/* * Copyright 2006 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * Version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #ifdef CONFIG_FSL_I2C #ifdef CONFIG_HARD_I2C #include #include /* Functional interface */ #include #include /* HW definitions */ #define I2C_TIMEOUT (CFG_HZ / 4) #define I2C_READ_BIT 1 #define I2C_WRITE_BIT 0 DECLARE_GLOBAL_DATA_PTR; /* Initialize the bus pointer to whatever one the SPD EEPROM is on. * Default is bus 0. This is necessary because the DDR initialization * runs from ROM, and we can't switch buses because we can't modify * the global variables. */ #ifdef CFG_SPD_BUS_NUM static unsigned int i2c_bus_num __attribute__ ((section ("data"))) = CFG_SPD_BUS_NUM; #else static unsigned int i2c_bus_num __attribute__ ((section ("data"))) = 0; #endif static unsigned int i2c_bus_speed[2] = {CFG_I2C_SPEED, CFG_I2C_SPEED}; static const struct fsl_i2c *i2c_dev[2] = { (struct fsl_i2c *) (CFG_IMMR + CFG_I2C_OFFSET), #ifdef CFG_I2C2_OFFSET (struct fsl_i2c *) (CFG_IMMR + CFG_I2C2_OFFSET) #endif }; /* I2C speed map for a DFSR value of 1 */ /* * Map I2C frequency dividers to FDR and DFSR values * * This structure is used to define the elements of a table that maps I2C * frequency divider (I2C clock rate divided by I2C bus speed) to a value to be * programmed into the Frequency Divider Ratio (FDR) and Digital Filter * Sampling Rate (DFSR) registers. * * The actual table should be defined in the board file, and it must be called * fsl_i2c_speed_map[]. * * The last entry of the table must have a value of {-1, X}, where X is same * FDR/DFSR values as the second-to-last entry. This guarantees that any * search through the array will always find a match. * * The values of the divider must be in increasing numerical order, i.e. * fsl_i2c_speed_map[x+1].divider > fsl_i2c_speed_map[x].divider. * * For this table, the values are based on a value of 1 for the DFSR * register. See the application note AN2919 "Determining the I2C Frequency * Divider Ratio for SCL" */ static const struct { unsigned short divider; u8 dfsr; u8 fdr; } fsl_i2c_speed_map[] = { {160, 1, 32}, {192, 1, 33}, {224, 1, 34}, {256, 1, 35}, {288, 1, 0}, {320, 1, 1}, {352, 6, 1}, {384, 1, 2}, {416, 6, 2}, {448, 1, 38}, {480, 1, 3}, {512, 1, 39}, {544, 11, 3}, {576, 1, 4}, {608, 22, 3}, {640, 1, 5}, {672, 32, 3}, {704, 11, 5}, {736, 43, 3}, {768, 1, 6}, {800, 54, 3}, {832, 11, 6}, {896, 1, 42}, {960, 1, 7}, {1024, 1, 43}, {1088, 22, 7}, {1152, 1, 8}, {1216, 43, 7}, {1280, 1, 9}, {1408, 22, 9}, {1536, 1, 10}, {1664, 22, 10}, {1792, 1, 46}, {1920, 1, 11}, {2048, 1, 47}, {2176, 43, 11}, {2304, 1, 12}, {2560, 1, 13}, {2816, 43, 13}, {3072, 1, 14}, {3328, 43, 14}, {3584, 1, 50}, {3840, 1, 15}, {4096, 1, 51}, {4608, 1, 16}, {5120, 1, 17}, {6144, 1, 18}, {7168, 1, 54}, {7680, 1, 19}, {8192, 1, 55}, {9216, 1, 20}, {10240, 1, 21}, {12288, 1, 22}, {14336, 1, 58}, {15360, 1, 23}, {16384, 1, 59}, {18432, 1, 24}, {20480, 1, 25}, {24576, 1, 26}, {28672, 1, 62}, {30720, 1, 27}, {32768, 1, 63}, {36864, 1, 28}, {40960, 1, 29}, {49152, 1, 30}, {61440, 1, 31}, {-1, 1, 31} }; /** * Set the I2C bus speed for a given I2C device * * @param dev: the I2C device * @i2c_clk: I2C bus clock frequency * @speed: the desired speed of the bus * * The I2C device must be stopped before calling this function. * * The return value is the actual bus speed that is set. */ static unsigned int set_i2c_bus_speed(const struct fsl_i2c *dev, unsigned int i2c_clk, unsigned int speed) { unsigned short divider = min(i2c_clk / speed, (unsigned short) -1); unsigned int i; /* * We want to choose an FDR/DFSR that generates an I2C bus speed that * is equal to or lower than the requested speed. That means that we * want the first divider that is equal to or greater than the * calculated divider. */ for (i = 0; i < ARRAY_SIZE(fsl_i2c_speed_map); i++) if (fsl_i2c_speed_map[i].divider >= divider) { u8 fdr, dfsr; dfsr = fsl_i2c_speed_map[i].dfsr; fdr = fsl_i2c_speed_map[i].fdr; speed = i2c_clk / fsl_i2c_speed_map[i].divider; writeb(fdr, &dev->fdr); /* set bus speed */ writeb(dfsr, &dev->dfsrr); /* set default filter */ break; } return speed; } void i2c_init(int speed, int slaveadd) { struct fsl_i2c *dev; unsigned int temp; dev = (struct fsl_i2c *) (CFG_IMMR + CFG_I2C_OFFSET); writeb(0, &dev->cr); /* stop I2C controller */ udelay(5); /* let it shutdown in peace */ temp = set_i2c_bus_speed(dev, gd->i2c1_clk, speed); if (gd->flags & GD_FLG_RELOC) i2c_bus_speed[0] = temp; writeb(slaveadd << 1, &dev->adr); /* write slave address */ writeb(0x0, &dev->sr); /* clear status register */ writeb(I2C_CR_MEN, &dev->cr); /* start I2C controller */ #ifdef CFG_I2C2_OFFSET dev = (struct fsl_i2c *) (CFG_IMMR + CFG_I2C2_OFFSET); writeb(0, &dev->cr); /* stop I2C controller */ udelay(5); /* let it shutdown in peace */ temp = set_i2c_bus_speed(dev, gd->i2c2_clk, speed); if (gd->flags & GD_FLG_RELOC) i2c_bus_speed[1] = temp; writeb(slaveadd << 1, &dev->adr); /* write slave address */ writeb(0x0, &dev->sr); /* clear status register */ writeb(I2C_CR_MEN, &dev->cr); /* start I2C controller */ #endif } static __inline__ int i2c_wait4bus(void) { ulong timeval = get_timer(0); while (readb(&i2c_dev[i2c_bus_num]->sr) & I2C_SR_MBB) { if (get_timer(timeval) > I2C_TIMEOUT) { return -1; } } return 0; } static __inline__ int i2c_wait(int write) { u32 csr; ulong timeval = get_timer(0); do { csr = readb(&i2c_dev[i2c_bus_num]->sr); if (!(csr & I2C_SR_MIF)) continue; writeb(0x0, &i2c_dev[i2c_bus_num]->sr); if (csr & I2C_SR_MAL) { debug("i2c_wait: MAL\n"); return -1; } if (!(csr & I2C_SR_MCF)) { debug("i2c_wait: unfinished\n"); return -1; } if (write == I2C_WRITE_BIT && (csr & I2C_SR_RXAK)) { debug("i2c_wait: No RXACK\n"); return -1; } return 0; } while (get_timer (timeval) < I2C_TIMEOUT); debug("i2c_wait: timed out\n"); return -1; } static __inline__ int i2c_write_addr (u8 dev, u8 dir, int rsta) { writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_MTX | (rsta ? I2C_CR_RSTA : 0), &i2c_dev[i2c_bus_num]->cr); writeb((dev << 1) | dir, &i2c_dev[i2c_bus_num]->dr); if (i2c_wait(I2C_WRITE_BIT) < 0) return 0; return 1; } static __inline__ int __i2c_write(u8 *data, int length) { int i; writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_MTX, &i2c_dev[i2c_bus_num]->cr); for (i = 0; i < length; i++) { writeb(data[i], &i2c_dev[i2c_bus_num]->dr); if (i2c_wait(I2C_WRITE_BIT) < 0) break; } return i; } static __inline__ int __i2c_read(u8 *data, int length) { int i; writeb(I2C_CR_MEN | I2C_CR_MSTA | ((length == 1) ? I2C_CR_TXAK : 0), &i2c_dev[i2c_bus_num]->cr); /* dummy read */ readb(&i2c_dev[i2c_bus_num]->dr); for (i = 0; i < length; i++) { if (i2c_wait(I2C_READ_BIT) < 0) break; /* Generate ack on last next to last byte */ if (i == length - 2) writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_TXAK, &i2c_dev[i2c_bus_num]->cr); /* Generate stop on last byte */ if (i == length - 1) writeb(I2C_CR_MEN | I2C_CR_TXAK, &i2c_dev[i2c_bus_num]->cr); data[i] = readb(&i2c_dev[i2c_bus_num]->dr); } return i; } int i2c_read(u8 dev, uint addr, int alen, u8 *data, int length) { int i = -1; /* signal error */ u8 *a = (u8*)&addr; if (i2c_wait4bus() >= 0 && i2c_write_addr(dev, I2C_WRITE_BIT, 0) != 0 && __i2c_write(&a[4 - alen], alen) == alen) i = 0; /* No error so far */ if (length && i2c_write_addr(dev, I2C_READ_BIT, 1) != 0) i = __i2c_read(data, length); writeb(I2C_CR_MEN, &i2c_dev[i2c_bus_num]->cr); if (i == length) return 0; return -1; } int i2c_write(u8 dev, uint addr, int alen, u8 *data, int length) { int i = -1; /* signal error */ u8 *a = (u8*)&addr; if (i2c_wait4bus() >= 0 && i2c_write_addr(dev, I2C_WRITE_BIT, 0) != 0 && __i2c_write(&a[4 - alen], alen) == alen) { i = __i2c_write(data, length); } writeb(I2C_CR_MEN, &i2c_dev[i2c_bus_num]->cr); if (i == length) return 0; return -1; } int i2c_probe(uchar chip) { /* For unknow reason the controller will ACK when * probing for a slave with the same address, so skip * it. */ if (chip == (readb(&i2c_dev[i2c_bus_num]->adr) >> 1)) return -1; return i2c_read(chip, 0, 0, NULL, 0); } uchar i2c_reg_read(uchar i2c_addr, uchar reg) { uchar buf[1]; i2c_read(i2c_addr, reg, 1, buf, 1); return buf[0]; } void i2c_reg_write(uchar i2c_addr, uchar reg, uchar val) { i2c_write(i2c_addr, reg, 1, &val, 1); } int i2c_set_bus_num(unsigned int bus) { #ifdef CFG_I2C2_OFFSET if (bus > 1) { #else if (bus > 0) { #endif return -1; } i2c_bus_num = bus; return 0; } int i2c_set_bus_speed(unsigned int speed) { unsigned int i2c_clk = (i2c_bus_num == 1) ? gd->i2c2_clk : gd->i2c1_clk; writeb(0, &i2c_dev[i2c_bus_num]->cr); /* stop controller */ i2c_bus_speed[i2c_bus_num] = set_i2c_bus_speed(i2c_dev[i2c_bus_num], i2c_clk, speed); writeb(I2C_CR_MEN, &i2c_dev[i2c_bus_num]->cr); /* start controller */ return 0; } unsigned int i2c_get_bus_num(void) { return i2c_bus_num; } unsigned int i2c_get_bus_speed(void) { return i2c_bus_speed[i2c_bus_num]; } #endif /* CONFIG_HARD_I2C */ #endif /* CONFIG_FSL_I2C */