/* * Driver for the TWSI (i2c) controller found on the Marvell * orion5x and kirkwood SoC families. * * Author: Albert Aribaud * Copyright (c) 2010 Albert Aribaud. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include /* * Include a file that will provide CONFIG_I2C_MVTWSI_BASE*, and possibly other * settings */ #if defined(CONFIG_ORION5X) #include #elif (defined(CONFIG_KIRKWOOD) || defined(CONFIG_ARCH_MVEBU)) #include #elif defined(CONFIG_SUNXI) #include #else #error Driver mvtwsi not supported by SoC or board #endif /* * TWSI register structure */ #ifdef CONFIG_SUNXI struct mvtwsi_registers { u32 slave_address; u32 xtnd_slave_addr; u32 data; u32 control; u32 status; u32 baudrate; u32 soft_reset; }; #else struct mvtwsi_registers { u32 slave_address; u32 data; u32 control; union { u32 status; /* When reading */ u32 baudrate; /* When writing */ }; u32 xtnd_slave_addr; u32 reserved[2]; u32 soft_reset; }; #endif /* * enum mvtwsi_ctrl_register_fields - Bit masks for flags in the control * register */ enum mvtwsi_ctrl_register_fields { /* Acknowledge bit */ MVTWSI_CONTROL_ACK = 0x00000004, /* Interrupt flag */ MVTWSI_CONTROL_IFLG = 0x00000008, /* Stop bit */ MVTWSI_CONTROL_STOP = 0x00000010, /* Start bit */ MVTWSI_CONTROL_START = 0x00000020, /* I2C enable */ MVTWSI_CONTROL_TWSIEN = 0x00000040, /* Interrupt enable */ MVTWSI_CONTROL_INTEN = 0x00000080, }; /* * On sun6i and newer, IFLG is a write-clear bit, which is cleared by writing 1; * on other platforms, it is a normal r/w bit, which is cleared by writing 0. */ #ifdef CONFIG_SUNXI_GEN_SUN6I #define MVTWSI_CONTROL_CLEAR_IFLG 0x00000008 #else #define MVTWSI_CONTROL_CLEAR_IFLG 0x00000000 #endif /* * enum mvstwsi_status_values - Possible values of I2C controller's status * register * * Only those statuses expected in normal master operation on * non-10-bit-address devices are specified. * * Every status that's unexpected during normal operation (bus errors, * arbitration losses, missing ACKs...) is passed back to the caller as an error * code. */ enum mvstwsi_status_values { /* START condition transmitted */ MVTWSI_STATUS_START = 0x08, /* Repeated START condition transmitted */ MVTWSI_STATUS_REPEATED_START = 0x10, /* Address + write bit transmitted, ACK received */ MVTWSI_STATUS_ADDR_W_ACK = 0x18, /* Data transmitted, ACK received */ MVTWSI_STATUS_DATA_W_ACK = 0x28, /* Address + read bit transmitted, ACK received */ MVTWSI_STATUS_ADDR_R_ACK = 0x40, /* Address + read bit transmitted, ACK not received */ MVTWSI_STATUS_ADDR_R_NAK = 0x48, /* Data received, ACK transmitted */ MVTWSI_STATUS_DATA_R_ACK = 0x50, /* Data received, ACK not transmitted */ MVTWSI_STATUS_DATA_R_NAK = 0x58, /* No relevant status */ MVTWSI_STATUS_IDLE = 0xF8, }; /* * enum mvstwsi_ack_flags - Determine whether a read byte should be * acknowledged or not. */ enum mvtwsi_ack_flags { /* Send NAK after received byte */ MVTWSI_READ_NAK = 0, /* Send ACK after received byte */ MVTWSI_READ_ACK = 1, }; /* * MVTWSI controller base */ static struct mvtwsi_registers *twsi_get_base(struct i2c_adapter *adap) { switch (adap->hwadapnr) { #ifdef CONFIG_I2C_MVTWSI_BASE0 case 0: return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE0; #endif #ifdef CONFIG_I2C_MVTWSI_BASE1 case 1: return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE1; #endif #ifdef CONFIG_I2C_MVTWSI_BASE2 case 2: return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE2; #endif #ifdef CONFIG_I2C_MVTWSI_BASE3 case 3: return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE3; #endif #ifdef CONFIG_I2C_MVTWSI_BASE4 case 4: return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE4; #endif #ifdef CONFIG_I2C_MVTWSI_BASE5 case 5: return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE5; #endif default: printf("Missing mvtwsi controller %d base\n", adap->hwadapnr); break; } return NULL; } /* * enum mvtwsi_error_class - types of I2C errors */ enum mvtwsi_error_class { /* The controller returned a different status than expected */ MVTWSI_ERROR_WRONG_STATUS = 0x01, /* The controller timed out */ MVTWSI_ERROR_TIMEOUT = 0x02, }; /* * mvtwsi_error() - Build I2C return code from error information * * For debugging purposes, this function packs some information of an occurred * error into a return code. These error codes are returned from I2C API * functions (i2c_{read,write}, dm_i2c_{read,write}, etc.). * * @ec: The error class of the error (enum mvtwsi_error_class). * @lc: The last value of the control register. * @ls: The last value of the status register. * @es: The expected value of the status register. * @return The generated error code. */ inline uint mvtwsi_error(uint ec, uint lc, uint ls, uint es) { return ((ec << 24) & 0xFF000000) | ((lc << 16) & 0x00FF0000) | ((ls << 8) & 0x0000FF00) | (es & 0xFF); } /* * Wait for IFLG to raise, or return 'timeout.' Then, if the status is as * expected, return 0 (ok) or 'wrong status' otherwise. */ static int twsi_wait(struct i2c_adapter *adap, int expected_status) { struct mvtwsi_registers *twsi = twsi_get_base(adap); int control, status; int timeout = 1000; do { control = readl(&twsi->control); if (control & MVTWSI_CONTROL_IFLG) { status = readl(&twsi->status); if (status == expected_status) return 0; else return mvtwsi_error( MVTWSI_ERROR_WRONG_STATUS, control, status, expected_status); } udelay(10); /* One clock cycle at 100 kHz */ } while (timeout--); status = readl(&twsi->status); return mvtwsi_error(MVTWSI_ERROR_TIMEOUT, control, status, expected_status); } /* * Assert the START condition, either in a single I2C transaction * or inside back-to-back ones (repeated starts). */ static int twsi_start(struct i2c_adapter *adap, int expected_status) { struct mvtwsi_registers *twsi = twsi_get_base(adap); /* Assert START */ writel(MVTWSI_CONTROL_TWSIEN | MVTWSI_CONTROL_START | MVTWSI_CONTROL_CLEAR_IFLG, &twsi->control); /* Wait for controller to process START */ return twsi_wait(adap, expected_status); } /* * Send a byte (i2c address or data). */ static int twsi_send(struct i2c_adapter *adap, u8 byte, int expected_status) { struct mvtwsi_registers *twsi = twsi_get_base(adap); /* Write byte to data register for sending */ writel(byte, &twsi->data); /* Clear any pending interrupt -- that will cause sending */ writel(MVTWSI_CONTROL_TWSIEN | MVTWSI_CONTROL_CLEAR_IFLG, &twsi->control); /* Wait for controller to receive byte, and check ACK */ return twsi_wait(adap, expected_status); } /* * Receive a byte. */ static int twsi_recv(struct i2c_adapter *adap, u8 *byte, int ack_flag) { struct mvtwsi_registers *twsi = twsi_get_base(adap); int expected_status, status, control; /* Compute expected status based on passed ACK flag */ expected_status = ack_flag ? MVTWSI_STATUS_DATA_R_ACK : MVTWSI_STATUS_DATA_R_NAK; /* Acknowledge *previous state*, and launch receive */ control = MVTWSI_CONTROL_TWSIEN; control |= ack_flag == MVTWSI_READ_ACK ? MVTWSI_CONTROL_ACK : 0; writel(control | MVTWSI_CONTROL_CLEAR_IFLG, &twsi->control); /* Wait for controller to receive byte, and assert ACK or NAK */ status = twsi_wait(adap, expected_status); /* If we did receive the expected byte, store it */ if (status == 0) *byte = readl(&twsi->data); return status; } /* * Assert the STOP condition. * This is also used to force the bus back to idle (SDA = SCL = 1). */ static int twsi_stop(struct i2c_adapter *adap) { struct mvtwsi_registers *twsi = twsi_get_base(adap); int control, stop_status; int status = 0; int timeout = 1000; /* Assert STOP */ control = MVTWSI_CONTROL_TWSIEN | MVTWSI_CONTROL_STOP; writel(control | MVTWSI_CONTROL_CLEAR_IFLG, &twsi->control); /* Wait for IDLE; IFLG won't rise, so we can't use twsi_wait() */ do { stop_status = readl(&twsi->status); if (stop_status == MVTWSI_STATUS_IDLE) break; udelay(10); /* One clock cycle at 100 kHz */ } while (timeout--); control = readl(&twsi->control); if (stop_status != MVTWSI_STATUS_IDLE) status = mvtwsi_error(MVTWSI_ERROR_TIMEOUT, control, status, MVTWSI_STATUS_IDLE); return status; } static uint twsi_calc_freq(const int n, const int m) { #ifdef CONFIG_SUNXI return CONFIG_SYS_TCLK / (10 * (m + 1) * (1 << n)); #else return CONFIG_SYS_TCLK / (10 * (m + 1) * (2 << n)); #endif } /* * Reset controller. * Controller reset also resets the baud rate and slave address, so * they must be re-established afterwards. */ static void twsi_reset(struct i2c_adapter *adap) { struct mvtwsi_registers *twsi = twsi_get_base(adap); /* Reset controller */ writel(0, &twsi->soft_reset); /* Wait 2 ms -- this is what the Marvell LSP does */ udelay(20000); } /* * Sets baud to the highest possible value not exceeding the requested one. */ static uint twsi_i2c_set_bus_speed(struct i2c_adapter *adap, uint requested_speed) { struct mvtwsi_registers *twsi = twsi_get_base(adap); uint tmp_speed, highest_speed, n, m; uint baud = 0x44; /* Baud rate after controller reset */ highest_speed = 0; /* Successively try m, n combinations, and use the combination * resulting in the largest speed that's not above the requested * speed */ for (n = 0; n < 8; n++) { for (m = 0; m < 16; m++) { tmp_speed = twsi_calc_freq(n, m); if ((tmp_speed <= requested_speed) && (tmp_speed > highest_speed)) { highest_speed = tmp_speed; baud = (m << 3) | n; } } } writel(baud, &twsi->baudrate); return 0; } static void twsi_i2c_init(struct i2c_adapter *adap, int speed, int slaveadd) { struct mvtwsi_registers *twsi = twsi_get_base(adap); /* Reset controller */ twsi_reset(adap); /* Set speed */ twsi_i2c_set_bus_speed(adap, speed); /* Set slave address; even though we don't use it */ writel(slaveadd, &twsi->slave_address); writel(0, &twsi->xtnd_slave_addr); /* Assert STOP, but don't care for the result */ (void) twsi_stop(adap); } /* * Begin I2C transaction with expected start status, at given address. * Expected address status will derive from direction bit (bit 0) in addr. */ static int i2c_begin(struct i2c_adapter *adap, int expected_start_status, u8 addr) { int status, expected_addr_status; /* Compute the expected address status from the direction bit in * the address byte */ if (addr & 1) /* Reading */ expected_addr_status = MVTWSI_STATUS_ADDR_R_ACK; else /* Writing */ expected_addr_status = MVTWSI_STATUS_ADDR_W_ACK; /* Assert START */ status = twsi_start(adap, expected_start_status); /* Send out the address if the start went well */ if (status == 0) status = twsi_send(adap, addr, expected_addr_status); /* Return 0, or the status of the first failure */ return status; } /* * Begin read, nak data byte, end. */ static int twsi_i2c_probe(struct i2c_adapter *adap, uchar chip) { u8 dummy_byte; int status; /* Begin i2c read */ status = i2c_begin(adap, MVTWSI_STATUS_START, (chip << 1) | 1); /* Dummy read was accepted: receive byte, but NAK it. */ if (status == 0) status = twsi_recv(adap, &dummy_byte, MVTWSI_READ_NAK); /* Stop transaction */ twsi_stop(adap); /* Return 0, or the status of the first failure */ return status; } /* * Begin write, send address byte(s), begin read, receive data bytes, end. * * NOTE: Some devices want a stop right before the second start, while some * will choke if it is there. Since deciding this is not yet supported in * higher level APIs, we need to make a decision here, and for the moment that * will be a repeated start without a preceding stop. */ static int twsi_i2c_read(struct i2c_adapter *adap, uchar chip, uint addr, int alen, uchar *data, int length) { int status = 0; int stop_status; /* Begin i2c write to send the address bytes */ status = i2c_begin(adap, MVTWSI_STATUS_START, (chip << 1)); /* Send address bytes */ while ((status == 0) && alen--) status = twsi_send(adap, addr >> (8*alen), MVTWSI_STATUS_DATA_W_ACK); /* Begin i2c read to receive data bytes */ if (status == 0) status = i2c_begin(adap, MVTWSI_STATUS_REPEATED_START, (chip << 1) | 1); /* Receive actual data bytes; set NAK if we if we have nothing more to * read */ while ((status == 0) && length--) status = twsi_recv(adap, data++, length > 0 ? MVTWSI_READ_ACK : MVTWSI_READ_NAK); /* Stop transaction */ stop_status = twsi_stop(adap); /* Return 0, or the status of the first failure */ return status != 0 ? status : stop_status; } /* * Begin write, send address byte(s), send data bytes, end. */ static int twsi_i2c_write(struct i2c_adapter *adap, uchar chip, uint addr, int alen, uchar *data, int length) { int status, stop_status; /* Begin i2c write to send first the address bytes, then the * data bytes */ status = i2c_begin(adap, MVTWSI_STATUS_START, (chip << 1)); /* Send address bytes */ while ((status == 0) && alen--) status = twsi_send(adap, addr >> (8*alen), MVTWSI_STATUS_DATA_W_ACK); /* Send data bytes */ while ((status == 0) && (length-- > 0)) status = twsi_send(adap, *(data++), MVTWSI_STATUS_DATA_W_ACK); /* Stop transaction */ stop_status = twsi_stop(adap); /* Return 0, or the status of the first failure */ return status != 0 ? status : stop_status; } #ifdef CONFIG_I2C_MVTWSI_BASE0 U_BOOT_I2C_ADAP_COMPLETE(twsi0, twsi_i2c_init, twsi_i2c_probe, twsi_i2c_read, twsi_i2c_write, twsi_i2c_set_bus_speed, CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 0) #endif #ifdef CONFIG_I2C_MVTWSI_BASE1 U_BOOT_I2C_ADAP_COMPLETE(twsi1, twsi_i2c_init, twsi_i2c_probe, twsi_i2c_read, twsi_i2c_write, twsi_i2c_set_bus_speed, CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 1) #endif #ifdef CONFIG_I2C_MVTWSI_BASE2 U_BOOT_I2C_ADAP_COMPLETE(twsi2, twsi_i2c_init, twsi_i2c_probe, twsi_i2c_read, twsi_i2c_write, twsi_i2c_set_bus_speed, CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 2) #endif #ifdef CONFIG_I2C_MVTWSI_BASE3 U_BOOT_I2C_ADAP_COMPLETE(twsi3, twsi_i2c_init, twsi_i2c_probe, twsi_i2c_read, twsi_i2c_write, twsi_i2c_set_bus_speed, CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 3) #endif #ifdef CONFIG_I2C_MVTWSI_BASE4 U_BOOT_I2C_ADAP_COMPLETE(twsi4, twsi_i2c_init, twsi_i2c_probe, twsi_i2c_read, twsi_i2c_write, twsi_i2c_set_bus_speed, CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 4) #endif #ifdef CONFIG_I2C_MVTWSI_BASE5 U_BOOT_I2C_ADAP_COMPLETE(twsi5, twsi_i2c_init, twsi_i2c_probe, twsi_i2c_read, twsi_i2c_write, twsi_i2c_set_bus_speed, CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 5) #endif