/* * cpu/ppc4xx/44x_spd_ddr2.c * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a * DDR2 controller (non Denali Core). Those currently are: * * 405: 405EX(r) * 440/460: 440SP/440SPe/460EX/460GT * * Copyright (c) 2008 Nuovation System Designs, LLC * Grant Erickson * (C) Copyright 2007-2008 * Stefan Roese, DENX Software Engineering, sr@denx.de. * * COPYRIGHT AMCC CORPORATION 2004 * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * */ /* define DEBUG for debugging output (obviously ;-)) */ #if 0 #define DEBUG #endif #include #include #include #include #include #include #include #include #include "ecc.h" #if defined(CONFIG_SPD_EEPROM) && \ (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \ defined(CONFIG_460EX) || defined(CONFIG_460GT) || \ defined(CONFIG_460SX)) /*-----------------------------------------------------------------------------+ * Defines *-----------------------------------------------------------------------------*/ #ifndef TRUE #define TRUE 1 #endif #ifndef FALSE #define FALSE 0 #endif #define SDRAM_DDR1 1 #define SDRAM_DDR2 2 #define SDRAM_NONE 0 #define MAXDIMMS 2 #define MAXRANKS 4 #define MAXBXCF 4 #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */ #define ONE_BILLION 1000000000 #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d)) #define CMD_NOP (7 << 19) #define CMD_PRECHARGE (2 << 19) #define CMD_REFRESH (1 << 19) #define CMD_EMR (0 << 19) #define CMD_READ (5 << 19) #define CMD_WRITE (4 << 19) #define SELECT_MR (0 << 16) #define SELECT_EMR (1 << 16) #define SELECT_EMR2 (2 << 16) #define SELECT_EMR3 (3 << 16) /* MR */ #define DLL_RESET 0x00000100 #define WRITE_RECOV_2 (1 << 9) #define WRITE_RECOV_3 (2 << 9) #define WRITE_RECOV_4 (3 << 9) #define WRITE_RECOV_5 (4 << 9) #define WRITE_RECOV_6 (5 << 9) #define BURST_LEN_4 0x00000002 /* EMR */ #define ODT_0_OHM 0x00000000 #define ODT_50_OHM 0x00000044 #define ODT_75_OHM 0x00000004 #define ODT_150_OHM 0x00000040 #define ODS_FULL 0x00000000 #define ODS_REDUCED 0x00000002 /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */ #define ODT_EB0R (0x80000000 >> 8) #define ODT_EB0W (0x80000000 >> 7) #define CALC_ODT_R(n) (ODT_EB0R << (n << 1)) #define CALC_ODT_W(n) (ODT_EB0W << (n << 1)) #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n)) /* Defines for the Read Cycle Delay test */ #define NUMMEMTESTS 8 #define NUMMEMWORDS 8 #define NUMLOOPS 64 /* memory test loops */ /* * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory * region. Right now the cache should still be disabled in U-Boot because of the * EMAC driver, that need it's buffer descriptor to be located in non cached * memory. * * If at some time this restriction doesn't apply anymore, just define * CONFIG_4xx_DCACHE in the board config file and this code should setup * everything correctly. */ #ifdef CONFIG_4xx_DCACHE #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */ #else #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */ #endif /* * Newer PPC's like 440SPe, 460EX/GT can be equipped with more than 2GB of SDRAM. * To support such configurations, we "only" map the first 2GB via the TLB's. We * need some free virtual address space for the remaining peripherals like, SoC * devices, FLASH etc. * * Note that ECC is currently not supported on configurations with more than 2GB * SDRAM. This is because we only map the first 2GB on such systems, and therefore * the ECC parity byte of the remaining area can't be written. */ #ifndef CONFIG_MAX_MEM_MAPPED #define CONFIG_MAX_MEM_MAPPED ((phys_size_t)2 << 30) #endif /* * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed */ void __spd_ddr_init_hang (void) { hang (); } void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang"))); /* * To provide an interface for board specific config values in this common * DDR setup code, we implement he "weak" default functions here. They return * the default value back to the caller. * * Please see include/configs/yucca.h for an example fora board specific * implementation. */ u32 __ddr_wrdtr(u32 default_val) { return default_val; } u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr"))); u32 __ddr_clktr(u32 default_val) { return default_val; } u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr"))); /* Private Structure Definitions */ /* enum only to ease code for cas latency setting */ typedef enum ddr_cas_id { DDR_CAS_2 = 20, DDR_CAS_2_5 = 25, DDR_CAS_3 = 30, DDR_CAS_4 = 40, DDR_CAS_5 = 50 } ddr_cas_id_t; /*-----------------------------------------------------------------------------+ * Prototypes *-----------------------------------------------------------------------------*/ static phys_size_t sdram_memsize(void); static void get_spd_info(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void check_mem_type(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void check_frequency(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void check_rank_number(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void check_voltage_type(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void program_memory_queue(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void program_codt(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void program_mode(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks, ddr_cas_id_t *selected_cas, int *write_recovery); static void program_tr(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void program_rtr(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void program_bxcf(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void program_copt1(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); static void program_initplr(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks, ddr_cas_id_t selected_cas, int write_recovery); static unsigned long is_ecc_enabled(void); #ifdef CONFIG_DDR_ECC static void program_ecc(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks, unsigned long tlb_word2_i_value); static void program_ecc_addr(unsigned long start_address, unsigned long num_bytes, unsigned long tlb_word2_i_value); #endif static void program_DQS_calibration(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks); #ifdef HARD_CODED_DQS /* calibration test with hardvalues */ static void test(void); #else static void DQS_calibration_process(void); #endif static void ppc440sp_sdram_register_dump(void); int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); void dcbz_area(u32 start_address, u32 num_bytes); static u32 mfdcr_any(u32 dcr) { u32 val; switch (dcr) { case SDRAM_R0BAS + 0: val = mfdcr(SDRAM_R0BAS + 0); break; case SDRAM_R0BAS + 1: val = mfdcr(SDRAM_R0BAS + 1); break; case SDRAM_R0BAS + 2: val = mfdcr(SDRAM_R0BAS + 2); break; case SDRAM_R0BAS + 3: val = mfdcr(SDRAM_R0BAS + 3); break; default: printf("DCR %d not defined in case statement!!!\n", dcr); val = 0; /* just to satisfy the compiler */ } return val; } static void mtdcr_any(u32 dcr, u32 val) { switch (dcr) { case SDRAM_R0BAS + 0: mtdcr(SDRAM_R0BAS + 0, val); break; case SDRAM_R0BAS + 1: mtdcr(SDRAM_R0BAS + 1, val); break; case SDRAM_R0BAS + 2: mtdcr(SDRAM_R0BAS + 2, val); break; case SDRAM_R0BAS + 3: mtdcr(SDRAM_R0BAS + 3, val); break; default: printf("DCR %d not defined in case statement!!!\n", dcr); } } static unsigned char spd_read(uchar chip, uint addr) { unsigned char data[2]; if (i2c_probe(chip) == 0) if (i2c_read(chip, addr, 1, data, 1) == 0) return data[0]; return 0; } /*-----------------------------------------------------------------------------+ * sdram_memsize *-----------------------------------------------------------------------------*/ static phys_size_t sdram_memsize(void) { phys_size_t mem_size; unsigned long mcopt2; unsigned long mcstat; unsigned long mb0cf; unsigned long sdsz; unsigned long i; mem_size = 0; mfsdram(SDRAM_MCOPT2, mcopt2); mfsdram(SDRAM_MCSTAT, mcstat); /* DDR controller must be enabled and not in self-refresh. */ /* Otherwise memsize is zero. */ if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE) && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT) && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK)) == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) { for (i = 0; i < MAXBXCF; i++) { mfsdram(SDRAM_MB0CF + (i << 2), mb0cf); /* Banks enabled */ if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) { sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK; switch(sdsz) { case SDRAM_RXBAS_SDSZ_8: mem_size+=8; break; case SDRAM_RXBAS_SDSZ_16: mem_size+=16; break; case SDRAM_RXBAS_SDSZ_32: mem_size+=32; break; case SDRAM_RXBAS_SDSZ_64: mem_size+=64; break; case SDRAM_RXBAS_SDSZ_128: mem_size+=128; break; case SDRAM_RXBAS_SDSZ_256: mem_size+=256; break; case SDRAM_RXBAS_SDSZ_512: mem_size+=512; break; case SDRAM_RXBAS_SDSZ_1024: mem_size+=1024; break; case SDRAM_RXBAS_SDSZ_2048: mem_size+=2048; break; case SDRAM_RXBAS_SDSZ_4096: mem_size+=4096; break; default: printf("WARNING: Unsupported bank size (SDSZ=0x%lx)!\n" , sdsz); mem_size=0; break; } } } } return mem_size << 20; } /*-----------------------------------------------------------------------------+ * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller. * Note: This routine runs from flash with a stack set up in the chip's * sram space. It is important that the routine does not require .sbss, .bss or * .data sections. It also cannot call routines that require these sections. *-----------------------------------------------------------------------------*/ /*----------------------------------------------------------------------------- * Function: initdram * Description: Configures SDRAM memory banks for DDR operation. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs * via the IIC bus and then configures the DDR SDRAM memory * banks appropriately. If Auto Memory Configuration is * not used, it is assumed that no DIMM is plugged *-----------------------------------------------------------------------------*/ phys_size_t initdram(int board_type) { unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS; unsigned char spd0[MAX_SPD_BYTES]; unsigned char spd1[MAX_SPD_BYTES]; unsigned char *dimm_spd[MAXDIMMS]; unsigned long dimm_populated[MAXDIMMS]; unsigned long num_dimm_banks; /* on board dimm banks */ unsigned long val; ddr_cas_id_t selected_cas = DDR_CAS_5; /* preset to silence compiler */ int write_recovery; phys_size_t dram_size = 0; num_dimm_banks = sizeof(iic0_dimm_addr); /*------------------------------------------------------------------ * Set up an array of SPD matrixes. *-----------------------------------------------------------------*/ dimm_spd[0] = spd0; dimm_spd[1] = spd1; /*------------------------------------------------------------------ * Reset the DDR-SDRAM controller. *-----------------------------------------------------------------*/ mtsdr(SDR0_SRST, (0x80000000 >> 10)); mtsdr(SDR0_SRST, 0x00000000); /* * Make sure I2C controller is initialized * before continuing. */ /* switch to correct I2C bus */ I2C_SET_BUS(CFG_SPD_BUS_NUM); i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); /*------------------------------------------------------------------ * Clear out the serial presence detect buffers. * Perform IIC reads from the dimm. Fill in the spds. * Check to see if the dimm slots are populated *-----------------------------------------------------------------*/ get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks); /*------------------------------------------------------------------ * Check the memory type for the dimms plugged. *-----------------------------------------------------------------*/ check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); /*------------------------------------------------------------------ * Check the frequency supported for the dimms plugged. *-----------------------------------------------------------------*/ check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks); /*------------------------------------------------------------------ * Check the total rank number. *-----------------------------------------------------------------*/ check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks); /*------------------------------------------------------------------ * Check the voltage type for the dimms plugged. *-----------------------------------------------------------------*/ check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); /*------------------------------------------------------------------ * Program SDRAM controller options 2 register * Except Enabling of the memory controller. *-----------------------------------------------------------------*/ mfsdram(SDRAM_MCOPT2, val); mtsdram(SDRAM_MCOPT2, (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK | SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK | SDRAM_MCOPT2_ISIE_MASK)) | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE | SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW | SDRAM_MCOPT2_ISIE_ENABLE)); /*------------------------------------------------------------------ * Program SDRAM controller options 1 register * Note: Does not enable the memory controller. *-----------------------------------------------------------------*/ program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks); /*------------------------------------------------------------------ * Set the SDRAM Controller On Die Termination Register *-----------------------------------------------------------------*/ program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks); /*------------------------------------------------------------------ * Program SDRAM refresh register. *-----------------------------------------------------------------*/ program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks); /*------------------------------------------------------------------ * Program SDRAM mode register. *-----------------------------------------------------------------*/ program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks, &selected_cas, &write_recovery); /*------------------------------------------------------------------ * Set the SDRAM Write Data/DM/DQS Clock Timing Reg *-----------------------------------------------------------------*/ mfsdram(SDRAM_WRDTR, val); mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) | ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV)); /*------------------------------------------------------------------ * Set the SDRAM Clock Timing Register *-----------------------------------------------------------------*/ mfsdram(SDRAM_CLKTR, val); mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG)); /*------------------------------------------------------------------ * Program the BxCF registers. *-----------------------------------------------------------------*/ program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks); /*------------------------------------------------------------------ * Program SDRAM timing registers. *-----------------------------------------------------------------*/ program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks); /*------------------------------------------------------------------ * Set the Extended Mode register *-----------------------------------------------------------------*/ mfsdram(SDRAM_MEMODE, val); mtsdram(SDRAM_MEMODE, (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK | SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) | (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE)); /*------------------------------------------------------------------ * Program Initialization preload registers. *-----------------------------------------------------------------*/ program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks, selected_cas, write_recovery); /*------------------------------------------------------------------ * Delay to ensure 200usec have elapsed since reset. *-----------------------------------------------------------------*/ udelay(400); /*------------------------------------------------------------------ * Set the memory queue core base addr. *-----------------------------------------------------------------*/ program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks); /*------------------------------------------------------------------ * Program SDRAM controller options 2 register * Enable the memory controller. *-----------------------------------------------------------------*/ mfsdram(SDRAM_MCOPT2, val); mtsdram(SDRAM_MCOPT2, (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK | SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) | (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE)); /*------------------------------------------------------------------ * Wait for SDRAM_CFG0_DC_EN to complete. *-----------------------------------------------------------------*/ do { mfsdram(SDRAM_MCSTAT, val); } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP); /* get installed memory size */ dram_size = sdram_memsize(); /* * Limit size to 2GB */ if (dram_size > CONFIG_MAX_MEM_MAPPED) dram_size = CONFIG_MAX_MEM_MAPPED; /* and program tlb entries for this size (dynamic) */ /* * Program TLB entries with caches enabled, for best performace * while auto-calibrating and ECC generation */ program_tlb(0, 0, dram_size, 0); /*------------------------------------------------------------------ * DQS calibration. *-----------------------------------------------------------------*/ program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks); #ifdef CONFIG_DDR_ECC /*------------------------------------------------------------------ * If ecc is enabled, initialize the parity bits. *-----------------------------------------------------------------*/ program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0); #endif /* * Now after initialization (auto-calibration and ECC generation) * remove the TLB entries with caches enabled and program again with * desired cache functionality */ remove_tlb(0, dram_size); program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE); ppc440sp_sdram_register_dump(); /* * Clear potential errors resulting from auto-calibration. * If not done, then we could get an interrupt later on when * exceptions are enabled. */ set_mcsr(get_mcsr()); return sdram_memsize(); } static void get_spd_info(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long dimm_found; unsigned char num_of_bytes; unsigned char total_size; dimm_found = FALSE; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { num_of_bytes = 0; total_size = 0; num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0); debug("\nspd_read(0x%x) returned %d\n", iic0_dimm_addr[dimm_num], num_of_bytes); total_size = spd_read(iic0_dimm_addr[dimm_num], 1); debug("spd_read(0x%x) returned %d\n", iic0_dimm_addr[dimm_num], total_size); if ((num_of_bytes != 0) && (total_size != 0)) { dimm_populated[dimm_num] = TRUE; dimm_found = TRUE; debug("DIMM slot %lu: populated\n", dimm_num); } else { dimm_populated[dimm_num] = FALSE; debug("DIMM slot %lu: Not populated\n", dimm_num); } } if (dimm_found == FALSE) { printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n"); spd_ddr_init_hang (); } } void board_add_ram_info(int use_default) { PPC4xx_SYS_INFO board_cfg; u32 val; if (is_ecc_enabled()) puts(" (ECC"); else puts(" (ECC not"); get_sys_info(&board_cfg); mfsdr(SDR0_DDR0, val); val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1); printf(" enabled, %d MHz", (val * 2) / 1000000); mfsdram(SDRAM_MMODE, val); val = (val & SDRAM_MMODE_DCL_MASK) >> 4; printf(", CL%d)", val); } /*------------------------------------------------------------------ * For the memory DIMMs installed, this routine verifies that they * really are DDR specific DIMMs. *-----------------------------------------------------------------*/ static void check_mem_type(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long dimm_type; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] == TRUE) { dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2); switch (dimm_type) { case 1: printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in " "slot %d.\n", (unsigned int)dimm_num); printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); printf("Replace the DIMM module with a supported DIMM.\n\n"); spd_ddr_init_hang (); break; case 2: printf("ERROR: EDO DIMM detected in slot %d.\n", (unsigned int)dimm_num); printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); printf("Replace the DIMM module with a supported DIMM.\n\n"); spd_ddr_init_hang (); break; case 3: printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n", (unsigned int)dimm_num); printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); printf("Replace the DIMM module with a supported DIMM.\n\n"); spd_ddr_init_hang (); break; case 4: printf("ERROR: SDRAM DIMM detected in slot %d.\n", (unsigned int)dimm_num); printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); printf("Replace the DIMM module with a supported DIMM.\n\n"); spd_ddr_init_hang (); break; case 5: printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n", (unsigned int)dimm_num); printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); printf("Replace the DIMM module with a supported DIMM.\n\n"); spd_ddr_init_hang (); break; case 6: printf("ERROR: SGRAM DIMM detected in slot %d.\n", (unsigned int)dimm_num); printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); printf("Replace the DIMM module with a supported DIMM.\n\n"); spd_ddr_init_hang (); break; case 7: debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num); dimm_populated[dimm_num] = SDRAM_DDR1; break; case 8: debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num); dimm_populated[dimm_num] = SDRAM_DDR2; break; default: printf("ERROR: Unknown DIMM detected in slot %d.\n", (unsigned int)dimm_num); printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n"); printf("Replace the DIMM module with a supported DIMM.\n\n"); spd_ddr_init_hang (); break; } } } for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) { if ((dimm_populated[dimm_num-1] != SDRAM_NONE) && (dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) { printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n"); spd_ddr_init_hang (); } } } /*------------------------------------------------------------------ * For the memory DIMMs installed, this routine verifies that * frequency previously calculated is supported. *-----------------------------------------------------------------*/ static void check_frequency(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long tcyc_reg; unsigned long cycle_time; unsigned long calc_cycle_time; unsigned long sdram_freq; unsigned long sdr_ddrpll; PPC4xx_SYS_INFO board_cfg; /*------------------------------------------------------------------ * Get the board configuration info. *-----------------------------------------------------------------*/ get_sys_info(&board_cfg); mfsdr(SDR0_DDR0, sdr_ddrpll); sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll)); /* * calc_cycle_time is calculated from DDR frequency set by board/chip * and is expressed in multiple of 10 picoseconds * to match the way DIMM cycle time is calculated below. */ calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq); for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] != SDRAM_NONE) { tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9); /* * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles: * the higher order nibble (bits 4-7) designates the cycle time * to a granularity of 1ns; * the value presented by the lower order nibble (bits 0-3) * has a granularity of .1ns and is added to the value designated * by the higher nibble. In addition, four lines of the lower order * nibble are assigned to support +.25,+.33, +.66 and +.75. */ /* Convert from hex to decimal */ if ((tcyc_reg & 0x0F) == 0x0D) cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75; else if ((tcyc_reg & 0x0F) == 0x0C) cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66; else if ((tcyc_reg & 0x0F) == 0x0B) cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33; else if ((tcyc_reg & 0x0F) == 0x0A) cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25; else cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + ((tcyc_reg & 0x0F)*10); debug("cycle_time=%d [10 picoseconds]\n", cycle_time); if (cycle_time > (calc_cycle_time + 10)) { /* * the provided sdram cycle_time is too small * for the available DIMM cycle_time. * The additionnal 100ps is here to accept a small incertainty. */ printf("ERROR: DRAM DIMM detected with cycle_time %d ps in " "slot %d \n while calculated cycle time is %d ps.\n", (unsigned int)(cycle_time*10), (unsigned int)dimm_num, (unsigned int)(calc_cycle_time*10)); printf("Replace the DIMM, or change DDR frequency via " "strapping bits.\n\n"); spd_ddr_init_hang (); } } } } /*------------------------------------------------------------------ * For the memory DIMMs installed, this routine verifies two * ranks/banks maximum are availables. *-----------------------------------------------------------------*/ static void check_rank_number(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long dimm_rank; unsigned long total_rank = 0; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] != SDRAM_NONE) { dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5); if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) dimm_rank = (dimm_rank & 0x0F) +1; else dimm_rank = dimm_rank & 0x0F; if (dimm_rank > MAXRANKS) { printf("ERROR: DRAM DIMM detected with %lu ranks in " "slot %lu is not supported.\n", dimm_rank, dimm_num); printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS); printf("Replace the DIMM module with a supported DIMM.\n\n"); spd_ddr_init_hang (); } else total_rank += dimm_rank; } if (total_rank > MAXRANKS) { printf("ERROR: DRAM DIMM detected with a total of %d ranks " "for all slots.\n", (unsigned int)total_rank); printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS); printf("Remove one of the DIMM modules.\n\n"); spd_ddr_init_hang (); } } } /*------------------------------------------------------------------ * only support 2.5V modules. * This routine verifies this. *-----------------------------------------------------------------*/ static void check_voltage_type(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long voltage_type; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] != SDRAM_NONE) { voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8); switch (voltage_type) { case 0x00: printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); printf("This DIMM is 5.0 Volt/TTL.\n"); printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", (unsigned int)dimm_num); spd_ddr_init_hang (); break; case 0x01: printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); printf("This DIMM is LVTTL.\n"); printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", (unsigned int)dimm_num); spd_ddr_init_hang (); break; case 0x02: printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); printf("This DIMM is 1.5 Volt.\n"); printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", (unsigned int)dimm_num); spd_ddr_init_hang (); break; case 0x03: printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); printf("This DIMM is 3.3 Volt/TTL.\n"); printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", (unsigned int)dimm_num); spd_ddr_init_hang (); break; case 0x04: /* 2.5 Voltage only for DDR1 */ break; case 0x05: /* 1.8 Voltage only for DDR2 */ break; default: printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", (unsigned int)dimm_num); spd_ddr_init_hang (); break; } } } } /*-----------------------------------------------------------------------------+ * program_copt1. *-----------------------------------------------------------------------------*/ static void program_copt1(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long mcopt1; unsigned long ecc_enabled; unsigned long ecc = 0; unsigned long data_width = 0; unsigned long dimm_32bit; unsigned long dimm_64bit; unsigned long registered = 0; unsigned long attribute = 0; unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */ unsigned long bankcount; unsigned long ddrtype; unsigned long val; #ifdef CONFIG_DDR_ECC ecc_enabled = TRUE; #else ecc_enabled = FALSE; #endif dimm_32bit = FALSE; dimm_64bit = FALSE; buf0 = FALSE; buf1 = FALSE; /*------------------------------------------------------------------ * Set memory controller options reg 1, SDRAM_MCOPT1. *-----------------------------------------------------------------*/ mfsdram(SDRAM_MCOPT1, val); mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK | SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK | SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK | SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK | SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK | SDRAM_MCOPT1_DREF_MASK); mcopt1 |= SDRAM_MCOPT1_QDEP; mcopt1 |= SDRAM_MCOPT1_PMU_OPEN; mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED; mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED; mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED; mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] != SDRAM_NONE) { /* test ecc support */ ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11); if (ecc != 0x02) /* ecc not supported */ ecc_enabled = FALSE; /* test bank count */ bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17); if (bankcount == 0x04) /* bank count = 4 */ mcopt1 |= SDRAM_MCOPT1_4_BANKS; else /* bank count = 8 */ mcopt1 |= SDRAM_MCOPT1_8_BANKS; /* test DDR type */ ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2); /* test for buffered/unbuffered, registered, differential clocks */ registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20); attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21); /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */ if (dimm_num == 0) { if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */ mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE; if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */ mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE; if (registered == 1) { /* DDR2 always buffered */ /* TODO: what about above comments ? */ mcopt1 |= SDRAM_MCOPT1_RDEN; buf0 = TRUE; } else { /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */ if ((attribute & 0x02) == 0x00) { /* buffered not supported */ buf0 = FALSE; } else { mcopt1 |= SDRAM_MCOPT1_RDEN; buf0 = TRUE; } } } else if (dimm_num == 1) { if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */ mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE; if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */ mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE; if (registered == 1) { /* DDR2 always buffered */ mcopt1 |= SDRAM_MCOPT1_RDEN; buf1 = TRUE; } else { if ((attribute & 0x02) == 0x00) { /* buffered not supported */ buf1 = FALSE; } else { mcopt1 |= SDRAM_MCOPT1_RDEN; buf1 = TRUE; } } } /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */ data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) + (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8); switch (data_width) { case 72: case 64: dimm_64bit = TRUE; break; case 40: case 32: dimm_32bit = TRUE; break; default: printf("WARNING: Detected a DIMM with a data width of %lu bits.\n", data_width); printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n"); break; } } } /* verify matching properties */ if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) { if (buf0 != buf1) { printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n"); spd_ddr_init_hang (); } } if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) { printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n"); spd_ddr_init_hang (); } else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) { mcopt1 |= SDRAM_MCOPT1_DMWD_64; } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) { mcopt1 |= SDRAM_MCOPT1_DMWD_32; } else { printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n"); spd_ddr_init_hang (); } if (ecc_enabled == TRUE) mcopt1 |= SDRAM_MCOPT1_MCHK_GEN; else mcopt1 |= SDRAM_MCOPT1_MCHK_NON; mtsdram(SDRAM_MCOPT1, mcopt1); } /*-----------------------------------------------------------------------------+ * program_codt. *-----------------------------------------------------------------------------*/ static void program_codt(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long codt; unsigned long modt0 = 0; unsigned long modt1 = 0; unsigned long modt2 = 0; unsigned long modt3 = 0; unsigned char dimm_num; unsigned char dimm_rank; unsigned char total_rank = 0; unsigned char total_dimm = 0; unsigned char dimm_type = 0; unsigned char firstSlot = 0; /*------------------------------------------------------------------ * Set the SDRAM Controller On Die Termination Register *-----------------------------------------------------------------*/ mfsdram(SDRAM_CODT, codt); codt |= (SDRAM_CODT_IO_NMODE & (~SDRAM_CODT_DQS_SINGLE_END & ~SDRAM_CODT_CKSE_SINGLE_END & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END)); for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] != SDRAM_NONE) { dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5); if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) { dimm_rank = (dimm_rank & 0x0F) + 1; dimm_type = SDRAM_DDR2; } else { dimm_rank = dimm_rank & 0x0F; dimm_type = SDRAM_DDR1; } total_rank += dimm_rank; total_dimm++; if ((dimm_num == 0) && (total_dimm == 1)) firstSlot = TRUE; else firstSlot = FALSE; } } if (dimm_type == SDRAM_DDR2) { codt |= SDRAM_CODT_DQS_1_8_V_DDR2; if ((total_dimm == 1) && (firstSlot == TRUE)) { if (total_rank == 1) { codt |= CALC_ODT_R(0); modt0 = CALC_ODT_W(0); modt1 = 0x00000000; modt2 = 0x00000000; modt3 = 0x00000000; } if (total_rank == 2) { codt |= CALC_ODT_R(0) | CALC_ODT_R(1); modt0 = CALC_ODT_W(0); modt1 = CALC_ODT_W(0); modt2 = 0x00000000; modt3 = 0x00000000; } } else if ((total_dimm == 1) && (firstSlot != TRUE)) { if (total_rank == 1) { codt |= CALC_ODT_R(2); modt0 = 0x00000000; modt1 = 0x00000000; modt2 = CALC_ODT_W(2); modt3 = 0x00000000; } if (total_rank == 2) { codt |= CALC_ODT_R(2) | CALC_ODT_R(3); modt0 = 0x00000000; modt1 = 0x00000000; modt2 = CALC_ODT_W(2); modt3 = CALC_ODT_W(2); } } if (total_dimm == 2) { if (total_rank == 2) { codt |= CALC_ODT_R(0) | CALC_ODT_R(2); modt0 = CALC_ODT_RW(2); modt1 = 0x00000000; modt2 = CALC_ODT_RW(0); modt3 = 0x00000000; } if (total_rank == 4) { codt |= CALC_ODT_R(0) | CALC_ODT_R(1) | CALC_ODT_R(2) | CALC_ODT_R(3); modt0 = CALC_ODT_RW(2); modt1 = 0x00000000; modt2 = CALC_ODT_RW(0); modt3 = 0x00000000; } } } else { codt |= SDRAM_CODT_DQS_2_5_V_DDR1; modt0 = 0x00000000; modt1 = 0x00000000; modt2 = 0x00000000; modt3 = 0x00000000; if (total_dimm == 1) { if (total_rank == 1) codt |= 0x00800000; if (total_rank == 2) codt |= 0x02800000; } if (total_dimm == 2) { if (total_rank == 2) codt |= 0x08800000; if (total_rank == 4) codt |= 0x2a800000; } } debug("nb of dimm %d\n", total_dimm); debug("nb of rank %d\n", total_rank); if (total_dimm == 1) debug("dimm in slot %d\n", firstSlot); mtsdram(SDRAM_CODT, codt); mtsdram(SDRAM_MODT0, modt0); mtsdram(SDRAM_MODT1, modt1); mtsdram(SDRAM_MODT2, modt2); mtsdram(SDRAM_MODT3, modt3); } /*-----------------------------------------------------------------------------+ * program_initplr. *-----------------------------------------------------------------------------*/ static void program_initplr(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks, ddr_cas_id_t selected_cas, int write_recovery) { u32 cas = 0; u32 odt = 0; u32 ods = 0; u32 mr; u32 wr; u32 emr; u32 emr2; u32 emr3; int dimm_num; int total_dimm = 0; /****************************************************** ** Assumption: if more than one DIMM, all DIMMs are the same ** as already checked in check_memory_type ******************************************************/ if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) { mtsdram(SDRAM_INITPLR0, 0x81B80000); mtsdram(SDRAM_INITPLR1, 0x81900400); mtsdram(SDRAM_INITPLR2, 0x81810000); mtsdram(SDRAM_INITPLR3, 0xff800162); mtsdram(SDRAM_INITPLR4, 0x81900400); mtsdram(SDRAM_INITPLR5, 0x86080000); mtsdram(SDRAM_INITPLR6, 0x86080000); mtsdram(SDRAM_INITPLR7, 0x81000062); } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) { switch (selected_cas) { case DDR_CAS_3: cas = 3 << 4; break; case DDR_CAS_4: cas = 4 << 4; break; case DDR_CAS_5: cas = 5 << 4; break; default: printf("ERROR: ucode error on selected_cas value %d", selected_cas); spd_ddr_init_hang (); break; } #if 0 /* * ToDo - Still a problem with the write recovery: * On the Corsair CM2X512-5400C4 module, setting write recovery * in the INITPLR reg to the value calculated in program_mode() * results in not correctly working DDR2 memory (crash after * relocation). * * So for now, set the write recovery to 3. This seems to work * on the Corair module too. * * 2007-03-01, sr */ switch (write_recovery) { case 3: wr = WRITE_RECOV_3; break; case 4: wr = WRITE_RECOV_4; break; case 5: wr = WRITE_RECOV_5; break; case 6: wr = WRITE_RECOV_6; break; default: printf("ERROR: write recovery not support (%d)", write_recovery); spd_ddr_init_hang (); break; } #else wr = WRITE_RECOV_3; /* test-only, see description above */ #endif for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) if (dimm_populated[dimm_num] != SDRAM_NONE) total_dimm++; if (total_dimm == 1) { odt = ODT_150_OHM; ods = ODS_FULL; } else if (total_dimm == 2) { odt = ODT_75_OHM; ods = ODS_REDUCED; } else { printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm); spd_ddr_init_hang (); } mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas; emr = CMD_EMR | SELECT_EMR | odt | ods; emr2 = CMD_EMR | SELECT_EMR2; emr3 = CMD_EMR | SELECT_EMR3; mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */ udelay(1000); mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */ mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */ mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */ mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */ mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */ udelay(1000); mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */ mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */ mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */ mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */ mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */ mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */ mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */ mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */ } else { printf("ERROR: ucode error as unknown DDR type in program_initplr"); spd_ddr_init_hang (); } } /*------------------------------------------------------------------ * This routine programs the SDRAM_MMODE register. * the selected_cas is an output parameter, that will be passed * by caller to call the above program_initplr( ) *-----------------------------------------------------------------*/ static void program_mode(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks, ddr_cas_id_t *selected_cas, int *write_recovery) { unsigned long dimm_num; unsigned long sdram_ddr1; unsigned long t_wr_ns; unsigned long t_wr_clk; unsigned long cas_bit; unsigned long cas_index; unsigned long sdram_freq; unsigned long ddr_check; unsigned long mmode; unsigned long tcyc_reg; unsigned long cycle_2_0_clk; unsigned long cycle_2_5_clk; unsigned long cycle_3_0_clk; unsigned long cycle_4_0_clk; unsigned long cycle_5_0_clk; unsigned long max_2_0_tcyc_ns_x_100; unsigned long max_2_5_tcyc_ns_x_100; unsigned long max_3_0_tcyc_ns_x_100; unsigned long max_4_0_tcyc_ns_x_100; unsigned long max_5_0_tcyc_ns_x_100; unsigned long cycle_time_ns_x_100[3]; PPC4xx_SYS_INFO board_cfg; unsigned char cas_2_0_available; unsigned char cas_2_5_available; unsigned char cas_3_0_available; unsigned char cas_4_0_available; unsigned char cas_5_0_available; unsigned long sdr_ddrpll; /*------------------------------------------------------------------ * Get the board configuration info. *-----------------------------------------------------------------*/ get_sys_info(&board_cfg); mfsdr(SDR0_DDR0, sdr_ddrpll); sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1); debug("sdram_freq=%d\n", sdram_freq); /*------------------------------------------------------------------ * Handle the timing. We need to find the worst case timing of all * the dimm modules installed. *-----------------------------------------------------------------*/ t_wr_ns = 0; cas_2_0_available = TRUE; cas_2_5_available = TRUE; cas_3_0_available = TRUE; cas_4_0_available = TRUE; cas_5_0_available = TRUE; max_2_0_tcyc_ns_x_100 = 10; max_2_5_tcyc_ns_x_100 = 10; max_3_0_tcyc_ns_x_100 = 10; max_4_0_tcyc_ns_x_100 = 10; max_5_0_tcyc_ns_x_100 = 10; sdram_ddr1 = TRUE; /* loop through all the DIMM slots on the board */ for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { /* If a dimm is installed in a particular slot ... */ if (dimm_populated[dimm_num] != SDRAM_NONE) { if (dimm_populated[dimm_num] == SDRAM_DDR1) sdram_ddr1 = TRUE; else sdram_ddr1 = FALSE; /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */ cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18); debug("cas_bit[SPD byte 18]=%02x\n", cas_bit); /* For a particular DIMM, grab the three CAS values it supports */ for (cas_index = 0; cas_index < 3; cas_index++) { switch (cas_index) { case 0: tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9); break; case 1: tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23); break; default: tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25); break; } if ((tcyc_reg & 0x0F) >= 10) { if ((tcyc_reg & 0x0F) == 0x0D) { /* Convert from hex to decimal */ cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) + 75; } else { printf("ERROR: SPD reported Tcyc is incorrect for DIMM " "in slot %d\n", (unsigned int)dimm_num); spd_ddr_init_hang (); } } else { /* Convert from hex to decimal */ cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) + ((tcyc_reg & 0x0F)*10); } debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index, cycle_time_ns_x_100[cas_index]); } /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */ /* supported for a particular DIMM. */ cas_index = 0; if (sdram_ddr1) { /* * DDR devices use the following bitmask for CAS latency: * Bit 7 6 5 4 3 2 1 0 * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0 */ if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) { max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]); cas_index++; } else { if (cas_index != 0) cas_index++; cas_4_0_available = FALSE; } if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) { max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]); cas_index++; } else { if (cas_index != 0) cas_index++; cas_3_0_available = FALSE; } if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) { max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]); cas_index++; } else { if (cas_index != 0) cas_index++; cas_2_5_available = FALSE; } if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) { max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]); cas_index++; } else { if (cas_index != 0) cas_index++; cas_2_0_available = FALSE; } } else { /* * DDR2 devices use the following bitmask for CAS latency: * Bit 7 6 5 4 3 2 1 0 * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD */ if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) { max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]); cas_index++; } else { if (cas_index != 0) cas_index++; cas_5_0_available = FALSE; } if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) { max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]); cas_index++; } else { if (cas_index != 0) cas_index++; cas_4_0_available = FALSE; } if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) { max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]); cas_index++; } else { if (cas_index != 0) cas_index++; cas_3_0_available = FALSE; } } } } /*------------------------------------------------------------------ * Set the SDRAM mode, SDRAM_MMODE *-----------------------------------------------------------------*/ mfsdram(SDRAM_MMODE, mmode); mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK); /* add 10 here because of rounding problems */ cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10; cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10; cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10; cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10; cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10; debug("cycle_3_0_clk=%d\n", cycle_3_0_clk); debug("cycle_4_0_clk=%d\n", cycle_4_0_clk); debug("cycle_5_0_clk=%d\n", cycle_5_0_clk); if (sdram_ddr1 == TRUE) { /* DDR1 */ if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) { mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK; *selected_cas = DDR_CAS_2; } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) { mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK; *selected_cas = DDR_CAS_2_5; } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) { mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK; *selected_cas = DDR_CAS_3; } else { printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n"); printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n"); printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n"); spd_ddr_init_hang (); } } else { /* DDR2 */ debug("cas_3_0_available=%d\n", cas_3_0_available); debug("cas_4_0_available=%d\n", cas_4_0_available); debug("cas_5_0_available=%d\n", cas_5_0_available); if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) { mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK; *selected_cas = DDR_CAS_3; } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) { mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK; *selected_cas = DDR_CAS_4; } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) { mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK; *selected_cas = DDR_CAS_5; } else { printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n"); printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n"); printf("Make sure the PLB speed is within the supported range of the DIMMs.\n"); printf("cas3=%d cas4=%d cas5=%d\n", cas_3_0_available, cas_4_0_available, cas_5_0_available); printf("sdram_freq=%lu cycle3=%lu cycle4=%lu cycle5=%lu\n\n", sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk); spd_ddr_init_hang (); } } if (sdram_ddr1 == TRUE) mmode |= SDRAM_MMODE_WR_DDR1; else { /* loop through all the DIMM slots on the board */ for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { /* If a dimm is installed in a particular slot ... */ if (dimm_populated[dimm_num] != SDRAM_NONE) t_wr_ns = max(t_wr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2); } /* * convert from nanoseconds to ddr clocks * round up if necessary */ t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION); ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns); if (sdram_freq != ddr_check) t_wr_clk++; switch (t_wr_clk) { case 0: case 1: case 2: case 3: mmode |= SDRAM_MMODE_WR_DDR2_3_CYC; break; case 4: mmode |= SDRAM_MMODE_WR_DDR2_4_CYC; break; case 5: mmode |= SDRAM_MMODE_WR_DDR2_5_CYC; break; default: mmode |= SDRAM_MMODE_WR_DDR2_6_CYC; break; } *write_recovery = t_wr_clk; } debug("CAS latency = %d\n", *selected_cas); debug("Write recovery = %d\n", *write_recovery); mtsdram(SDRAM_MMODE, mmode); } /*-----------------------------------------------------------------------------+ * program_rtr. *-----------------------------------------------------------------------------*/ static void program_rtr(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { PPC4xx_SYS_INFO board_cfg; unsigned long max_refresh_rate; unsigned long dimm_num; unsigned long refresh_rate_type; unsigned long refresh_rate; unsigned long rint; unsigned long sdram_freq; unsigned long sdr_ddrpll; unsigned long val; /*------------------------------------------------------------------ * Get the board configuration info. *-----------------------------------------------------------------*/ get_sys_info(&board_cfg); /*------------------------------------------------------------------ * Set the SDRAM Refresh Timing Register, SDRAM_RTR *-----------------------------------------------------------------*/ mfsdr(SDR0_DDR0, sdr_ddrpll); sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll)); max_refresh_rate = 0; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] != SDRAM_NONE) { refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12); refresh_rate_type &= 0x7F; switch (refresh_rate_type) { case 0: refresh_rate = 15625; break; case 1: refresh_rate = 3906; break; case 2: refresh_rate = 7812; break; case 3: refresh_rate = 31250; break; case 4: refresh_rate = 62500; break; case 5: refresh_rate = 125000; break; default: refresh_rate = 0; printf("ERROR: DIMM %d unsupported refresh rate/type.\n", (unsigned int)dimm_num); printf("Replace the DIMM module with a supported DIMM.\n\n"); spd_ddr_init_hang (); break; } max_refresh_rate = max(max_refresh_rate, refresh_rate); } } rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION); mfsdram(SDRAM_RTR, val); mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) | (SDRAM_RTR_RINT_ENCODE(rint))); } /*------------------------------------------------------------------ * This routine programs the SDRAM_TRx registers. *-----------------------------------------------------------------*/ static void program_tr(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long sdram_ddr1; unsigned long t_rp_ns; unsigned long t_rcd_ns; unsigned long t_rrd_ns; unsigned long t_ras_ns; unsigned long t_rc_ns; unsigned long t_rfc_ns; unsigned long t_wpc_ns; unsigned long t_wtr_ns; unsigned long t_rpc_ns; unsigned long t_rp_clk; unsigned long t_rcd_clk; unsigned long t_rrd_clk; unsigned long t_ras_clk; unsigned long t_rc_clk; unsigned long t_rfc_clk; unsigned long t_wpc_clk; unsigned long t_wtr_clk; unsigned long t_rpc_clk; unsigned long sdtr1, sdtr2, sdtr3; unsigned long ddr_check; unsigned long sdram_freq; unsigned long sdr_ddrpll; PPC4xx_SYS_INFO board_cfg; /*------------------------------------------------------------------ * Get the board configuration info. *-----------------------------------------------------------------*/ get_sys_info(&board_cfg); mfsdr(SDR0_DDR0, sdr_ddrpll); sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll)); /*------------------------------------------------------------------ * Handle the timing. We need to find the worst case timing of all * the dimm modules installed. *-----------------------------------------------------------------*/ t_rp_ns = 0; t_rrd_ns = 0; t_rcd_ns = 0; t_ras_ns = 0; t_rc_ns = 0; t_rfc_ns = 0; t_wpc_ns = 0; t_wtr_ns = 0; t_rpc_ns = 0; sdram_ddr1 = TRUE; /* loop through all the DIMM slots on the board */ for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { /* If a dimm is installed in a particular slot ... */ if (dimm_populated[dimm_num] != SDRAM_NONE) { if (dimm_populated[dimm_num] == SDRAM_DDR2) sdram_ddr1 = TRUE; else sdram_ddr1 = FALSE; t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2); t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2); t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2); t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30)); t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41)); t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42)); } } /*------------------------------------------------------------------ * Set the SDRAM Timing Reg 1, SDRAM_TR1 *-----------------------------------------------------------------*/ mfsdram(SDRAM_SDTR1, sdtr1); sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK | SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK); /* default values */ sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK; sdtr1 |= SDRAM_SDTR1_RTW_2_CLK; /* normal operations */ sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK; sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK; mtsdram(SDRAM_SDTR1, sdtr1); /*------------------------------------------------------------------ * Set the SDRAM Timing Reg 2, SDRAM_TR2 *-----------------------------------------------------------------*/ mfsdram(SDRAM_SDTR2, sdtr2); sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK | SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK | SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK | SDRAM_SDTR2_RRD_MASK); /* * convert t_rcd from nanoseconds to ddr clocks * round up if necessary */ t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION); ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns); if (sdram_freq != ddr_check) t_rcd_clk++; switch (t_rcd_clk) { case 0: case 1: sdtr2 |= SDRAM_SDTR2_RCD_1_CLK; break; case 2: sdtr2 |= SDRAM_SDTR2_RCD_2_CLK; break; case 3: sdtr2 |= SDRAM_SDTR2_RCD_3_CLK; break; case 4: sdtr2 |= SDRAM_SDTR2_RCD_4_CLK; break; default: sdtr2 |= SDRAM_SDTR2_RCD_5_CLK; break; } if (sdram_ddr1 == TRUE) { /* DDR1 */ if (sdram_freq < 200000000) { sdtr2 |= SDRAM_SDTR2_WTR_1_CLK; sdtr2 |= SDRAM_SDTR2_WPC_2_CLK; sdtr2 |= SDRAM_SDTR2_RPC_2_CLK; } else { sdtr2 |= SDRAM_SDTR2_WTR_2_CLK; sdtr2 |= SDRAM_SDTR2_WPC_3_CLK; sdtr2 |= SDRAM_SDTR2_RPC_2_CLK; } } else { /* DDR2 */ /* loop through all the DIMM slots on the board */ for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { /* If a dimm is installed in a particular slot ... */ if (dimm_populated[dimm_num] != SDRAM_NONE) { t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2); t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2); t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2); } } /* * convert from nanoseconds to ddr clocks * round up if necessary */ t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION); ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns); if (sdram_freq != ddr_check) t_wpc_clk++; switch (t_wpc_clk) { case 0: case 1: case 2: sdtr2 |= SDRAM_SDTR2_WPC_2_CLK; break; case 3: sdtr2 |= SDRAM_SDTR2_WPC_3_CLK; break; case 4: sdtr2 |= SDRAM_SDTR2_WPC_4_CLK; break; case 5: sdtr2 |= SDRAM_SDTR2_WPC_5_CLK; break; default: sdtr2 |= SDRAM_SDTR2_WPC_6_CLK; break; } /* * convert from nanoseconds to ddr clocks * round up if necessary */ t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION); ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns); if (sdram_freq != ddr_check) t_wtr_clk++; switch (t_wtr_clk) { case 0: case 1: sdtr2 |= SDRAM_SDTR2_WTR_1_CLK; break; case 2: sdtr2 |= SDRAM_SDTR2_WTR_2_CLK; break; case 3: sdtr2 |= SDRAM_SDTR2_WTR_3_CLK; break; default: sdtr2 |= SDRAM_SDTR2_WTR_4_CLK; break; } /* * convert from nanoseconds to ddr clocks * round up if necessary */ t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION); ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns); if (sdram_freq != ddr_check) t_rpc_clk++; switch (t_rpc_clk) { case 0: case 1: case 2: sdtr2 |= SDRAM_SDTR2_RPC_2_CLK; break; case 3: sdtr2 |= SDRAM_SDTR2_RPC_3_CLK; break; default: sdtr2 |= SDRAM_SDTR2_RPC_4_CLK; break; } } /* default value */ sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK; /* * convert t_rrd from nanoseconds to ddr clocks * round up if necessary */ t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION); ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns); if (sdram_freq != ddr_check) t_rrd_clk++; if (t_rrd_clk == 3) sdtr2 |= SDRAM_SDTR2_RRD_3_CLK; else sdtr2 |= SDRAM_SDTR2_RRD_2_CLK; /* * convert t_rp from nanoseconds to ddr clocks * round up if necessary */ t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION); ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns); if (sdram_freq != ddr_check) t_rp_clk++; switch (t_rp_clk) { case 0: case 1: case 2: case 3: sdtr2 |= SDRAM_SDTR2_RP_3_CLK; break; case 4: sdtr2 |= SDRAM_SDTR2_RP_4_CLK; break; case 5: sdtr2 |= SDRAM_SDTR2_RP_5_CLK; break; case 6: sdtr2 |= SDRAM_SDTR2_RP_6_CLK; break; default: sdtr2 |= SDRAM_SDTR2_RP_7_CLK; break; } mtsdram(SDRAM_SDTR2, sdtr2); /*------------------------------------------------------------------ * Set the SDRAM Timing Reg 3, SDRAM_TR3 *-----------------------------------------------------------------*/ mfsdram(SDRAM_SDTR3, sdtr3); sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK | SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK); /* * convert t_ras from nanoseconds to ddr clocks * round up if necessary */ t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION); ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns); if (sdram_freq != ddr_check) t_ras_clk++; sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk); /* * convert t_rc from nanoseconds to ddr clocks * round up if necessary */ t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION); ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns); if (sdram_freq != ddr_check) t_rc_clk++; sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk); /* default xcs value */ sdtr3 |= SDRAM_SDTR3_XCS; /* * convert t_rfc from nanoseconds to ddr clocks * round up if necessary */ t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION); ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns); if (sdram_freq != ddr_check) t_rfc_clk++; sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk); mtsdram(SDRAM_SDTR3, sdtr3); } /*-----------------------------------------------------------------------------+ * program_bxcf. *-----------------------------------------------------------------------------*/ static void program_bxcf(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long num_col_addr; unsigned long num_ranks; unsigned long num_banks; unsigned long mode; unsigned long ind_rank; unsigned long ind; unsigned long ind_bank; unsigned long bank_0_populated; /*------------------------------------------------------------------ * Set the BxCF regs. First, wipe out the bank config registers. *-----------------------------------------------------------------*/ mtsdram(SDRAM_MB0CF, 0x00000000); mtsdram(SDRAM_MB1CF, 0x00000000); mtsdram(SDRAM_MB2CF, 0x00000000); mtsdram(SDRAM_MB3CF, 0x00000000); mode = SDRAM_BXCF_M_BE_ENABLE; bank_0_populated = 0; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] != SDRAM_NONE) { num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4); num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5); if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) num_ranks = (num_ranks & 0x0F) +1; else num_ranks = num_ranks & 0x0F; num_banks = spd_read(iic0_dimm_addr[dimm_num], 17); for (ind_bank = 0; ind_bank < 2; ind_bank++) { if (num_banks == 4) ind = 0; else ind = 5 << 8; switch (num_col_addr) { case 0x08: mode |= (SDRAM_BXCF_M_AM_0 + ind); break; case 0x09: mode |= (SDRAM_BXCF_M_AM_1 + ind); break; case 0x0A: mode |= (SDRAM_BXCF_M_AM_2 + ind); break; case 0x0B: mode |= (SDRAM_BXCF_M_AM_3 + ind); break; case 0x0C: mode |= (SDRAM_BXCF_M_AM_4 + ind); break; default: printf("DDR-SDRAM: DIMM %d BxCF configuration.\n", (unsigned int)dimm_num); printf("ERROR: Unsupported value for number of " "column addresses: %d.\n", (unsigned int)num_col_addr); printf("Replace the DIMM module with a supported DIMM.\n\n"); spd_ddr_init_hang (); } } if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1)) bank_0_populated = 1; for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) { mtsdram(SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2), mode); } } } } /*------------------------------------------------------------------ * program memory queue. *-----------------------------------------------------------------*/ static void program_memory_queue(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; phys_size_t rank_base_addr; unsigned long rank_reg; phys_size_t rank_size_bytes; unsigned long rank_size_id; unsigned long num_ranks; unsigned long baseadd_size; unsigned long i; unsigned long bank_0_populated = 0; phys_size_t total_size = 0; /*------------------------------------------------------------------ * Reset the rank_base_address. *-----------------------------------------------------------------*/ rank_reg = SDRAM_R0BAS; rank_base_addr = 0x00000000; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] != SDRAM_NONE) { num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5); if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) num_ranks = (num_ranks & 0x0F) + 1; else num_ranks = num_ranks & 0x0F; rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31); /*------------------------------------------------------------------ * Set the sizes *-----------------------------------------------------------------*/ baseadd_size = 0; switch (rank_size_id) { case 0x01: baseadd_size |= SDRAM_RXBAS_SDSZ_1024; total_size = 1024; break; case 0x02: baseadd_size |= SDRAM_RXBAS_SDSZ_2048; total_size = 2048; break; case 0x04: baseadd_size |= SDRAM_RXBAS_SDSZ_4096; total_size = 4096; break; case 0x08: baseadd_size |= SDRAM_RXBAS_SDSZ_32; total_size = 32; break; case 0x10: baseadd_size |= SDRAM_RXBAS_SDSZ_64; total_size = 64; break; case 0x20: baseadd_size |= SDRAM_RXBAS_SDSZ_128; total_size = 128; break; case 0x40: baseadd_size |= SDRAM_RXBAS_SDSZ_256; total_size = 256; break; case 0x80: baseadd_size |= SDRAM_RXBAS_SDSZ_512; total_size = 512; break; default: printf("DDR-SDRAM: DIMM %d memory queue configuration.\n", (unsigned int)dimm_num); printf("ERROR: Unsupported value for the banksize: %d.\n", (unsigned int)rank_size_id); printf("Replace the DIMM module with a supported DIMM.\n\n"); spd_ddr_init_hang (); } rank_size_bytes = total_size << 20; if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1)) bank_0_populated = 1; for (i = 0; i < num_ranks; i++) { mtdcr_any(rank_reg+i+dimm_num+bank_0_populated, (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) | baseadd_size)); rank_base_addr += rank_size_bytes; } } } #if defined(CONFIG_460EX) || defined(CONFIG_460GT) /* * Enable high bandwidth access on 460EX/GT. * This should/could probably be done on other * PPC's too, like 440SPe. * This is currently not used, but with this setup * it is possible to use it later on in e.g. the Linux * EMAC driver for performance gain. */ mtdcr(SDRAM_PLBADDULL, 0x00000000); /* MQ0_BAUL */ mtdcr(SDRAM_PLBADDUHB, 0x00000008); /* MQ0_BAUH */ #endif } /*-----------------------------------------------------------------------------+ * is_ecc_enabled. *-----------------------------------------------------------------------------*/ static unsigned long is_ecc_enabled(void) { unsigned long dimm_num; unsigned long ecc; unsigned long val; ecc = 0; /* loop through all the DIMM slots on the board */ for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) { mfsdram(SDRAM_MCOPT1, val); ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val)); } return ecc; } static void blank_string(int size) { int i; for (i=0; i CONFIG_MAX_MEM_MAPPED) { printf("\nWarning: Can't enable ECC on systems with more than 2GB of SDRAM!\n"); return; } mfsdram(SDRAM_MCOPT1, mcopt1); mfsdram(SDRAM_MCOPT2, mcopt2); if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) { /* DDR controller must be enabled and not in self-refresh. */ mfsdram(SDRAM_MCSTAT, mcstat); if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE) && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT) && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK)) == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) { program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value); } } return; } static void wait_ddr_idle(void) { u32 val; do { mfsdram(SDRAM_MCSTAT, val); } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT); } /*-----------------------------------------------------------------------------+ * program_ecc_addr. *-----------------------------------------------------------------------------*/ static void program_ecc_addr(unsigned long start_address, unsigned long num_bytes, unsigned long tlb_word2_i_value) { unsigned long current_address; unsigned long end_address; unsigned long address_increment; unsigned long mcopt1; char str[] = "ECC generation -"; char slash[] = "\\|/-\\|/-"; int loop = 0; int loopi = 0; current_address = start_address; mfsdram(SDRAM_MCOPT1, mcopt1); if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) { mtsdram(SDRAM_MCOPT1, (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN); sync(); eieio(); wait_ddr_idle(); puts(str); if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) { /* ECC bit set method for non-cached memory */ if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32) address_increment = 4; else address_increment = 8; end_address = current_address + num_bytes; while (current_address < end_address) { *((unsigned long *)current_address) = 0x00000000; current_address += address_increment; if ((loop++ % (2 << 20)) == 0) { putc('\b'); putc(slash[loopi++ % 8]); } } } else { /* ECC bit set method for cached memory */ dcbz_area(start_address, num_bytes); /* Write modified dcache lines back to memory */ clean_dcache_range(start_address, start_address + num_bytes); } blank_string(strlen(str)); sync(); eieio(); wait_ddr_idle(); /* clear ECC error repoting registers */ mtsdram(SDRAM_ECCCR, 0xffffffff); mtdcr(0x4c, 0xffffffff); mtsdram(SDRAM_MCOPT1, (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP); sync(); eieio(); wait_ddr_idle(); } } #endif /*-----------------------------------------------------------------------------+ * program_DQS_calibration. *-----------------------------------------------------------------------------*/ static void program_DQS_calibration(unsigned long *dimm_populated, unsigned char *iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long val; #ifdef HARD_CODED_DQS /* calibration test with hardvalues */ mtsdram(SDRAM_RQDC, 0x80000037); mtsdram(SDRAM_RDCC, 0x40000000); mtsdram(SDRAM_RFDC, 0x000001DF); test(); #else /*------------------------------------------------------------------ * Program RDCC register * Read sample cycle auto-update enable *-----------------------------------------------------------------*/ mfsdram(SDRAM_RDCC, val); mtsdram(SDRAM_RDCC, (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK)) | SDRAM_RDCC_RSAE_ENABLE); /*------------------------------------------------------------------ * Program RQDC register * Internal DQS delay mechanism enable *-----------------------------------------------------------------*/ mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38))); /*------------------------------------------------------------------ * Program RFDC register * Set Feedback Fractional Oversample * Auto-detect read sample cycle enable *-----------------------------------------------------------------*/ mfsdram(SDRAM_RFDC, val); mtsdram(SDRAM_RFDC, (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK | SDRAM_RFDC_RFFD_MASK)) | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) | SDRAM_RFDC_RFFD_ENCODE(0))); DQS_calibration_process(); #endif } static int short_mem_test(void) { u32 *membase; u32 bxcr_num; u32 bxcf; int i; int j; phys_size_t base_addr; u32 test[NUMMEMTESTS][NUMMEMWORDS] = { {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF}, {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000}, {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555}, {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA}, {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A}, {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5}, {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA}, {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} }; int l; for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) { mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf); /* Banks enabled */ if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) { /* Bank is enabled */ /* * Only run test on accessable memory (below 2GB) */ base_addr = SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)); if (base_addr >= CONFIG_MAX_MEM_MAPPED) continue; /*------------------------------------------------------------------ * Run the short memory test. *-----------------------------------------------------------------*/ membase = (u32 *)(u32)base_addr; for (i = 0; i < NUMMEMTESTS; i++) { for (j = 0; j < NUMMEMWORDS; j++) { membase[j] = test[i][j]; ppcDcbf((u32)&(membase[j])); } sync(); for (l=0; l max_pass_length) { max_pass_length = current_pass_length; max_start = current_start; max_end = rffd; } } } else { current_pass_length = 0; current_fail_length++; if (current_fail_length >= (dly_val >> 2)) { if (fail_found == FALSE) { fail_found = TRUE; } else if (pass_found == TRUE) { window_found = TRUE; break; } } } } /* for rffd */ /*------------------------------------------------------------------ * Set the average RFFD value *-----------------------------------------------------------------*/ rffd_average = ((max_start + max_end) >> 1); if (rffd_average < 0) rffd_average = 0; if (rffd_average > SDRAM_RFDC_RFFD_MAX) rffd_average = SDRAM_RFDC_RFFD_MAX; /* now fix RFDC[RFFD] found and find RQDC[RQFD] */ mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average)); #if !defined(CONFIG_DDR_RQDC_FIXED) max_pass_length = 0; max_start = 0; max_end = 0; current_pass_length = 0; current_fail_length = 0; current_start = 0; window_found = FALSE; fail_found = FALSE; pass_found = FALSE; for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) { mfsdram(SDRAM_RQDC, rqdc_reg); rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK); /*------------------------------------------------------------------ * Set the timing reg for the test. *-----------------------------------------------------------------*/ mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd)); /*------------------------------------------------------------------ * See if the rffd value passed. *-----------------------------------------------------------------*/ if (short_mem_test()) { if (fail_found == TRUE) { pass_found = TRUE; if (current_pass_length == 0) current_start = rqfd; current_fail_length = 0; current_pass_length++; if (current_pass_length > max_pass_length) { max_pass_length = current_pass_length; max_start = current_start; max_end = rqfd; } } } else { current_pass_length = 0; current_fail_length++; if (fail_found == FALSE) { fail_found = TRUE; } else if (pass_found == TRUE) { window_found = TRUE; break; } } } rqfd_average = ((max_start + max_end) >> 1); /*------------------------------------------------------------------ * Make sure we found the valid read passing window. Halt if not *-----------------------------------------------------------------*/ if (window_found == FALSE) { if (rqfd_start < SDRAM_RQDC_RQFD_MAX) { putc('\b'); putc(slash[loopi++ % 8]); /* try again from with a different RQFD start value */ rqfd_start++; goto calibration_loop; } printf("\nERROR: Cannot determine a common read delay for the " "DIMM(s) installed.\n"); debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__); ppc440sp_sdram_register_dump(); spd_ddr_init_hang (); } if (rqfd_average < 0) rqfd_average = 0; if (rqfd_average > SDRAM_RQDC_RQFD_MAX) rqfd_average = SDRAM_RQDC_RQFD_MAX; mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) | SDRAM_RQDC_RQFD_ENCODE(rqfd_average)); blank_string(strlen(str)); #endif /* CONFIG_DDR_RQDC_FIXED */ /* * Now complete RDSS configuration as mentioned on page 7 of the AMCC * PowerPC440SP/SPe DDR2 application note: * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning" */ mfsdram(SDRAM_RTSR, val); if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) { mfsdram(SDRAM_RDCC, val); if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) { val += 0x40000000; mtsdram(SDRAM_RDCC, val); } } mfsdram(SDRAM_DLCR, val); debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val); mfsdram(SDRAM_RQDC, val); debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val); mfsdram(SDRAM_RFDC, val); debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val); mfsdram(SDRAM_RDCC, val); debug("%s[%d] RDCC: 0x%08X\n", __FUNCTION__, __LINE__, val); } #else /* calibration test with hardvalues */ /*-----------------------------------------------------------------------------+ * DQS_calibration_process. *-----------------------------------------------------------------------------*/ static void test(void) { unsigned long dimm_num; unsigned long ecc_temp; unsigned long i, j; unsigned long *membase; unsigned long bxcf[MAXRANKS]; unsigned long val; char window_found; char begin_found[MAXDIMMS]; char end_found[MAXDIMMS]; char search_end[MAXDIMMS]; unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = { {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF}, {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000}, {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555}, {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA}, {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A}, {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5}, {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA}, {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} }; /*------------------------------------------------------------------ * Test to determine the best read clock delay tuning bits. * * Before the DDR controller can be used, the read clock delay needs to be * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD]. * This value cannot be hardcoded into the program because it changes * depending on the board's setup and environment. * To do this, all delay values are tested to see if they * work or not. By doing this, you get groups of fails with groups of * passing values. The idea is to find the start and end of a passing * window and take the center of it to use as the read clock delay. * * A failure has to be seen first so that when we hit a pass, we know * that it is truely the start of the window. If we get passing values * to start off with, we don't know if we are at the start of the window. * * The code assumes that a failure will always be found. * If a failure is not found, there is no easy way to get the middle * of the passing window. I guess we can pretty much pick any value * but some values will be better than others. Since the lowest speed * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed), * from experimentation it is safe to say you will always have a failure. *-----------------------------------------------------------------*/ mfsdram(SDRAM_MCOPT1, ecc_temp); ecc_temp &= SDRAM_MCOPT1_MCHK_MASK; mfsdram(SDRAM_MCOPT1, val); mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_NON); window_found = FALSE; begin_found[0] = FALSE; end_found[0] = FALSE; search_end[0] = FALSE; begin_found[1] = FALSE; end_found[1] = FALSE; search_end[1] = FALSE; for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) { mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]); /* Banks enabled */ if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) { /* Bank is enabled */ membase = (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num))); /*------------------------------------------------------------------ * Run the short memory test. *-----------------------------------------------------------------*/ for (i = 0; i < NUMMEMTESTS; i++) { for (j = 0; j < NUMMEMWORDS; j++) { membase[j] = test[i][j]; ppcDcbf((u32)&(membase[j])); } sync(); for (j = 0; j < NUMMEMWORDS; j++) { if (membase[j] != test[i][j]) { ppcDcbf((u32)&(membase[j])); break; } ppcDcbf((u32)&(membase[j])); } sync(); if (j < NUMMEMWORDS) break; } /*------------------------------------------------------------------ * See if the rffd value passed. *-----------------------------------------------------------------*/ if (i < NUMMEMTESTS) { if ((end_found[dimm_num] == FALSE) && (search_end[dimm_num] == TRUE)) { end_found[dimm_num] = TRUE; } if ((end_found[0] == TRUE) && (end_found[1] == TRUE)) break; } else { if (begin_found[dimm_num] == FALSE) { begin_found[dimm_num] = TRUE; search_end[dimm_num] = TRUE; } } } else { begin_found[dimm_num] = TRUE; end_found[dimm_num] = TRUE; } } if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE)) window_found = TRUE; /*------------------------------------------------------------------ * Make sure we found the valid read passing window. Halt if not *-----------------------------------------------------------------*/ if (window_found == FALSE) { printf("ERROR: Cannot determine a common read delay for the " "DIMM(s) installed.\n"); spd_ddr_init_hang (); } /*------------------------------------------------------------------ * Restore the ECC variable to what it originally was *-----------------------------------------------------------------*/ mtsdram(SDRAM_MCOPT1, (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK) | ecc_temp); } #endif #if defined(DEBUG) static void ppc440sp_sdram_register_dump(void) { unsigned int sdram_reg; unsigned int sdram_data; unsigned int dcr_data; printf("\n Register Dump:\n"); sdram_reg = SDRAM_MCSTAT; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_MCSTAT = 0x%08X", sdram_data); sdram_reg = SDRAM_MCOPT1; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data); sdram_reg = SDRAM_MCOPT2; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data); sdram_reg = SDRAM_MODT0; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data); sdram_reg = SDRAM_MODT1; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_MODT1 = 0x%08X", sdram_data); sdram_reg = SDRAM_MODT2; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data); sdram_reg = SDRAM_MODT3; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_MODT3 = 0x%08X", sdram_data); sdram_reg = SDRAM_CODT; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_CODT = 0x%08X\n", sdram_data); sdram_reg = SDRAM_VVPR; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_VVPR = 0x%08X", sdram_data); sdram_reg = SDRAM_OPARS; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_OPARS = 0x%08X\n", sdram_data); /* * OPAR2 is only used as a trigger register. * No data is contained in this register, and reading or writing * to is can cause bad things to happen (hangs). Just skip it * and report NA * sdram_reg = SDRAM_OPAR2; * mfsdram(sdram_reg, sdram_data); * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data); */ printf(" SDRAM_OPART = N/A "); sdram_reg = SDRAM_RTR; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_RTR = 0x%08X\n", sdram_data); sdram_reg = SDRAM_MB0CF; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_MB0CF = 0x%08X", sdram_data); sdram_reg = SDRAM_MB1CF; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data); sdram_reg = SDRAM_MB2CF; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_MB2CF = 0x%08X", sdram_data); sdram_reg = SDRAM_MB3CF; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data); sdram_reg = SDRAM_INITPLR0; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data); sdram_reg = SDRAM_INITPLR1; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data); sdram_reg = SDRAM_INITPLR2; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data); sdram_reg = SDRAM_INITPLR3; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data); sdram_reg = SDRAM_INITPLR4; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data); sdram_reg = SDRAM_INITPLR5; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data); sdram_reg = SDRAM_INITPLR6; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data); sdram_reg = SDRAM_INITPLR7; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data); sdram_reg = SDRAM_INITPLR8; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data); sdram_reg = SDRAM_INITPLR9; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data); sdram_reg = SDRAM_INITPLR10; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data); sdram_reg = SDRAM_INITPLR11; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data); sdram_reg = SDRAM_INITPLR12; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data); sdram_reg = SDRAM_INITPLR13; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data); sdram_reg = SDRAM_INITPLR14; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data); sdram_reg = SDRAM_INITPLR15; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data); sdram_reg = SDRAM_RQDC; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_RQDC = 0x%08X", sdram_data); sdram_reg = SDRAM_RFDC; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_RFDC = 0x%08X\n", sdram_data); sdram_reg = SDRAM_RDCC; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_RDCC = 0x%08X", sdram_data); sdram_reg = SDRAM_DLCR; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_DLCR = 0x%08X\n", sdram_data); sdram_reg = SDRAM_CLKTR; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_CLKTR = 0x%08X", sdram_data); sdram_reg = SDRAM_WRDTR; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data); sdram_reg = SDRAM_SDTR1; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_SDTR1 = 0x%08X", sdram_data); sdram_reg = SDRAM_SDTR2; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data); sdram_reg = SDRAM_SDTR3; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_SDTR3 = 0x%08X", sdram_data); sdram_reg = SDRAM_MMODE; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_MMODE = 0x%08X\n", sdram_data); sdram_reg = SDRAM_MEMODE; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_MEMODE = 0x%08X", sdram_data); sdram_reg = SDRAM_ECCCR; mfsdram(sdram_reg, sdram_data); printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data); dcr_data = mfdcr(SDRAM_R0BAS); printf(" MQ0_B0BAS = 0x%08X", dcr_data); dcr_data = mfdcr(SDRAM_R1BAS); printf(" MQ1_B0BAS = 0x%08X\n", dcr_data); dcr_data = mfdcr(SDRAM_R2BAS); printf(" MQ2_B0BAS = 0x%08X", dcr_data); dcr_data = mfdcr(SDRAM_R3BAS); printf(" MQ3_B0BAS = 0x%08X\n", dcr_data); } #else /* !defined(DEBUG) */ static void ppc440sp_sdram_register_dump(void) { } #endif /* defined(DEBUG) */ #elif defined(CONFIG_405EX) /*----------------------------------------------------------------------------- * Function: initdram * Description: Configures the PPC405EX(r) DDR1/DDR2 SDRAM memory * banks. The configuration is performed using static, compile- * time parameters. *---------------------------------------------------------------------------*/ phys_size_t initdram(int board_type) { /* * Only run this SDRAM init code once. For NAND booting * targets like Kilauea, we call initdram() early from the * 4k NAND booting image (CONFIG_NAND_SPL) from nand_boot(). * Later on the NAND U-Boot image runs (CONFIG_NAND_U_BOOT) * which calls initdram() again. This time the controller * mustn't be reconfigured again since we're already running * from SDRAM. */ #if !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) unsigned long val; /* Set Memory Bank Configuration Registers */ mtsdram(SDRAM_MB0CF, CFG_SDRAM0_MB0CF); mtsdram(SDRAM_MB1CF, CFG_SDRAM0_MB1CF); mtsdram(SDRAM_MB2CF, CFG_SDRAM0_MB2CF); mtsdram(SDRAM_MB3CF, CFG_SDRAM0_MB3CF); /* Set Memory Clock Timing Register */ mtsdram(SDRAM_CLKTR, CFG_SDRAM0_CLKTR); /* Set Refresh Time Register */ mtsdram(SDRAM_RTR, CFG_SDRAM0_RTR); /* Set SDRAM Timing Registers */ mtsdram(SDRAM_SDTR1, CFG_SDRAM0_SDTR1); mtsdram(SDRAM_SDTR2, CFG_SDRAM0_SDTR2); mtsdram(SDRAM_SDTR3, CFG_SDRAM0_SDTR3); /* Set Mode and Extended Mode Registers */ mtsdram(SDRAM_MMODE, CFG_SDRAM0_MMODE); mtsdram(SDRAM_MEMODE, CFG_SDRAM0_MEMODE); /* Set Memory Controller Options 1 Register */ mtsdram(SDRAM_MCOPT1, CFG_SDRAM0_MCOPT1); /* Set Manual Initialization Control Registers */ mtsdram(SDRAM_INITPLR0, CFG_SDRAM0_INITPLR0); mtsdram(SDRAM_INITPLR1, CFG_SDRAM0_INITPLR1); mtsdram(SDRAM_INITPLR2, CFG_SDRAM0_INITPLR2); mtsdram(SDRAM_INITPLR3, CFG_SDRAM0_INITPLR3); mtsdram(SDRAM_INITPLR4, CFG_SDRAM0_INITPLR4); mtsdram(SDRAM_INITPLR5, CFG_SDRAM0_INITPLR5); mtsdram(SDRAM_INITPLR6, CFG_SDRAM0_INITPLR6); mtsdram(SDRAM_INITPLR7, CFG_SDRAM0_INITPLR7); mtsdram(SDRAM_INITPLR8, CFG_SDRAM0_INITPLR8); mtsdram(SDRAM_INITPLR9, CFG_SDRAM0_INITPLR9); mtsdram(SDRAM_INITPLR10, CFG_SDRAM0_INITPLR10); mtsdram(SDRAM_INITPLR11, CFG_SDRAM0_INITPLR11); mtsdram(SDRAM_INITPLR12, CFG_SDRAM0_INITPLR12); mtsdram(SDRAM_INITPLR13, CFG_SDRAM0_INITPLR13); mtsdram(SDRAM_INITPLR14, CFG_SDRAM0_INITPLR14); mtsdram(SDRAM_INITPLR15, CFG_SDRAM0_INITPLR15); /* Set On-Die Termination Registers */ mtsdram(SDRAM_CODT, CFG_SDRAM0_CODT); mtsdram(SDRAM_MODT0, CFG_SDRAM0_MODT0); mtsdram(SDRAM_MODT1, CFG_SDRAM0_MODT1); /* Set Write Timing Register */ mtsdram(SDRAM_WRDTR, CFG_SDRAM0_WRDTR); /* * Start Initialization by SDRAM0_MCOPT2[SREN] = 0 and * SDRAM0_MCOPT2[IPTR] = 1 */ mtsdram(SDRAM_MCOPT2, (SDRAM_MCOPT2_SREN_EXIT | SDRAM_MCOPT2_IPTR_EXECUTE)); /* * Poll SDRAM0_MCSTAT[MIC] for assertion to indicate the * completion of initialization. */ do { mfsdram(SDRAM_MCSTAT, val); } while ((val & SDRAM_MCSTAT_MIC_MASK) != SDRAM_MCSTAT_MIC_COMP); /* Set Delay Control Registers */ mtsdram(SDRAM_DLCR, CFG_SDRAM0_DLCR); mtsdram(SDRAM_RDCC, CFG_SDRAM0_RDCC); mtsdram(SDRAM_RQDC, CFG_SDRAM0_RQDC); mtsdram(SDRAM_RFDC, CFG_SDRAM0_RFDC); /* * Enable Controller by SDRAM0_MCOPT2[DCEN] = 1: */ mfsdram(SDRAM_MCOPT2, val); mtsdram(SDRAM_MCOPT2, val | SDRAM_MCOPT2_DCEN_ENABLE); #if defined(CONFIG_DDR_ECC) ecc_init(CFG_SDRAM_BASE, CFG_MBYTES_SDRAM << 20); #endif /* defined(CONFIG_DDR_ECC) */ #endif /* !defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) */ return (CFG_MBYTES_SDRAM << 20); } #endif /* defined(CONFIG_SPD_EEPROM) && defined(CONFIG_440SP) || ... */