_R1; cmd.flags = 0; data.dest = dst + blk_offset * blklen; data.blocks = (blk_left > MAX_BLK_CNT) ? MAX_BLK_CNT : blk_left; data.blocksize = blklen; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); if (err) { puts("mmc read failed\n\r"); return err; } if (blk_left > 1) { cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_R1b; cmd.flags = 0; stoperr = mmc_send_cmd(mmc, &cmd, NULL); } if (blk_left > MAX_BLK_CNT) { blk_left -= MAX_BLK_CNT; blk_offset += MAX_BLK_CNT; } else break; } while (blk_left > 0); return blkcnt; } int mmc_go_idle(struct mmc* mmc) { struct mmc_cmd cmd; int err; udelay(1000); cmd.cmdidx = MMC_CMD_GO_IDLE_STATE; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_NONE; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; udelay(2000); return 0; } int sd_send_op_cond(struct mmc *mmc) { int timeout = 1000; int err; struct mmc_cmd cmd; do { cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = mmc->voltages; if (mmc->version == SD_VERSION_2) cmd.cmdarg |= OCR_HCS; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; udelay(1000); } while ((!(cmd.response[0] & OCR_BUSY)) && timeout--); if (timeout <= 0) return UNUSABLE_ERR; if (mmc->version != SD_VERSION_2) mmc->version = SD_VERSION_1_0; mmc->ocr = cmd.response[0]; mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); mmc->rca = 0; return 0; } int mmc_send_op_cond(struct mmc *mmc) { int timeout = 1000; struct mmc_cmd cmd; int err; /* Some cards seem to need this */ mmc_go_idle(mmc); do { cmd.cmdidx = MMC_CMD_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = OCR_HCS | mmc->voltages; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; udelay(1000); } while (!(cmd.response[0] & OCR_BUSY) && timeout--); if (timeout <= 0) return UNUSABLE_ERR; mmc->version = MMC_VERSION_UNKNOWN; mmc->ocr = cmd.response[0]; mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); mmc->rca = 0; return 0; } int mmc_send_ext_csd(struct mmc *mmc, char *ext_csd) { struct mmc_cmd cmd; struct mmc_data data; int err; /* Get the Card Status Register */ cmd.cmdidx = MMC_CMD_SEND_EXT_CSD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; cmd.flags = 0; data.dest = ext_csd; data.blocks = 1; data.blocksize = 512; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); return err; } int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value) { struct mmc_cmd cmd; cmd.cmdidx = MMC_CMD_SWITCH; cmd.resp_type = MMC_RSP_R1b; cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8); cmd.flags = 0; return mmc_send_cmd(mmc, &cmd, NULL); } int mmc_change_freq(struct mmc *mmc) { char *ext_csd; char cardtype; int err; mmc->card_caps = 0; /* Only version 4 supports high-speed */ if (mmc->version < MMC_VERSION_4) return 0; mmc->card_caps |= MMC_MODE_4BIT; ext_csd = (char *)malloc(512); if (!ext_csd) { puts("Could not allocate buffer for MMC ext csd!\n"); return -1; } err = mmc_send_ext_csd(mmc, ext_csd); if (err) goto err_rtn; /* if (ext_csd[EXT_CSD_SEC_CNT] || ext_csd[EXT_CSD_SEC_CNT + 1] || ext_csd[EXT_CSD_SEC_CNT + 2] || ext_csd[EXT_CSD_SEC_CNT + 3]) mmc->high_capacity = 1; */ cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf; err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1); if (err) goto err_rtn; /* Now check to see that it worked */ err = mmc_send_ext_csd(mmc, ext_csd); if (err) goto err_rtn; /* No high-speed support */ if (!ext_csd[EXT_CSD_HS_TIMING]) goto no_err_rtn; /* High Speed is set, there are two types: 52MHz and 26MHz */ if (cardtype & MMC_HS_52MHZ) mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS; else mmc->card_caps |= MMC_MODE_HS; no_err_rtn: free(ext_csd); return 0; err_rtn: free(ext_csd); return err; } int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp) { struct mmc_cmd cmd; struct mmc_data data; /* Switch the frequency */ cmd.cmdidx = SD_CMD_SWITCH_FUNC; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = (mode << 31) | 0xffffff; cmd.cmdarg &= ~(0xf << (group * 4)); cmd.cmdarg |= value << (group * 4); cmd.flags = 0; data.dest = (char *)resp; data.blocksize = 64; data.blocks = 1; data.flags = MMC_DATA_READ; return mmc_send_cmd(mmc, &cmd, &data); } int sd_change_freq(struct mmc *mmc) { int err; struct mmc_cmd cmd; uint scr[2]; uint switch_status[16]; struct mmc_data data; int timeout; mmc->card_caps = 0; /* Read the SCR to find out if this card supports higher speeds */ cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SEND_SCR; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; cmd.flags = 0; timeout = 3; retry_scr: data.dest = (char *)&scr; data.blocksize = 8; data.blocks = 1; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); if (err) { if (timeout--) goto retry_scr; return err; } mmc->scr[0] = __be32_to_cpu(scr[0]); mmc->scr[1] = __be32_to_cpu(scr[1]); switch ((mmc->scr[0] >> 24) & 0xf) { case 0: mmc->version = SD_VERSION_1_0; break; case 1: mmc->version = SD_VERSION_1_10; break; case 2: mmc->version = SD_VERSION_2; break; default: mmc->version = SD_VERSION_1_0; break; } /* Version 1.0 doesn't support switching */ if (mmc->version == SD_VERSION_1_0) return 0; timeout = 4; while (timeout--) { err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1, (u8 *)&switch_status); if (err) return err; /* The high-speed function is busy. Try again */ if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY)) break; } if (mmc->scr[0] & SD_DATA_4BIT) mmc->card_caps |= MMC_MODE_4BIT; /* If high-speed isn't supported, we return */ if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED)) return 0; err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)&switch_status); if (err) return err; if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000) mmc->card_caps |= MMC_MODE_HS; return 0; } /* frequency bases */ /* divided by 10 to be nice to platforms without floating point */ int fbase[] = { 10000, 100000, 1000000, 10000000, }; /* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice * to platforms without floating point. */ int multipliers[] = { 0, /* reserved */ 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; void mmc_set_ios(struct mmc *mmc) { mmc->set_ios(mmc); } void mmc_set_clock(struct mmc *mmc, uint clock) { if (clock > mmc->f_max) clock = mmc->f_max; if (clock < mmc->f_min) clock = mmc->f_min; mmc->clock = clock; mmc_set_ios(mmc); } void mmc_set_bus_width(struct mmc *mmc, uint width) { mmc->bus_width = width; mmc_set_ios(mmc); } #ifdef CONFIG_BOOT_PARTITION_ACCESS /* Return 0/1/2 for partition id before switch; Return -1 if fail to switch */ int mmc_switch_partition(struct mmc *mmc, uint part) { char *ext_csd; int err; uint old_part, new_part; char boot_config; /* partition must be - 0 - user area 1 - boot partition 1 2 - boot partition 2 */ if (part > 2) { printf("\nWrong partition id - 0 (user area), 1 (boot1), 2 (boot2)\n"); return 1; } /* Before calling this func, "mmc" struct must have been initialized */ if (mmc->version < MMC_VERSION_4) { puts("Error: invalid mmc version! mmc version is below version 4!"); return -1; } if (mmc->boot_size_mult <= 0) { /* it's a normal SD/MMC but user request to boot partition */ printf("\nError: This is a normal SD/MMC card but you request to access boot partition\n"); return -1; } /* part must be 0 (user area), 1 (boot partition1) or 2 (boot partition2) */ if (part > 2) { puts("Error: partition id must be 0(user area), 1(boot partition1) or 2(boot partition2)\n"); return -1; } if (IS_SD(mmc)) { /* eSD card hadn't been supported. Return directly without warning */ return -1; } ext_csd = (char *)malloc(512); if (!ext_csd) { puts("Error: Could not allocate buffer for MMC ext csd!\n"); return -1; } err = mmc_send_ext_csd(mmc, ext_csd); if (err) { puts("Warning: fail to get ext csd for MMC!\n"); goto err_rtn; } old_part = ext_csd[EXT_CSD_BOOT_CONFIG] & EXT_CSD_BOOT_PARTITION_ACCESS_MASK; /* Send SWITCH command to change partition for access */ boot_config = (ext_csd[EXT_CSD_BOOT_CONFIG] & ~EXT_CSD_BOOT_PARTITION_ACCESS_MASK) | (char)part; err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_CONFIG, boot_config); if (err) { puts("Error: fail to send SWITCH command to card to swich partition for access!\n"); goto err_rtn; } /* Now check whether it works */ err = mmc_send_ext_csd(mmc, ext_csd); if (err) { puts("Warning: fail to get ext csd for MMC!\n"); goto err_rtn; } new_part = ext_csd[EXT_CSD_BOOT_CONFIG] & EXT_CSD_BOOT_PARTITION_ACCESS_MASK; if ((char)part != new_part) { printf("Warning: after SWITCH, current part id %d is not same as requested partition %d!\n", new_part, part); goto err_rtn; } /* Seems everything is ok, return the partition id before switch */ free(ext_csd); return old_part; err_rtn: free(ext_csd); return -1; } int sd_switch_partition(struct mmc *mmc, uint part) { struct mmc_cmd cmd; int err; if (part > 1) { printf("\nWrong partition id - 0 (user area), 1 (boot1)\n"); return 1; } cmd.cmdidx = SD_CMD_SELECT_PARTITION; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = part << 24; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { printf("Failed to switch to partition %d\nPartition not exists or command execute fail!\n"); return -1; } return 0; } int mmc_get_cur_boot_partition(struct mmc *mmc) { char *ext_csd; int err; ext_csd = (char *)malloc(512); if (!ext_csd) { puts("Error! Could not allocate buffer for MMC ext csd!\n"); return -1; } err = mmc_send_ext_csd(mmc, ext_csd); if (err) { mmc->boot_config = 0; mmc->boot_size_mult = 0; /* continue since it's not a fatal error */ } else { mmc->boot_config = ext_csd[EXT_CSD_BOOT_CONFIG]; mmc->boot_size_mult = ext_csd[EXT_CSD_BOOT_INFO]; } free(ext_csd); return err; } #endif int mmc_startup(struct mmc *mmc) { int err; uint mult, freq; u64 cmult, csize; struct mmc_cmd cmd; /* Put the Card in Identify Mode */ cmd.cmdidx = MMC_CMD_ALL_SEND_CID; cmd.resp_type = MMC_RSP_R2; cmd.cmdarg = 0; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; memcpy(mmc->cid, cmd.response, 16); /* * For MMC cards, set the Relative Address. * For SD cards, get the Relatvie Address. * This also puts the cards into Standby State */ cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR; cmd.cmdarg = mmc->rca << 16; cmd.resp_type = MMC_RSP_R6; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if (IS_SD(mmc)) mmc->rca = (cmd.response[0] >> 16) & 0xffff; /* Get the Card-Specific Data */ cmd.cmdidx = MMC_CMD_SEND_CSD; cmd.resp_type = MMC_RSP_R2; cmd.cmdarg = mmc->rca << 16; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; mmc->csd[0] = cmd.response[0]; mmc->csd[1] = cmd.response[1]; mmc->csd[2] = cmd.response[2]; mmc->csd[3] = cmd.response[3]; if (mmc->version == MMC_VERSION_UNKNOWN) { int version = (cmd.response[0] >> 26) & 0xf; switch (version) { case 0: mmc->version = MMC_VERSION_1_2; break; case 1: mmc->version = MMC_VERSION_1_4; break; case 2: mmc->version = MMC_VERSION_2_2; break; case 3: mmc->version = MMC_VERSION_3; break; case 4: mmc->version = MMC_VERSION_4; break; default: mmc->version = MMC_VERSION_1_2; break; } } /* divide frequency by 10, since the mults are 10x bigger */ freq = fbase[(cmd.response[0] & 0x7)]; mult = multipliers[((cmd.response[0] >> 3) & 0xf)]; mmc->tran_speed = freq * mult; mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf); if (IS_SD(mmc)) mmc->write_bl_len = mmc->read_bl_len; else mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf); if (IS_SD(mmc)) { int csd_struct = (cmd.response[0] >> 30) & 0x3; switch (csd_struct) { case 1: csize = (mmc->csd[1] & 0x3f) << 16 | (mmc->csd[2] & 0xffff0000) >> 16; cmult = 8; break; case 0: default: if (0 != csd_struct) printf("unrecognised CSD structure version %d\n", csd_struct); csize = (mmc->csd[1] & 0x3ff) << 2 | (mmc->csd[2] & 0xc0000000) >> 30; cmult = (mmc->csd[2] & 0x00038000) >> 15; break; } } else { csize = (mmc->csd[1] & 0x3ff) << 2 | (mmc->csd[2] & 0xc0000000) >> 30; cmult = (mmc->csd[2] & 0x00038000) >> 15; } mmc->capacity = (csize + 1) << (cmult + 2); mmc->capacity *= mmc->read_bl_len; if (mmc->read_bl_len > 512) mmc->read_bl_len = 512; if (mmc->write_bl_len > 512) mmc->write_bl_len = 512; /* Select the card, and put it into Transfer Mode */ cmd.cmdidx = MMC_CMD_SELECT_CARD; cmd.resp_type = MMC_RSP_R1b; cmd.cmdarg = mmc->rca << 16; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if (IS_SD(mmc)) err = sd_change_freq(mmc); else err = mmc_change_freq(mmc); if (err) return err; /* Restrict card's capabilities by what the host can do */ mmc->card_caps &= mmc->host_caps; if (IS_SD(mmc)) { if (mmc->card_caps & MMC_MODE_4BIT) { cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 2; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; mmc_set_bus_width(mmc, 4); } if (mmc->card_caps & MMC_MODE_HS) mmc_set_clock(mmc, 50000000); else mmc_set_clock(mmc, 25000000); } else { if (mmc->card_caps & MMC_MODE_4BIT) { /* Set the card to use 4 bit*/ err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_4); if (err) return err; mmc_set_bus_width(mmc, 4); } else if (mmc->card_caps & MMC_MODE_8BIT) { /* Set the card to use 8 bit*/ err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_8); if (err) return err; mmc_set_bus_width(mmc, 8); } if (mmc->card_caps & MMC_MODE_HS) { if (mmc->card_caps & MMC_MODE_HS_52MHz) mmc_set_clock(mmc, 52000000); else mmc_set_clock(mmc, 26000000); } else mmc_set_clock(mmc, 20000000); #ifdef CONFIG_BOOT_PARTITION_ACCESS mmc_get_cur_boot_partition(mmc); #endif } /* fill in device description */ mmc->block_dev.lun = 0; mmc->block_dev.type = 0; mmc->block_dev.blksz = mmc->read_bl_len; mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len); sprintf(mmc->block_dev.vendor, "Man %06x Snr %08x", mmc->cid[0] >> 8, (mmc->cid[2] << 8) | (mmc->cid[3] >> 24)); sprintf(mmc->block_dev.product, "%c%c%c%c%c", mmc->cid[0] & 0xff, (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff, (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff); sprintf(mmc->block_dev.revision, "%d.%d", mmc->cid[2] >> 28, (mmc->cid[2] >> 24) & 0xf); init_part(&mmc->block_dev); return 0; } int mmc_send_if_cond(struct mmc *mmc) { struct mmc_cmd cmd; int err; cmd.cmdidx = SD_CMD_SEND_IF_COND; /* We set the bit if the host supports voltages between 2.7 and 3.6 V */ cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa; cmd.resp_type = MMC_RSP_R7; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if ((cmd.response[0] & 0xff) != 0xaa) return UNUSABLE_ERR; else mmc->version = SD_VERSION_2; return 0; } int mmc_register(struct mmc *mmc) { /* Setup the universal parts of the block interface just once */ mmc->block_dev.if_type = IF_TYPE_MMC; mmc->block_dev.dev = cur_dev_num++; mmc->block_dev.removable = 1; mmc->block_dev.block_read = mmc_bread; mmc->block_dev.block_write = mmc_bwrite; #if defined(CONFIG_DOS_PARTITION) mmc->block_dev.part_type = PART_TYPE_DOS; mmc->block_dev.type = DEV_TYPE_HARDDISK; #elif defined(CONFIG_MAC_PARTITION) mmc->block_dev.part_type = PART_TYPE_MAC; mmc->block_dev.type = DEV_TYPE_HARDDISK; #elif defined(CONFIG_ISO_PARTITION) mmc->block_dev.part_type = PART_TYPE_ISO; mmc->block_dev.type = DEV_TYPE_HARDDISK; #elif defined(CONFIG_AMIGA_PARTITION) mmc->block_dev.part_type = PART_TYPE_AMIGA; mmc->block_dev.type = DEV_TYPE_HARDDISK; #elif defined(CONFIG_EFI_PARTITION) mmc->block_dev.part_type = PART_TYPE_EFI; mmc->block_dev.type = DEV_TYPE_HARDDISK; #endif INIT_LIST_HEAD (&mmc->link); list_add_tail (&mmc->link, &mmc_devices); return 0; } block_dev_desc_t *mmc_get_dev(int dev) { struct mmc *mmc = find_mmc_device(dev); return mmc ? &mmc->block_dev : NULL; } int mmc_init(struct mmc *mmc) { int err; err = mmc->init(mmc); if (err) return err; mmc_set_bus_width(mmc, 1); mmc_set_clock(mmc, 1); /* Reset the Card */ err = mmc_go_idle(mmc); if (err) return err; /* Test for SD version 2 */ err = mmc_send_if_cond(mmc); /* Now try to get the SD card's operating condition */ err = sd_send_op_cond(mmc); /* If the command timed out, we check for an MMC card */ if (err == TIMEOUT) { err = mmc_send_op_cond(mmc); if (err) { printf("Card did not respond to voltage select!\n"); return UNUSABLE_ERR; } } return mmc_startup(mmc); } /* * CPU and board-specific MMC initializations. Aliased function * signals caller to move on */ static int __def_mmc_init(bd_t *bis) { return -1; } int cpu_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init"))); int board_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init"))); void print_mmc_devices(char separator) { struct mmc *m; struct list_head *entry; list_for_each(entry, &mmc_devices) { m = list_entry(entry, struct mmc, link); printf("%s: %d", m->name, m->block_dev.dev); if (entry->next != &mmc_devices) printf("%c ", separator); } printf("\n"); } int mmc_initialize(bd_t *bis) { INIT_LIST_HEAD (&mmc_devices); cur_dev_num = 0; if (board_mmc_init(bis) < 0) cpu_mmc_init(bis); print_mmc_devices(','); return 0; }