/* * Copyright (C) 2008 RuggedCom, Inc. * Richard Retanubun <RichardRetanubun@RuggedCom.com> * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ /* * Problems with CONFIG_SYS_64BIT_LBA: * * struct disk_partition.start in include/part.h is sized as ulong. * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t. * For now, it is cast back to ulong at assignment. * * This limits the maximum size of addressable storage to < 2 Terra Bytes */ #include <common.h> #include <command.h> #include <ide.h> #include <malloc.h> #include "part_efi.h" #if defined(CONFIG_CMD_IDE) || \ defined(CONFIG_CMD_MG_DISK) || \ defined(CONFIG_CMD_SATA) || \ defined(CONFIG_CMD_SCSI) || \ defined(CONFIG_CMD_USB) || \ defined(CONFIG_MMC) || \ defined(CONFIG_SYSTEMACE) /* Convert char[2] in little endian format to the host format integer */ static inline unsigned short le16_to_int(unsigned char *le16) { return ((le16[1] << 8) + le16[0]); } /* Convert char[4] in little endian format to the host format integer */ static inline unsigned long le32_to_int(unsigned char *le32) { return ((le32[3] << 24) + (le32[2] << 16) + (le32[1] << 8) + le32[0]); } /* Convert char[8] in little endian format to the host format integer */ static inline unsigned long long le64_to_int(unsigned char *le64) { return (((unsigned long long)le64[7] << 56) + ((unsigned long long)le64[6] << 48) + ((unsigned long long)le64[5] << 40) + ((unsigned long long)le64[4] << 32) + ((unsigned long long)le64[3] << 24) + ((unsigned long long)le64[2] << 16) + ((unsigned long long)le64[1] << 8) + (unsigned long long)le64[0]); } /** * efi_crc32() - EFI version of crc32 function * @buf: buffer to calculate crc32 of * @len - length of buf * * Description: Returns EFI-style CRC32 value for @buf */ static inline unsigned long efi_crc32(const void *buf, unsigned long len) { return crc32(0, buf, len); } /* * Private function prototypes */ static int pmbr_part_valid(struct partition *part); static int is_pmbr_valid(legacy_mbr * mbr); static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, gpt_header * pgpt_head, gpt_entry ** pgpt_pte); static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, gpt_header * pgpt_head); static int is_pte_valid(gpt_entry * pte); /* * Public Functions (include/part.h) */ void print_part_efi(block_dev_desc_t * dev_desc) { gpt_header gpt_head; gpt_entry **pgpt_pte = NULL; int i = 0; if (!dev_desc) { printf("%s: Invalid Argument(s)\n", __FUNCTION__); return; } /* This function validates AND fills in the GPT header and PTE */ if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, &(gpt_head), pgpt_pte) != 1) { printf("%s: *** ERROR: Invalid GPT ***\n", __FUNCTION__); return; } debug("%s: gpt-entry at 0x%08X\n", __FUNCTION__, (unsigned int)*pgpt_pte); printf("Part Start LBA End LBA\n"); for (i = 0; i < le32_to_int(gpt_head.num_partition_entries); i++) { if (is_pte_valid(&(*pgpt_pte)[i])) { printf("%s%d 0x%llX 0x%llX\n", GPT_ENTRY_NAME, (i + 1), le64_to_int((*pgpt_pte)[i].starting_lba), le64_to_int((*pgpt_pte)[i].ending_lba)); } else { break; /* Stop at the first non valid PTE */ } } /* Remember to free pte */ if (*pgpt_pte != NULL) { debug("%s: Freeing pgpt_pte\n", __FUNCTION__); free(*pgpt_pte); } return; } int get_partition_info_efi(block_dev_desc_t * dev_desc, int part, disk_partition_t * info) { gpt_header gpt_head; gpt_entry **pgpt_pte = NULL; /* "part" argument must be at least 1 */ if (!dev_desc || !info || part < 1) { printf("%s: Invalid Argument(s)\n", __FUNCTION__); return -1; } /* This function validates AND fills in the GPT header and PTE */ if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, &(gpt_head), pgpt_pte) != 1) { printf("%s: *** ERROR: Invalid GPT ***\n", __FUNCTION__); return -1; } /* The ulong casting limits the maximum disk size to 2 TB */ info->start = (ulong) le64_to_int((*pgpt_pte)[part - 1].starting_lba); /* The ending LBA is inclusive, to calculate size, add 1 to it */ info->size = ((ulong)le64_to_int((*pgpt_pte)[part - 1].ending_lba) + 1) - info->start; info->blksz = GPT_BLOCK_SIZE; sprintf((char *)info->name, "%s%d\n", GPT_ENTRY_NAME, part); sprintf((char *)info->type, "U-Boot"); debug("%s: start 0x%lX, size 0x%lX, name %s", __FUNCTION__, info->start, info->size, info->name); /* Remember to free pte */ if (*pgpt_pte != NULL) { debug("%s: Freeing pgpt_pte\n", __FUNCTION__); free(*pgpt_pte); } return 0; } int test_part_efi(block_dev_desc_t * dev_desc) { legacy_mbr legacymbr; /* Read legacy MBR from block 0 and validate it */ if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *) & legacymbr) != 1) || (is_pmbr_valid(&legacymbr) != 1)) { return -1; } return 0; } /* * Private functions */ /* * pmbr_part_valid(): Check for EFI partition signature * * Returns: 1 if EFI GPT partition type is found. */ static int pmbr_part_valid(struct partition *part) { if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && le32_to_int(part->start_sect) == 1UL) { return 1; } return 0; } /* * is_pmbr_valid(): test Protective MBR for validity * * Returns: 1 if PMBR is valid, 0 otherwise. * Validity depends on two things: * 1) MSDOS signature is in the last two bytes of the MBR * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() */ static int is_pmbr_valid(legacy_mbr * mbr) { int i = 0; if (!mbr || le16_to_int(mbr->signature) != MSDOS_MBR_SIGNATURE) { return 0; } for (i = 0; i < 4; i++) { if (pmbr_part_valid(&mbr->partition_record[i])) { return 1; } } return 0; } /** * is_gpt_valid() - tests one GPT header and PTEs for validity * * lba is the logical block address of the GPT header to test * gpt is a GPT header ptr, filled on return. * ptes is a PTEs ptr, filled on return. * * Description: returns 1 if valid, 0 on error. * If valid, returns pointers to PTEs. */ static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, gpt_header * pgpt_head, gpt_entry ** pgpt_pte) { unsigned char crc32_backup[4] = { 0 }; unsigned long calc_crc32; unsigned long long lastlba; if (!dev_desc || !pgpt_head) { printf("%s: Invalid Argument(s)\n", __FUNCTION__); return 0; } /* Read GPT Header from device */ if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) { printf("*** ERROR: Can't read GPT header ***\n"); return 0; } /* Check the GPT header signature */ if (le64_to_int(pgpt_head->signature) != GPT_HEADER_SIGNATURE) { printf("GUID Partition Table Header signature is wrong:" "0x%llX != 0x%llX\n", (unsigned long long)le64_to_int(pgpt_head->signature), (unsigned long long)GPT_HEADER_SIGNATURE); return 0; } /* Check the GUID Partition Table CRC */ memcpy(crc32_backup, pgpt_head->header_crc32, sizeof(crc32_backup)); memset(pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32)); calc_crc32 = efi_crc32((const unsigned char *)pgpt_head, le32_to_int(pgpt_head->header_size)); memcpy(pgpt_head->header_crc32, crc32_backup, sizeof(crc32_backup)); if (calc_crc32 != le32_to_int(crc32_backup)) { printf("GUID Partition Table Header CRC is wrong:" "0x%08lX != 0x%08lX\n", le32_to_int(crc32_backup), calc_crc32); return 0; } /* Check that the my_lba entry points to the LBA that contains the GPT */ if (le64_to_int(pgpt_head->my_lba) != lba) { printf("GPT: my_lba incorrect: %llX != %llX\n", (unsigned long long)le64_to_int(pgpt_head->my_lba), (unsigned long long)lba); return 0; } /* Check the first_usable_lba and last_usable_lba are within the disk. */ lastlba = (unsigned long long)dev_desc->lba; if (le64_to_int(pgpt_head->first_usable_lba) > lastlba) { printf("GPT: first_usable_lba incorrect: %llX > %llX\n", le64_to_int(pgpt_head->first_usable_lba), lastlba); return 0; } if (le64_to_int(pgpt_head->last_usable_lba) > lastlba) { printf("GPT: last_usable_lba incorrect: %llX > %llX\n", le64_to_int(pgpt_head->last_usable_lba), lastlba); return 0; } debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n", le64_to_int(pgpt_head->first_usable_lba), le64_to_int(pgpt_head->last_usable_lba), lastlba); /* Read and allocate Partition Table Entries */ *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); if (*pgpt_pte == NULL) { printf("GPT: Failed to allocate memory for PTE\n"); return 0; } /* Check the GUID Partition Table Entry Array CRC */ calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte, le32_to_int(pgpt_head->num_partition_entries) * le32_to_int(pgpt_head->sizeof_partition_entry)); if (calc_crc32 != le32_to_int(pgpt_head->partition_entry_array_crc32)) { printf("GUID Partition Table Entry Array CRC is wrong:" "0x%08lX != 0x%08lX\n", le32_to_int(pgpt_head->partition_entry_array_crc32), calc_crc32); if (*pgpt_pte != NULL) { free(*pgpt_pte); } return 0; } /* We're done, all's well */ return 1; } /** * alloc_read_gpt_entries(): reads partition entries from disk * @dev_desc * @gpt - GPT header * * Description: Returns ptes on success, NULL on error. * Allocates space for PTEs based on information found in @gpt. * Notes: remember to free pte when you're done! */ static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, gpt_header * pgpt_head) { size_t count = 0; gpt_entry *pte = NULL; if (!dev_desc || !pgpt_head) { printf("%s: Invalid Argument(s)\n", __FUNCTION__); return NULL; } count = le32_to_int(pgpt_head->num_partition_entries) * le32_to_int(pgpt_head->sizeof_partition_entry); debug("%s: count = %lu * %lu = %u\n", __FUNCTION__, le32_to_int(pgpt_head->num_partition_entries), le32_to_int(pgpt_head->sizeof_partition_entry), count); /* Allocate memory for PTE, remember to FREE */ if (count != 0) { pte = malloc(count); } if (count == 0 || pte == NULL) { printf("%s: ERROR: Can't allocate 0x%X bytes for GPT Entries\n", __FUNCTION__, count); return NULL; } /* Read GPT Entries from device */ if (dev_desc->block_read (dev_desc->dev, (unsigned long)le64_to_int(pgpt_head->partition_entry_lba), (lbaint_t) (count / GPT_BLOCK_SIZE), pte) != (count / GPT_BLOCK_SIZE)) { printf("*** ERROR: Can't read GPT Entries ***\n"); free(pte); return NULL; } return pte; } /** * is_pte_valid(): validates a single Partition Table Entry * @gpt_entry - Pointer to a single Partition Table Entry * * Description: returns 1 if valid, 0 on error. */ static int is_pte_valid(gpt_entry * pte) { efi_guid_t unused_guid; if (!pte) { printf("%s: Invalid Argument(s)\n", __FUNCTION__); return 0; } /* Only one validation for now: * The GUID Partition Type != Unused Entry (ALL-ZERO) */ memset(unused_guid.b, 0, sizeof(unused_guid.b)); if (memcmp(pte->partition_type_guid.b, unused_guid.b, sizeof(unused_guid.b)) == 0) { debug("%s: Found an unused PTE GUID at 0x%08X\n", __FUNCTION__, (unsigned int)pte); return 0; } else { return 1; } } #endif