/* * Chromium OS cros_ec driver * * Copyright (c) 2012 The Chromium OS Authors. * * SPDX-License-Identifier: GPL-2.0+ */ /* * This is the interface to the Chrome OS EC. It provides keyboard functions, * power control and battery management. Quite a few other functions are * provided to enable the EC software to be updated, talk to the EC's I2C bus * and store a small amount of data in a memory which persists while the EC * is not reset. */ #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG_TRACE #define debug_trace(fmt, b...) debug(fmt, #b) #else #define debug_trace(fmt, b...) #endif enum { /* Timeout waiting for a flash erase command to complete */ CROS_EC_CMD_TIMEOUT_MS = 5000, /* Timeout waiting for a synchronous hash to be recomputed */ CROS_EC_CMD_HASH_TIMEOUT_MS = 2000, }; static struct cros_ec_dev static_dev, *last_dev; DECLARE_GLOBAL_DATA_PTR; /* Note: depends on enum ec_current_image */ static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"}; void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len) { #ifdef DEBUG int i; printf("%s: ", name); if (cmd != -1) printf("cmd=%#x: ", cmd); for (i = 0; i < len; i++) printf("%02x ", data[i]); printf("\n"); #endif } /* * Calculate a simple 8-bit checksum of a data block * * @param data Data block to checksum * @param size Size of data block in bytes * @return checksum value (0 to 255) */ int cros_ec_calc_checksum(const uint8_t *data, int size) { int csum, i; for (i = csum = 0; i < size; i++) csum += data[i]; return csum & 0xff; } /** * Create a request packet for protocol version 3. * * The packet is stored in the device's internal output buffer. * * @param dev CROS-EC device * @param cmd Command to send (EC_CMD_...) * @param cmd_version Version of command to send (EC_VER_...) * @param dout Output data (may be NULL If dout_len=0) * @param dout_len Size of output data in bytes * @return packet size in bytes, or <0 if error. */ static int create_proto3_request(struct cros_ec_dev *dev, int cmd, int cmd_version, const void *dout, int dout_len) { struct ec_host_request *rq = (struct ec_host_request *)dev->dout; int out_bytes = dout_len + sizeof(*rq); /* Fail if output size is too big */ if (out_bytes > (int)sizeof(dev->dout)) { debug("%s: Cannot send %d bytes\n", __func__, dout_len); return -EC_RES_REQUEST_TRUNCATED; } /* Fill in request packet */ rq->struct_version = EC_HOST_REQUEST_VERSION; rq->checksum = 0; rq->command = cmd; rq->command_version = cmd_version; rq->reserved = 0; rq->data_len = dout_len; /* Copy data after header */ memcpy(rq + 1, dout, dout_len); /* Write checksum field so the entire packet sums to 0 */ rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes)); cros_ec_dump_data("out", cmd, dev->dout, out_bytes); /* Return size of request packet */ return out_bytes; } /** * Prepare the device to receive a protocol version 3 response. * * @param dev CROS-EC device * @param din_len Maximum size of response in bytes * @return maximum expected number of bytes in response, or <0 if error. */ static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len) { int in_bytes = din_len + sizeof(struct ec_host_response); /* Fail if input size is too big */ if (in_bytes > (int)sizeof(dev->din)) { debug("%s: Cannot receive %d bytes\n", __func__, din_len); return -EC_RES_RESPONSE_TOO_BIG; } /* Return expected size of response packet */ return in_bytes; } /** * Handle a protocol version 3 response packet. * * The packet must already be stored in the device's internal input buffer. * * @param dev CROS-EC device * @param dinp Returns pointer to response data * @param din_len Maximum size of response in bytes * @return number of bytes of response data, or <0 if error */ static int handle_proto3_response(struct cros_ec_dev *dev, uint8_t **dinp, int din_len) { struct ec_host_response *rs = (struct ec_host_response *)dev->din; int in_bytes; int csum; cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs)); /* Check input data */ if (rs->struct_version != EC_HOST_RESPONSE_VERSION) { debug("%s: EC response version mismatch\n", __func__); return -EC_RES_INVALID_RESPONSE; } if (rs->reserved) { debug("%s: EC response reserved != 0\n", __func__); return -EC_RES_INVALID_RESPONSE; } if (rs->data_len > din_len) { debug("%s: EC returned too much data\n", __func__); return -EC_RES_RESPONSE_TOO_BIG; } cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len); /* Update in_bytes to actual data size */ in_bytes = sizeof(*rs) + rs->data_len; /* Verify checksum */ csum = cros_ec_calc_checksum(dev->din, in_bytes); if (csum) { debug("%s: EC response checksum invalid: 0x%02x\n", __func__, csum); return -EC_RES_INVALID_CHECKSUM; } /* Return error result, if any */ if (rs->result) return -(int)rs->result; /* If we're still here, set response data pointer and return length */ *dinp = (uint8_t *)(rs + 1); return rs->data_len; } static int send_command_proto3(struct cros_ec_dev *dev, int cmd, int cmd_version, const void *dout, int dout_len, uint8_t **dinp, int din_len) { int out_bytes, in_bytes; int rv; /* Create request packet */ out_bytes = create_proto3_request(dev, cmd, cmd_version, dout, dout_len); if (out_bytes < 0) return out_bytes; /* Prepare response buffer */ in_bytes = prepare_proto3_response_buffer(dev, din_len); if (in_bytes < 0) return in_bytes; switch (dev->interface) { #ifdef CONFIG_CROS_EC_SPI case CROS_EC_IF_SPI: rv = cros_ec_spi_packet(dev, out_bytes, in_bytes); break; #endif #ifdef CONFIG_CROS_EC_SANDBOX case CROS_EC_IF_SANDBOX: rv = cros_ec_sandbox_packet(dev, out_bytes, in_bytes); break; #endif case CROS_EC_IF_NONE: /* TODO: support protocol 3 for LPC, I2C; for now fall through */ default: debug("%s: Unsupported interface\n", __func__); rv = -1; } if (rv < 0) return rv; /* Process the response */ return handle_proto3_response(dev, dinp, din_len); } static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, const void *dout, int dout_len, uint8_t **dinp, int din_len) { int ret = -1; /* Handle protocol version 3 support */ if (dev->protocol_version == 3) { return send_command_proto3(dev, cmd, cmd_version, dout, dout_len, dinp, din_len); } switch (dev->interface) { #ifdef CONFIG_CROS_EC_SPI case CROS_EC_IF_SPI: ret = cros_ec_spi_command(dev, cmd, cmd_version, (const uint8_t *)dout, dout_len, dinp, din_len); break; #endif #ifdef CONFIG_CROS_EC_I2C case CROS_EC_IF_I2C: ret = cros_ec_i2c_command(dev, cmd, cmd_version, (const uint8_t *)dout, dout_len, dinp, din_len); break; #endif #ifdef CONFIG_CROS_EC_LPC case CROS_EC_IF_LPC: ret = cros_ec_lpc_command(dev, cmd, cmd_version, (const uint8_t *)dout, dout_len, dinp, din_len); break; #endif case CROS_EC_IF_NONE: default: ret = -1; } return ret; } /** * Send a command to the CROS-EC device and return the reply. * * The device's internal input/output buffers are used. * * @param dev CROS-EC device * @param cmd Command to send (EC_CMD_...) * @param cmd_version Version of command to send (EC_VER_...) * @param dout Output data (may be NULL If dout_len=0) * @param dout_len Size of output data in bytes * @param dinp Response data (may be NULL If din_len=0). * If not NULL, it will be updated to point to the data * and will always be double word aligned (64-bits) * @param din_len Maximum size of response in bytes * @return number of bytes in response, or -1 on error */ static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, const void *dout, int dout_len, uint8_t **dinp, int din_len) { uint8_t *din = NULL; int len; len = send_command(dev, cmd, cmd_version, dout, dout_len, &din, din_len); /* If the command doesn't complete, wait a while */ if (len == -EC_RES_IN_PROGRESS) { struct ec_response_get_comms_status *resp = NULL; ulong start; /* Wait for command to complete */ start = get_timer(0); do { int ret; mdelay(50); /* Insert some reasonable delay */ ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0, NULL, 0, (uint8_t **)&resp, sizeof(*resp)); if (ret < 0) return ret; if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) { debug("%s: Command %#02x timeout\n", __func__, cmd); return -EC_RES_TIMEOUT; } } while (resp->flags & EC_COMMS_STATUS_PROCESSING); /* OK it completed, so read the status response */ /* not sure why it was 0 for the last argument */ len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0, NULL, 0, &din, din_len); } debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp, dinp ? *dinp : NULL); if (dinp) { /* If we have any data to return, it must be 64bit-aligned */ assert(len <= 0 || !((uintptr_t)din & 7)); *dinp = din; } return len; } /** * Send a command to the CROS-EC device and return the reply. * * The device's internal input/output buffers are used. * * @param dev CROS-EC device * @param cmd Command to send (EC_CMD_...) * @param cmd_version Version of command to send (EC_VER_...) * @param dout Output data (may be NULL If dout_len=0) * @param dout_len Size of output data in bytes * @param din Response data (may be NULL If din_len=0). * It not NULL, it is a place for ec_command() to copy the * data to. * @param din_len Maximum size of response in bytes * @return number of bytes in response, or -1 on error */ static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, const void *dout, int dout_len, void *din, int din_len) { uint8_t *in_buffer; int len; assert((din_len == 0) || din); len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len, &in_buffer, din_len); if (len > 0) { /* * If we were asked to put it somewhere, do so, otherwise just * disregard the result. */ if (din && in_buffer) { assert(len <= din_len); memmove(din, in_buffer, len); } } return len; } int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan) { if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan, sizeof(scan->data)) != sizeof(scan->data)) return -1; return 0; } int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen) { struct ec_response_get_version *r; if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) return -1; if (maxlen > (int)sizeof(r->version_string_ro)) maxlen = sizeof(r->version_string_ro); switch (r->current_image) { case EC_IMAGE_RO: memcpy(id, r->version_string_ro, maxlen); break; case EC_IMAGE_RW: memcpy(id, r->version_string_rw, maxlen); break; default: return -1; } id[maxlen - 1] = '\0'; return 0; } int cros_ec_read_version(struct cros_ec_dev *dev, struct ec_response_get_version **versionp) { if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, (uint8_t **)versionp, sizeof(**versionp)) != sizeof(**versionp)) return -1; return 0; } int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp) { if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0, (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0) return -1; return 0; } int cros_ec_read_current_image(struct cros_ec_dev *dev, enum ec_current_image *image) { struct ec_response_get_version *r; if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) return -1; *image = r->current_image; return 0; } static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev, struct ec_response_vboot_hash *hash) { struct ec_params_vboot_hash p; ulong start; start = get_timer(0); while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) { mdelay(50); /* Insert some reasonable delay */ p.cmd = EC_VBOOT_HASH_GET; if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), hash, sizeof(*hash)) < 0) return -1; if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) { debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__); return -EC_RES_TIMEOUT; } } return 0; } int cros_ec_read_hash(struct cros_ec_dev *dev, struct ec_response_vboot_hash *hash) { struct ec_params_vboot_hash p; int rv; p.cmd = EC_VBOOT_HASH_GET; if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), hash, sizeof(*hash)) < 0) return -1; /* If the EC is busy calculating the hash, fidget until it's done. */ rv = cros_ec_wait_on_hash_done(dev, hash); if (rv) return rv; /* If the hash is valid, we're done. Otherwise, we have to kick it off * again and wait for it to complete. Note that we explicitly assume * that hashing zero bytes is always wrong, even though that would * produce a valid hash value. */ if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size) return 0; debug("%s: No valid hash (status=%d size=%d). Compute one...\n", __func__, hash->status, hash->size); p.cmd = EC_VBOOT_HASH_START; p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; p.nonce_size = 0; p.offset = EC_VBOOT_HASH_OFFSET_RW; if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), hash, sizeof(*hash)) < 0) return -1; rv = cros_ec_wait_on_hash_done(dev, hash); if (rv) return rv; debug("%s: hash done\n", __func__); return 0; } static int cros_ec_invalidate_hash(struct cros_ec_dev *dev) { struct ec_params_vboot_hash p; struct ec_response_vboot_hash *hash; /* We don't have an explict command for the EC to discard its current * hash value, so we'll just tell it to calculate one that we know is * wrong (we claim that hashing zero bytes is always invalid). */ p.cmd = EC_VBOOT_HASH_RECALC; p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; p.nonce_size = 0; p.offset = 0; p.size = 0; debug("%s:\n", __func__); if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), (uint8_t **)&hash, sizeof(*hash)) < 0) return -1; /* No need to wait for it to finish */ return 0; } int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd, uint8_t flags) { struct ec_params_reboot_ec p; p.cmd = cmd; p.flags = flags; if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0) < 0) return -1; if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) { /* * EC reboot will take place immediately so delay to allow it * to complete. Note that some reboot types (EC_REBOOT_COLD) * will reboot the AP as well, in which case we won't actually * get to this point. */ /* * TODO(rspangler@chromium.org): Would be nice if we had a * better way to determine when the reboot is complete. Could * we poll a memory-mapped LPC value? */ udelay(50000); } return 0; } int cros_ec_interrupt_pending(struct cros_ec_dev *dev) { /* no interrupt support : always poll */ if (!fdt_gpio_isvalid(&dev->ec_int)) return -ENOENT; return !gpio_get_value(dev->ec_int.gpio); } int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info) { if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info, sizeof(*info)) != sizeof(*info)) return -1; return 0; } int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr) { struct ec_response_host_event_mask *resp; /* * Use the B copy of the event flags, because the main copy is already * used by ACPI/SMI. */ if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0, (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp)) return -1; if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) return -1; *events_ptr = resp->mask; return 0; } int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events) { struct ec_params_host_event_mask params; params.mask = events; /* * Use the B copy of the event flags, so it affects the data returned * by cros_ec_get_host_events(). */ if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0, ¶ms, sizeof(params), NULL, 0) < 0) return -1; return 0; } int cros_ec_flash_protect(struct cros_ec_dev *dev, uint32_t set_mask, uint32_t set_flags, struct ec_response_flash_protect *resp) { struct ec_params_flash_protect params; params.mask = set_mask; params.flags = set_flags; if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT, ¶ms, sizeof(params), resp, sizeof(*resp)) != sizeof(*resp)) return -1; return 0; } static int cros_ec_check_version(struct cros_ec_dev *dev) { struct ec_params_hello req; struct ec_response_hello *resp; #ifdef CONFIG_CROS_EC_LPC /* LPC has its own way of doing this */ if (dev->interface == CROS_EC_IF_LPC) return cros_ec_lpc_check_version(dev); #endif /* * TODO(sjg@chromium.org). * There is a strange oddity here with the EC. We could just ignore * the response, i.e. pass the last two parameters as NULL and 0. * In this case we won't read back very many bytes from the EC. * On the I2C bus the EC gets upset about this and will try to send * the bytes anyway. This means that we will have to wait for that * to complete before continuing with a new EC command. * * This problem is probably unique to the I2C bus. * * So for now, just read all the data anyway. */ /* Try sending a version 3 packet */ dev->protocol_version = 3; if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), (uint8_t **)&resp, sizeof(*resp)) > 0) { return 0; } /* Try sending a version 2 packet */ dev->protocol_version = 2; if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), (uint8_t **)&resp, sizeof(*resp)) > 0) { return 0; } /* * Fail if we're still here, since the EC doesn't understand any * protcol version we speak. Version 1 interface without command * version is no longer supported, and we don't know about any new * protocol versions. */ dev->protocol_version = 0; printf("%s: ERROR: old EC interface not supported\n", __func__); return -1; } int cros_ec_test(struct cros_ec_dev *dev) { struct ec_params_hello req; struct ec_response_hello *resp; req.in_data = 0x12345678; if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) { printf("ec_command_inptr() returned error\n"); return -1; } if (resp->out_data != req.in_data + 0x01020304) { printf("Received invalid handshake %x\n", resp->out_data); return -1; } return 0; } int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region, uint32_t *offset, uint32_t *size) { struct ec_params_flash_region_info p; struct ec_response_flash_region_info *r; int ret; p.region = region; ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO, EC_VER_FLASH_REGION_INFO, &p, sizeof(p), (uint8_t **)&r, sizeof(*r)); if (ret != sizeof(*r)) return -1; if (offset) *offset = r->offset; if (size) *size = r->size; return 0; } int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size) { struct ec_params_flash_erase p; p.offset = offset; p.size = size; return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p), NULL, 0); } /** * Write a single block to the flash * * Write a block of data to the EC flash. The size must not exceed the flash * write block size which you can obtain from cros_ec_flash_write_burst_size(). * * The offset starts at 0. You can obtain the region information from * cros_ec_flash_offset() to find out where to write for a particular region. * * Attempting to write to the region where the EC is currently running from * will result in an error. * * @param dev CROS-EC device * @param data Pointer to data buffer to write * @param offset Offset within flash to write to. * @param size Number of bytes to write * @return 0 if ok, -1 on error */ static int cros_ec_flash_write_block(struct cros_ec_dev *dev, const uint8_t *data, uint32_t offset, uint32_t size) { struct ec_params_flash_write p; p.offset = offset; p.size = size; assert(data && p.size <= EC_FLASH_WRITE_VER0_SIZE); memcpy(&p + 1, data, p.size); return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0, &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1; } /** * Return optimal flash write burst size */ static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev) { return EC_FLASH_WRITE_VER0_SIZE; } /** * Check if a block of data is erased (all 0xff) * * This function is useful when dealing with flash, for checking whether a * data block is erased and thus does not need to be programmed. * * @param data Pointer to data to check (must be word-aligned) * @param size Number of bytes to check (must be word-aligned) * @return 0 if erased, non-zero if any word is not erased */ static int cros_ec_data_is_erased(const uint32_t *data, int size) { assert(!(size & 3)); size /= sizeof(uint32_t); for (; size > 0; size -= 4, data++) if (*data != -1U) return 0; return 1; } int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data, uint32_t offset, uint32_t size) { uint32_t burst = cros_ec_flash_write_burst_size(dev); uint32_t end, off; int ret; /* * TODO: round up to the nearest multiple of write size. Can get away * without that on link right now because its write size is 4 bytes. */ end = offset + size; for (off = offset; off < end; off += burst, data += burst) { uint32_t todo; /* If the data is empty, there is no point in programming it */ todo = min(end - off, burst); if (dev->optimise_flash_write && cros_ec_data_is_erased((uint32_t *)data, todo)) continue; ret = cros_ec_flash_write_block(dev, data, off, todo); if (ret) return ret; } return 0; } /** * Read a single block from the flash * * Read a block of data from the EC flash. The size must not exceed the flash * write block size which you can obtain from cros_ec_flash_write_burst_size(). * * The offset starts at 0. You can obtain the region information from * cros_ec_flash_offset() to find out where to read for a particular region. * * @param dev CROS-EC device * @param data Pointer to data buffer to read into * @param offset Offset within flash to read from * @param size Number of bytes to read * @return 0 if ok, -1 on error */ static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset, uint32_t size) { struct ec_params_flash_read p; p.offset = offset; p.size = size; return ec_command(dev, EC_CMD_FLASH_READ, 0, &p, sizeof(p), data, size) >= 0 ? 0 : -1; } int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset, uint32_t size) { uint32_t burst = cros_ec_flash_write_burst_size(dev); uint32_t end, off; int ret; end = offset + size; for (off = offset; off < end; off += burst, data += burst) { ret = cros_ec_flash_read_block(dev, data, off, min(end - off, burst)); if (ret) return ret; } return 0; } int cros_ec_flash_update_rw(struct cros_ec_dev *dev, const uint8_t *image, int image_size) { uint32_t rw_offset, rw_size; int ret; if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size)) return -1; if (image_size > (int)rw_size) return -1; /* Invalidate the existing hash, just in case the AP reboots * unexpectedly during the update. If that happened, the EC RW firmware * would be invalid, but the EC would still have the original hash. */ ret = cros_ec_invalidate_hash(dev); if (ret) return ret; /* * Erase the entire RW section, so that the EC doesn't see any garbage * past the new image if it's smaller than the current image. * * TODO: could optimize this to erase just the current image, since * presumably everything past that is 0xff's. But would still need to * round up to the nearest multiple of erase size. */ ret = cros_ec_flash_erase(dev, rw_offset, rw_size); if (ret) return ret; /* Write the image */ ret = cros_ec_flash_write(dev, image, rw_offset, image_size); if (ret) return ret; return 0; } int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block) { struct ec_params_vbnvcontext p; int len; p.op = EC_VBNV_CONTEXT_OP_READ; len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE); if (len < EC_VBNV_BLOCK_SIZE) return -1; return 0; } int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block) { struct ec_params_vbnvcontext p; int len; p.op = EC_VBNV_CONTEXT_OP_WRITE; memcpy(p.block, block, sizeof(p.block)); len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, &p, sizeof(p), NULL, 0); if (len < 0) return -1; return 0; } int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state) { struct ec_params_ldo_set params; params.index = index; params.state = state; if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, ¶ms, sizeof(params), NULL, 0)) return -1; return 0; } int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state) { struct ec_params_ldo_get params; struct ec_response_ldo_get *resp; params.index = index; if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, ¶ms, sizeof(params), (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp)) return -1; *state = resp->state; return 0; } /** * Decode EC interface details from the device tree and allocate a suitable * device. * * @param blob Device tree blob * @param node Node to decode from * @param devp Returns a pointer to the new allocated device * @return 0 if ok, -1 on error */ static int cros_ec_decode_fdt(const void *blob, int node, struct cros_ec_dev **devp) { enum fdt_compat_id compat; struct cros_ec_dev *dev; int parent; /* See what type of parent we are inside (this is expensive) */ parent = fdt_parent_offset(blob, node); if (parent < 0) { debug("%s: Cannot find node parent\n", __func__); return -1; } dev = &static_dev; dev->node = node; dev->parent_node = parent; compat = fdtdec_lookup(blob, parent); switch (compat) { #ifdef CONFIG_CROS_EC_SPI case COMPAT_SAMSUNG_EXYNOS_SPI: dev->interface = CROS_EC_IF_SPI; if (cros_ec_spi_decode_fdt(dev, blob)) return -1; break; #endif #ifdef CONFIG_CROS_EC_I2C case COMPAT_SAMSUNG_S3C2440_I2C: dev->interface = CROS_EC_IF_I2C; if (cros_ec_i2c_decode_fdt(dev, blob)) return -1; break; #endif #ifdef CONFIG_CROS_EC_LPC case COMPAT_INTEL_LPC: dev->interface = CROS_EC_IF_LPC; break; #endif #ifdef CONFIG_CROS_EC_SANDBOX case COMPAT_SANDBOX_HOST_EMULATION: dev->interface = CROS_EC_IF_SANDBOX; break; #endif default: debug("%s: Unknown compat id %d\n", __func__, compat); return -1; } fdtdec_decode_gpio(blob, node, "ec-interrupt", &dev->ec_int); dev->optimise_flash_write = fdtdec_get_bool(blob, node, "optimise-flash-write"); *devp = dev; return 0; } int cros_ec_init(const void *blob, struct cros_ec_dev **cros_ecp) { char id[MSG_BYTES]; struct cros_ec_dev *dev; int node = 0; *cros_ecp = NULL; do { node = fdtdec_next_compatible(blob, node, COMPAT_GOOGLE_CROS_EC); if (node < 0) { debug("%s: Node not found\n", __func__); return 0; } } while (!fdtdec_get_is_enabled(blob, node)); if (cros_ec_decode_fdt(blob, node, &dev)) { debug("%s: Failed to decode device.\n", __func__); return -CROS_EC_ERR_FDT_DECODE; } switch (dev->interface) { #ifdef CONFIG_CROS_EC_SPI case CROS_EC_IF_SPI: if (cros_ec_spi_init(dev, blob)) { debug("%s: Could not setup SPI interface\n", __func__); return -CROS_EC_ERR_DEV_INIT; } break; #endif #ifdef CONFIG_CROS_EC_I2C case CROS_EC_IF_I2C: if (cros_ec_i2c_init(dev, blob)) return -CROS_EC_ERR_DEV_INIT; break; #endif #ifdef CONFIG_CROS_EC_LPC case CROS_EC_IF_LPC: if (cros_ec_lpc_init(dev, blob)) return -CROS_EC_ERR_DEV_INIT; break; #endif #ifdef CONFIG_CROS_EC_SANDBOX case CROS_EC_IF_SANDBOX: if (cros_ec_sandbox_init(dev, blob)) return -CROS_EC_ERR_DEV_INIT; break; #endif case CROS_EC_IF_NONE: default: return 0; } /* we will poll the EC interrupt line */ fdtdec_setup_gpio(&dev->ec_int); if (fdt_gpio_isvalid(&dev->ec_int)) gpio_direction_input(dev->ec_int.gpio); if (cros_ec_check_version(dev)) { debug("%s: Could not detect CROS-EC version\n", __func__); return -CROS_EC_ERR_CHECK_VERSION; } if (cros_ec_read_id(dev, id, sizeof(id))) { debug("%s: Could not read KBC ID\n", __func__); return -CROS_EC_ERR_READ_ID; } /* Remember this device for use by the cros_ec command */ last_dev = *cros_ecp = dev; debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id); return 0; } int cros_ec_decode_region(int argc, char * const argv[]) { if (argc > 0) { if (0 == strcmp(*argv, "rw")) return EC_FLASH_REGION_RW; else if (0 == strcmp(*argv, "ro")) return EC_FLASH_REGION_RO; debug("%s: Invalid region '%s'\n", __func__, *argv); } else { debug("%s: Missing region parameter\n", __func__); } return -1; } int cros_ec_decode_ec_flash(const void *blob, struct fdt_cros_ec *config) { int flash_node, node; node = fdtdec_next_compatible(blob, 0, COMPAT_GOOGLE_CROS_EC); if (node < 0) { debug("Failed to find chrome-ec node'\n"); return -1; } flash_node = fdt_subnode_offset(blob, node, "flash"); if (flash_node < 0) { debug("Failed to find flash node\n"); return -1; } if (fdtdec_read_fmap_entry(blob, flash_node, "flash", &config->flash)) { debug("Failed to decode flash node in chrome-ec'\n"); return -1; } config->flash_erase_value = fdtdec_get_int(blob, flash_node, "erase-value", -1); for (node = fdt_first_subnode(blob, flash_node); node >= 0; node = fdt_next_subnode(blob, node)) { const char *name = fdt_get_name(blob, node, NULL); enum ec_flash_region region; if (0 == strcmp(name, "ro")) { region = EC_FLASH_REGION_RO; } else if (0 == strcmp(name, "rw")) { region = EC_FLASH_REGION_RW; } else if (0 == strcmp(name, "wp-ro")) { region = EC_FLASH_REGION_WP_RO; } else { debug("Unknown EC flash region name '%s'\n", name); return -1; } if (fdtdec_read_fmap_entry(blob, node, "reg", &config->region[region])) { debug("Failed to decode flash region in chrome-ec'\n"); return -1; } } return 0; } #ifdef CONFIG_CMD_CROS_EC /** * Perform a flash read or write command * * @param dev CROS-EC device to read/write * @param is_write 1 do to a write, 0 to do a read * @param argc Number of arguments * @param argv Arguments (2 is region, 3 is address) * @return 0 for ok, 1 for a usage error or -ve for ec command error * (negative EC_RES_...) */ static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc, char * const argv[]) { uint32_t offset, size = -1U, region_size; unsigned long addr; char *endp; int region; int ret; region = cros_ec_decode_region(argc - 2, argv + 2); if (region == -1) return 1; if (argc < 4) return 1; addr = simple_strtoul(argv[3], &endp, 16); if (*argv[3] == 0 || *endp != 0) return 1; if (argc > 4) { size = simple_strtoul(argv[4], &endp, 16); if (*argv[4] == 0 || *endp != 0) return 1; } ret = cros_ec_flash_offset(dev, region, &offset, ®ion_size); if (ret) { debug("%s: Could not read region info\n", __func__); return ret; } if (size == -1U) size = region_size; ret = is_write ? cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) : cros_ec_flash_read(dev, (uint8_t *)addr, offset, size); if (ret) { debug("%s: Could not %s region\n", __func__, is_write ? "write" : "read"); return ret; } return 0; } static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { struct cros_ec_dev *dev = last_dev; const char *cmd; int ret = 0; if (argc < 2) return CMD_RET_USAGE; cmd = argv[1]; if (0 == strcmp("init", cmd)) { ret = cros_ec_init(gd->fdt_blob, &dev); if (ret) { printf("Could not init cros_ec device (err %d)\n", ret); return 1; } return 0; } /* Just use the last allocated device; there should be only one */ if (!last_dev) { printf("No CROS-EC device available\n"); return 1; } if (0 == strcmp("id", cmd)) { char id[MSG_BYTES]; if (cros_ec_read_id(dev, id, sizeof(id))) { debug("%s: Could not read KBC ID\n", __func__); return 1; } printf("%s\n", id); } else if (0 == strcmp("info", cmd)) { struct ec_response_mkbp_info info; if (cros_ec_info(dev, &info)) { debug("%s: Could not read KBC info\n", __func__); return 1; } printf("rows = %u\n", info.rows); printf("cols = %u\n", info.cols); printf("switches = %#x\n", info.switches); } else if (0 == strcmp("curimage", cmd)) { enum ec_current_image image; if (cros_ec_read_current_image(dev, &image)) { debug("%s: Could not read KBC image\n", __func__); return 1; } printf("%d\n", image); } else if (0 == strcmp("hash", cmd)) { struct ec_response_vboot_hash hash; int i; if (cros_ec_read_hash(dev, &hash)) { debug("%s: Could not read KBC hash\n", __func__); return 1; } if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256) printf("type: SHA-256\n"); else printf("type: %d\n", hash.hash_type); printf("offset: 0x%08x\n", hash.offset); printf("size: 0x%08x\n", hash.size); printf("digest: "); for (i = 0; i < hash.digest_size; i++) printf("%02x", hash.hash_digest[i]); printf("\n"); } else if (0 == strcmp("reboot", cmd)) { int region; enum ec_reboot_cmd cmd; if (argc >= 3 && !strcmp(argv[2], "cold")) cmd = EC_REBOOT_COLD; else { region = cros_ec_decode_region(argc - 2, argv + 2); if (region == EC_FLASH_REGION_RO) cmd = EC_REBOOT_JUMP_RO; else if (region == EC_FLASH_REGION_RW) cmd = EC_REBOOT_JUMP_RW; else return CMD_RET_USAGE; } if (cros_ec_reboot(dev, cmd, 0)) { debug("%s: Could not reboot KBC\n", __func__); return 1; } } else if (0 == strcmp("events", cmd)) { uint32_t events; if (cros_ec_get_host_events(dev, &events)) { debug("%s: Could not read host events\n", __func__); return 1; } printf("0x%08x\n", events); } else if (0 == strcmp("clrevents", cmd)) { uint32_t events = 0x7fffffff; if (argc >= 3) events = simple_strtol(argv[2], NULL, 0); if (cros_ec_clear_host_events(dev, events)) { debug("%s: Could not clear host events\n", __func__); return 1; } } else if (0 == strcmp("read", cmd)) { ret = do_read_write(dev, 0, argc, argv); if (ret > 0) return CMD_RET_USAGE; } else if (0 == strcmp("write", cmd)) { ret = do_read_write(dev, 1, argc, argv); if (ret > 0) return CMD_RET_USAGE; } else if (0 == strcmp("erase", cmd)) { int region = cros_ec_decode_region(argc - 2, argv + 2); uint32_t offset, size; if (region == -1) return CMD_RET_USAGE; if (cros_ec_flash_offset(dev, region, &offset, &size)) { debug("%s: Could not read region info\n", __func__); ret = -1; } else { ret = cros_ec_flash_erase(dev, offset, size); if (ret) { debug("%s: Could not erase region\n", __func__); } } } else if (0 == strcmp("regioninfo", cmd)) { int region = cros_ec_decode_region(argc - 2, argv + 2); uint32_t offset, size; if (region == -1) return CMD_RET_USAGE; ret = cros_ec_flash_offset(dev, region, &offset, &size); if (ret) { debug("%s: Could not read region info\n", __func__); } else { printf("Region: %s\n", region == EC_FLASH_REGION_RO ? "RO" : "RW"); printf("Offset: %x\n", offset); printf("Size: %x\n", size); } } else if (0 == strcmp("vbnvcontext", cmd)) { uint8_t block[EC_VBNV_BLOCK_SIZE]; char buf[3]; int i, len; unsigned long result; if (argc <= 2) { ret = cros_ec_read_vbnvcontext(dev, block); if (!ret) { printf("vbnv_block: "); for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) printf("%02x", block[i]); putc('\n'); } } else { /* * TODO(clchiou): Move this to a utility function as * cmd_spi might want to call it. */ memset(block, 0, EC_VBNV_BLOCK_SIZE); len = strlen(argv[2]); buf[2] = '\0'; for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) { if (i * 2 >= len) break; buf[0] = argv[2][i * 2]; if (i * 2 + 1 >= len) buf[1] = '0'; else buf[1] = argv[2][i * 2 + 1]; strict_strtoul(buf, 16, &result); block[i] = result; } ret = cros_ec_write_vbnvcontext(dev, block); } if (ret) { debug("%s: Could not %s VbNvContext\n", __func__, argc <= 2 ? "read" : "write"); } } else if (0 == strcmp("test", cmd)) { int result = cros_ec_test(dev); if (result) printf("Test failed with error %d\n", result); else puts("Test passed\n"); } else if (0 == strcmp("version", cmd)) { struct ec_response_get_version *p; char *build_string; ret = cros_ec_read_version(dev, &p); if (!ret) { /* Print versions */ printf("RO version: %1.*s\n", (int)sizeof(p->version_string_ro), p->version_string_ro); printf("RW version: %1.*s\n", (int)sizeof(p->version_string_rw), p->version_string_rw); printf("Firmware copy: %s\n", (p->current_image < ARRAY_SIZE(ec_current_image_name) ? ec_current_image_name[p->current_image] : "?")); ret = cros_ec_read_build_info(dev, &build_string); if (!ret) printf("Build info: %s\n", build_string); } } else if (0 == strcmp("ldo", cmd)) { uint8_t index, state; char *endp; if (argc < 3) return CMD_RET_USAGE; index = simple_strtoul(argv[2], &endp, 10); if (*argv[2] == 0 || *endp != 0) return CMD_RET_USAGE; if (argc > 3) { state = simple_strtoul(argv[3], &endp, 10); if (*argv[3] == 0 || *endp != 0) return CMD_RET_USAGE; ret = cros_ec_set_ldo(dev, index, state); } else { ret = cros_ec_get_ldo(dev, index, &state); if (!ret) { printf("LDO%d: %s\n", index, state == EC_LDO_STATE_ON ? "on" : "off"); } } if (ret) { debug("%s: Could not access LDO%d\n", __func__, index); return ret; } } else { return CMD_RET_USAGE; } if (ret < 0) { printf("Error: CROS-EC command failed (error %d)\n", ret); ret = 1; } return ret; } U_BOOT_CMD( crosec, 5, 1, do_cros_ec, "CROS-EC utility command", "init Re-init CROS-EC (done on startup automatically)\n" "crosec id Read CROS-EC ID\n" "crosec info Read CROS-EC info\n" "crosec curimage Read CROS-EC current image\n" "crosec hash Read CROS-EC hash\n" "crosec reboot [rw | ro | cold] Reboot CROS-EC\n" "crosec events Read CROS-EC host events\n" "crosec clrevents [mask] Clear CROS-EC host events\n" "crosec regioninfo Read image info\n" "crosec erase Erase EC image\n" "crosec read [] Read EC image\n" "crosec write [] Write EC image\n" "crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n" "crosec ldo [] Switch/Read LDO state\n" "crosec test run tests on cros_ec\n" "crosec version Read CROS-EC version" ); #endif