/* * (C) Copyright 2000 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #undef ET_DEBUG #if defined(CONFIG_CMD_NET) && \ (defined(FEC_ENET) || defined(CONFIG_ETHER_ON_FEC1) || defined(CONFIG_ETHER_ON_FEC2)) /* compatibility test, if only FEC_ENET defined assume ETHER on FEC1 */ #if defined(FEC_ENET) && !defined(CONFIG_ETHER_ON_FEC1) && !defined(CONFIG_ETHER_ON_FEC2) #define CONFIG_ETHER_ON_FEC1 1 #endif /* define WANT_MII when MII support is required */ #if defined(CFG_DISCOVER_PHY) || defined(CONFIG_FEC1_PHY) || defined(CONFIG_FEC2_PHY) #define WANT_MII #else #undef WANT_MII #endif #if defined(WANT_MII) #include #if !(defined(CONFIG_MII) || defined(CONFIG_CMD_MII)) #error "CONFIG_MII has to be defined!" #endif #endif #if defined(CONFIG_RMII) && !defined(WANT_MII) #error RMII support is unusable without a working PHY. #endif #ifdef CFG_DISCOVER_PHY static int mii_discover_phy(struct eth_device *dev); #endif int fec8xx_miiphy_read(char *devname, unsigned char addr, unsigned char reg, unsigned short *value); int fec8xx_miiphy_write(char *devname, unsigned char addr, unsigned char reg, unsigned short value); static struct ether_fcc_info_s { int ether_index; int fecp_offset; int phy_addr; int actual_phy_addr; int initialized; } ether_fcc_info[] = { #if defined(CONFIG_ETHER_ON_FEC1) { 0, offsetof(immap_t, im_cpm.cp_fec1), #if defined(CONFIG_FEC1_PHY) CONFIG_FEC1_PHY, #else -1, /* discover */ #endif -1, 0, }, #endif #if defined(CONFIG_ETHER_ON_FEC2) { 1, offsetof(immap_t, im_cpm.cp_fec2), #if defined(CONFIG_FEC2_PHY) CONFIG_FEC2_PHY, #else -1, #endif -1, 0, }, #endif }; /* Ethernet Transmit and Receive Buffers */ #define DBUF_LENGTH 1520 #define TX_BUF_CNT 2 #define TOUT_LOOP 100 #define PKT_MAXBUF_SIZE 1518 #define PKT_MINBUF_SIZE 64 #define PKT_MAXBLR_SIZE 1520 #ifdef __GNUC__ static char txbuf[DBUF_LENGTH] __attribute__ ((aligned(8))); #else #error txbuf must be aligned. #endif static uint rxIdx; /* index of the current RX buffer */ static uint txIdx; /* index of the current TX buffer */ /* * FEC Ethernet Tx and Rx buffer descriptors allocated at the * immr->udata_bd address on Dual-Port RAM * Provide for Double Buffering */ typedef volatile struct CommonBufferDescriptor { cbd_t rxbd[PKTBUFSRX]; /* Rx BD */ cbd_t txbd[TX_BUF_CNT]; /* Tx BD */ } RTXBD; static RTXBD *rtx = NULL; static int fec_send(struct eth_device* dev, volatile void *packet, int length); static int fec_recv(struct eth_device* dev); static int fec_init(struct eth_device* dev, bd_t * bd); static void fec_halt(struct eth_device* dev); static void __mii_init(void); int fec_initialize(bd_t *bis) { struct eth_device* dev; struct ether_fcc_info_s *efis; int i; for (i = 0; i < sizeof(ether_fcc_info) / sizeof(ether_fcc_info[0]); i++) { dev = malloc(sizeof(*dev)); if (dev == NULL) hang(); memset(dev, 0, sizeof(*dev)); /* for FEC1 make sure that the name of the interface is the same as the old one for compatibility reasons */ if (i == 0) { sprintf (dev->name, "FEC ETHERNET"); } else { sprintf (dev->name, "FEC%d ETHERNET", ether_fcc_info[i].ether_index + 1); } efis = ðer_fcc_info[i]; /* * reset actual phy addr */ efis->actual_phy_addr = -1; dev->priv = efis; dev->init = fec_init; dev->halt = fec_halt; dev->send = fec_send; dev->recv = fec_recv; eth_register(dev); #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) miiphy_register(dev->name, fec8xx_miiphy_read, fec8xx_miiphy_write); #endif } return 1; } static int fec_send(struct eth_device* dev, volatile void *packet, int length) { int j, rc; struct ether_fcc_info_s *efis = dev->priv; volatile fec_t *fecp = (volatile fec_t *)(CFG_IMMR + efis->fecp_offset); /* section 16.9.23.3 * Wait for ready */ j = 0; while ((rtx->txbd[txIdx].cbd_sc & BD_ENET_TX_READY) && (j=TOUT_LOOP) { printf("TX not ready\n"); } rtx->txbd[txIdx].cbd_bufaddr = (uint)packet; rtx->txbd[txIdx].cbd_datlen = length; rtx->txbd[txIdx].cbd_sc |= BD_ENET_TX_READY | BD_ENET_TX_LAST; __asm__ ("eieio"); /* Activate transmit Buffer Descriptor polling */ fecp->fec_x_des_active = 0x01000000; /* Descriptor polling active */ j = 0; while ((rtx->txbd[txIdx].cbd_sc & BD_ENET_TX_READY) && (j=TOUT_LOOP) { printf("TX timeout\n"); } #ifdef ET_DEBUG printf("%s[%d] %s: cycles: %d status: %x retry cnt: %d\n", __FILE__,__LINE__,__FUNCTION__,j,rtx->txbd[txIdx].cbd_sc, (rtx->txbd[txIdx].cbd_sc & 0x003C)>>2); #endif /* return only status bits */; rc = (rtx->txbd[txIdx].cbd_sc & BD_ENET_TX_STATS); txIdx = (txIdx + 1) % TX_BUF_CNT; return rc; } static int fec_recv (struct eth_device *dev) { struct ether_fcc_info_s *efis = dev->priv; volatile fec_t *fecp = (volatile fec_t *) (CFG_IMMR + efis->fecp_offset); int length; for (;;) { /* section 16.9.23.2 */ if (rtx->rxbd[rxIdx].cbd_sc & BD_ENET_RX_EMPTY) { length = -1; break; /* nothing received - leave for() loop */ } length = rtx->rxbd[rxIdx].cbd_datlen; if (rtx->rxbd[rxIdx].cbd_sc & 0x003f) { #ifdef ET_DEBUG printf ("%s[%d] err: %x\n", __FUNCTION__, __LINE__, rtx->rxbd[rxIdx].cbd_sc); #endif } else { volatile uchar *rx = NetRxPackets[rxIdx]; length -= 4; #if defined(CONFIG_CMD_CDP) if ((rx[0] & 1) != 0 && memcmp ((uchar *) rx, NetBcastAddr, 6) != 0 && memcmp ((uchar *) rx, NetCDPAddr, 6) != 0) rx = NULL; #endif /* * Pass the packet up to the protocol layers. */ if (rx != NULL) NetReceive (rx, length); } /* Give the buffer back to the FEC. */ rtx->rxbd[rxIdx].cbd_datlen = 0; /* wrap around buffer index when necessary */ if ((rxIdx + 1) >= PKTBUFSRX) { rtx->rxbd[PKTBUFSRX - 1].cbd_sc = (BD_ENET_RX_WRAP | BD_ENET_RX_EMPTY); rxIdx = 0; } else { rtx->rxbd[rxIdx].cbd_sc = BD_ENET_RX_EMPTY; rxIdx++; } __asm__ ("eieio"); /* Try to fill Buffer Descriptors */ fecp->fec_r_des_active = 0x01000000; /* Descriptor polling active */ } return length; } /************************************************************** * * FEC Ethernet Initialization Routine * *************************************************************/ #define FEC_ECNTRL_PINMUX 0x00000004 #define FEC_ECNTRL_ETHER_EN 0x00000002 #define FEC_ECNTRL_RESET 0x00000001 #define FEC_RCNTRL_BC_REJ 0x00000010 #define FEC_RCNTRL_PROM 0x00000008 #define FEC_RCNTRL_MII_MODE 0x00000004 #define FEC_RCNTRL_DRT 0x00000002 #define FEC_RCNTRL_LOOP 0x00000001 #define FEC_TCNTRL_FDEN 0x00000004 #define FEC_TCNTRL_HBC 0x00000002 #define FEC_TCNTRL_GTS 0x00000001 #define FEC_RESET_DELAY 50 #if defined(CONFIG_RMII) static inline void fec_10Mbps(struct eth_device *dev) { struct ether_fcc_info_s *efis = dev->priv; int fecidx = efis->ether_index; uint mask = (fecidx == 0) ? 0x0000010 : 0x0000008; if ((unsigned int)fecidx >= 2) hang(); ((volatile immap_t *)CFG_IMMR)->im_cpm.cp_cptr |= mask; } static inline void fec_100Mbps(struct eth_device *dev) { struct ether_fcc_info_s *efis = dev->priv; int fecidx = efis->ether_index; uint mask = (fecidx == 0) ? 0x0000010 : 0x0000008; if ((unsigned int)fecidx >= 2) hang(); ((volatile immap_t *)CFG_IMMR)->im_cpm.cp_cptr &= ~mask; } #endif static inline void fec_full_duplex(struct eth_device *dev) { struct ether_fcc_info_s *efis = dev->priv; volatile fec_t *fecp = (volatile fec_t *)(CFG_IMMR + efis->fecp_offset); fecp->fec_r_cntrl &= ~FEC_RCNTRL_DRT; fecp->fec_x_cntrl |= FEC_TCNTRL_FDEN; /* FD enable */ } static inline void fec_half_duplex(struct eth_device *dev) { struct ether_fcc_info_s *efis = dev->priv; volatile fec_t *fecp = (volatile fec_t *)(CFG_IMMR + efis->fecp_offset); fecp->fec_r_cntrl |= FEC_RCNTRL_DRT; fecp->fec_x_cntrl &= ~FEC_TCNTRL_FDEN; /* FD disable */ } static void fec_pin_init(int fecidx) { bd_t *bd = gd->bd; volatile immap_t *immr = (immap_t *) CFG_IMMR; volatile fec_t *fecp; /* * only two FECs please */ if ((unsigned int)fecidx >= 2) hang(); if (fecidx == 0) fecp = &immr->im_cpm.cp_fec1; else fecp = &immr->im_cpm.cp_fec2; /* * Set MII speed to 2.5 MHz or slightly below. * * According to the MPC860T (Rev. D) Fast ethernet controller user * * manual (6.2.14), * * the MII management interface clock must be less than or equal * * to 2.5 MHz. * * This MDC frequency is equal to system clock / (2 * MII_SPEED). * * Then MII_SPEED = system_clock / 2 * 2,5 Mhz. * * All MII configuration is done via FEC1 registers: */ immr->im_cpm.cp_fec1.fec_mii_speed = ((bd->bi_intfreq + 4999999) / 5000000) << 1; #if defined(CONFIG_NETTA) || defined(CONFIG_NETPHONE) || defined(CONFIG_NETTA2) /* our PHYs are the limit at 2.5 MHz */ fecp->fec_mii_speed <<= 1; #endif #if defined(CONFIG_MPC885_FAMILY) && defined(WANT_MII) /* use MDC for MII */ immr->im_ioport.iop_pdpar |= 0x0080; immr->im_ioport.iop_pddir &= ~0x0080; #endif if (fecidx == 0) { #if defined(CONFIG_ETHER_ON_FEC1) #if defined(CONFIG_MPC885_FAMILY) /* MPC87x/88x have got 2 FECs and different pinout */ #if !defined(CONFIG_RMII) immr->im_ioport.iop_papar |= 0xf830; immr->im_ioport.iop_padir |= 0x0830; immr->im_ioport.iop_padir &= ~0xf000; immr->im_cpm.cp_pbpar |= 0x00001001; immr->im_cpm.cp_pbdir &= ~0x00001001; immr->im_ioport.iop_pcpar |= 0x000c; immr->im_ioport.iop_pcdir &= ~0x000c; immr->im_cpm.cp_pepar |= 0x00000003; immr->im_cpm.cp_pedir |= 0x00000003; immr->im_cpm.cp_peso &= ~0x00000003; immr->im_cpm.cp_cptr &= ~0x00000100; #else #if !defined(CONFIG_FEC1_PHY_NORXERR) immr->im_ioport.iop_papar |= 0x1000; immr->im_ioport.iop_padir &= ~0x1000; #endif immr->im_ioport.iop_papar |= 0xe810; immr->im_ioport.iop_padir |= 0x0810; immr->im_ioport.iop_padir &= ~0xe000; immr->im_cpm.cp_pbpar |= 0x00000001; immr->im_cpm.cp_pbdir &= ~0x00000001; immr->im_cpm.cp_cptr |= 0x00000100; immr->im_cpm.cp_cptr &= ~0x00000050; #endif /* !CONFIG_RMII */ #elif !defined(CONFIG_ICU862) && !defined(CONFIG_IAD210) /* * Configure all of port D for MII. */ immr->im_ioport.iop_pdpar = 0x1fff; /* * Bits moved from Rev. D onward */ if ((get_immr(0) & 0xffff) < 0x0501) immr->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */ else immr->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */ #else /* * Configure port A for MII. */ #if defined(CONFIG_ICU862) && defined(CFG_DISCOVER_PHY) /* * On the ICU862 board the MII-MDC pin is routed to PD8 pin * * of CPU, so for this board we need to configure Utopia and * * enable PD8 to MII-MDC function */ immr->im_ioport.iop_pdpar |= 0x4080; #endif /* * Has Utopia been configured? */ if (immr->im_ioport.iop_pdpar & (0x8000 >> 1)) { /* * YES - Use MUXED mode for UTOPIA bus. * This frees Port A for use by MII (see 862UM table 41-6). */ immr->im_ioport.utmode &= ~0x80; } else { /* * NO - set SPLIT mode for UTOPIA bus. * * This doesn't really effect UTOPIA (which isn't * enabled anyway) but just tells the 862 * to use port A for MII (see 862UM table 41-6). */ immr->im_ioport.utmode |= 0x80; } #endif /* !defined(CONFIG_ICU862) */ #endif /* CONFIG_ETHER_ON_FEC1 */ } else if (fecidx == 1) { #if defined(CONFIG_ETHER_ON_FEC2) #if defined(CONFIG_MPC885_FAMILY) /* MPC87x/88x have got 2 FECs and different pinout */ #if !defined(CONFIG_RMII) immr->im_cpm.cp_pepar |= 0x0003fffc; immr->im_cpm.cp_pedir |= 0x0003fffc; immr->im_cpm.cp_peso &= ~0x000087fc; immr->im_cpm.cp_peso |= 0x00037800; immr->im_cpm.cp_cptr &= ~0x00000080; #else #if !defined(CONFIG_FEC2_PHY_NORXERR) immr->im_cpm.cp_pepar |= 0x00000010; immr->im_cpm.cp_pedir |= 0x00000010; immr->im_cpm.cp_peso &= ~0x00000010; #endif immr->im_cpm.cp_pepar |= 0x00039620; immr->im_cpm.cp_pedir |= 0x00039620; immr->im_cpm.cp_peso |= 0x00031000; immr->im_cpm.cp_peso &= ~0x00008620; immr->im_cpm.cp_cptr |= 0x00000080; immr->im_cpm.cp_cptr &= ~0x00000028; #endif /* CONFIG_RMII */ #endif /* CONFIG_MPC885_FAMILY */ #endif /* CONFIG_ETHER_ON_FEC2 */ } } static int fec_reset(volatile fec_t *fecp) { int i; /* Whack a reset. * A delay is required between a reset of the FEC block and * initialization of other FEC registers because the reset takes * some time to complete. If you don't delay, subsequent writes * to FEC registers might get killed by the reset routine which is * still in progress. */ fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET; for (i = 0; (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY); ++i) { udelay (1); } if (i == FEC_RESET_DELAY) return -1; return 0; } static int fec_init (struct eth_device *dev, bd_t * bd) { struct ether_fcc_info_s *efis = dev->priv; volatile immap_t *immr = (immap_t *) CFG_IMMR; volatile fec_t *fecp = (volatile fec_t *) (CFG_IMMR + efis->fecp_offset); int i; if (efis->ether_index == 0) { #if defined(CONFIG_FADS) /* FADS family uses FPGA (BCSR) to control PHYs */ #if defined(CONFIG_MPC885ADS) *(vu_char *) BCSR5 &= ~(BCSR5_MII1_EN | BCSR5_MII1_RST); #else /* configure FADS for fast (FEC) ethernet, half-duplex */ /* The LXT970 needs about 50ms to recover from reset, so * wait for it by discovering the PHY before leaving eth_init(). */ { volatile uint *bcsr4 = (volatile uint *) BCSR4; *bcsr4 = (*bcsr4 & ~(BCSR4_FETH_EN | BCSR4_FETHCFG1)) | (BCSR4_FETHCFG0 | BCSR4_FETHFDE | BCSR4_FETHRST); /* reset the LXT970 PHY */ *bcsr4 &= ~BCSR4_FETHRST; udelay (10); *bcsr4 |= BCSR4_FETHRST; udelay (10); } #endif /* CONFIG_MPC885ADS */ #endif /* CONFIG_FADS */ } #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) /* the MII interface is connected to FEC1 * so for the miiphy_xxx function to work we must * call mii_init since fec_halt messes the thing up */ if (efis->ether_index != 0) __mii_init(); #endif if (fec_reset(fecp) < 0) printf ("FEC_RESET_DELAY timeout\n"); /* We use strictly polling mode only */ fecp->fec_imask = 0; /* Clear any pending interrupt */ fecp->fec_ievent = 0xffc0; /* No need to set the IVEC register */ /* Set station address */ #define ea dev->enetaddr fecp->fec_addr_low = (ea[0] << 24) | (ea[1] << 16) | (ea[2] << 8) | (ea[3]); fecp->fec_addr_high = (ea[4] << 8) | (ea[5]); #undef ea #if defined(CONFIG_CMD_CDP) /* * Turn on multicast address hash table */ fecp->fec_hash_table_high = 0xffffffff; fecp->fec_hash_table_low = 0xffffffff; #else /* Clear multicast address hash table */ fecp->fec_hash_table_high = 0; fecp->fec_hash_table_low = 0; #endif /* Set maximum receive buffer size. */ fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; /* Set maximum frame length */ fecp->fec_r_hash = PKT_MAXBUF_SIZE; /* * Setup Buffers and Buffer Desriptors */ rxIdx = 0; txIdx = 0; if (!rtx) { #ifdef CFG_ALLOC_DPRAM rtx = (RTXBD *) (immr->im_cpm.cp_dpmem + dpram_alloc_align (sizeof (RTXBD), 8)); #else rtx = (RTXBD *) (immr->im_cpm.cp_dpmem + CPM_FEC_BASE); #endif } /* * Setup Receiver Buffer Descriptors (13.14.24.18) * Settings: * Empty, Wrap */ for (i = 0; i < PKTBUFSRX; i++) { rtx->rxbd[i].cbd_sc = BD_ENET_RX_EMPTY; rtx->rxbd[i].cbd_datlen = 0; /* Reset */ rtx->rxbd[i].cbd_bufaddr = (uint) NetRxPackets[i]; } rtx->rxbd[PKTBUFSRX - 1].cbd_sc |= BD_ENET_RX_WRAP; /* * Setup Ethernet Transmitter Buffer Descriptors (13.14.24.19) * Settings: * Last, Tx CRC */ for (i = 0; i < TX_BUF_CNT; i++) { rtx->txbd[i].cbd_sc = BD_ENET_TX_LAST | BD_ENET_TX_TC; rtx->txbd[i].cbd_datlen = 0; /* Reset */ rtx->txbd[i].cbd_bufaddr = (uint) (&txbuf[0]); } rtx->txbd[TX_BUF_CNT - 1].cbd_sc |= BD_ENET_TX_WRAP; /* Set receive and transmit descriptor base */ fecp->fec_r_des_start = (unsigned int) (&rtx->rxbd[0]); fecp->fec_x_des_start = (unsigned int) (&rtx->txbd[0]); /* Enable MII mode */ #if 0 /* Full duplex mode */ fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE; fecp->fec_x_cntrl = FEC_TCNTRL_FDEN; #else /* Half duplex mode */ fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE | FEC_RCNTRL_DRT; fecp->fec_x_cntrl = 0; #endif /* Enable big endian and don't care about SDMA FC. */ fecp->fec_fun_code = 0x78000000; /* * Setup the pin configuration of the FEC */ fec_pin_init (efis->ether_index); rxIdx = 0; txIdx = 0; /* * Now enable the transmit and receive processing */ fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN; if (efis->phy_addr == -1) { #ifdef CFG_DISCOVER_PHY /* * wait for the PHY to wake up after reset */ efis->actual_phy_addr = mii_discover_phy (dev); if (efis->actual_phy_addr == -1) { printf ("Unable to discover phy!\n"); return 0; } #else efis->actual_phy_addr = -1; #endif } else { efis->actual_phy_addr = efis->phy_addr; } #if defined(CONFIG_MII) && defined(CONFIG_RMII) /* * adapt the RMII speed to the speed of the phy */ if (miiphy_speed (dev->name, efis->actual_phy_addr) == _100BASET) { fec_100Mbps (dev); } else { fec_10Mbps (dev); } #endif #if defined(CONFIG_MII) /* * adapt to the half/full speed settings */ if (miiphy_duplex (dev->name, efis->actual_phy_addr) == FULL) { fec_full_duplex (dev); } else { fec_half_duplex (dev); } #endif /* And last, try to fill Rx Buffer Descriptors */ fecp->fec_r_des_active = 0x01000000; /* Descriptor polling active */ efis->initialized = 1; return 1; } static void fec_halt(struct eth_device* dev) { struct ether_fcc_info_s *efis = dev->priv; volatile fec_t *fecp = (volatile fec_t *)(CFG_IMMR + efis->fecp_offset); int i; /* avoid halt if initialized; mii gets stuck otherwise */ if (!efis->initialized) return; /* Whack a reset. * A delay is required between a reset of the FEC block and * initialization of other FEC registers because the reset takes * some time to complete. If you don't delay, subsequent writes * to FEC registers might get killed by the reset routine which is * still in progress. */ fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET; for (i = 0; (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY); ++i) { udelay (1); } if (i == FEC_RESET_DELAY) { printf ("FEC_RESET_DELAY timeout\n"); return; } efis->initialized = 0; } #if defined(CFG_DISCOVER_PHY) || defined(CONFIG_MII) || defined(CONFIG_CMD_MII) /* Make MII read/write commands for the FEC. */ #define mk_mii_read(ADDR, REG) (0x60020000 | ((ADDR << 23) | \ (REG & 0x1f) << 18)) #define mk_mii_write(ADDR, REG, VAL) (0x50020000 | ((ADDR << 23) | \ (REG & 0x1f) << 18) | \ (VAL & 0xffff)) /* Interrupt events/masks. */ #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ /* PHY identification */ #define PHY_ID_LXT970 0x78100000 /* LXT970 */ #define PHY_ID_LXT971 0x001378e0 /* LXT971 and 972 */ #define PHY_ID_82555 0x02a80150 /* Intel 82555 */ #define PHY_ID_QS6612 0x01814400 /* QS6612 */ #define PHY_ID_AMD79C784 0x00225610 /* AMD 79C784 */ #define PHY_ID_LSI80225 0x0016f870 /* LSI 80225 */ #define PHY_ID_LSI80225B 0x0016f880 /* LSI 80225/B */ #define PHY_ID_DM9161 0x0181B880 /* Davicom DM9161 */ #define PHY_ID_KSM8995M 0x00221450 /* MICREL KS8995MA */ /* send command to phy using mii, wait for result */ static uint mii_send(uint mii_cmd) { uint mii_reply; volatile fec_t *ep; int cnt; ep = &(((immap_t *)CFG_IMMR)->im_cpm.cp_fec); ep->fec_mii_data = mii_cmd; /* command to phy */ /* wait for mii complete */ cnt = 0; while (!(ep->fec_ievent & FEC_ENET_MII)) { if (++cnt > 1000) { printf("mii_send STUCK!\n"); break; } } mii_reply = ep->fec_mii_data; /* result from phy */ ep->fec_ievent = FEC_ENET_MII; /* clear MII complete */ #if 0 printf("%s[%d] %s: sent=0x%8.8x, reply=0x%8.8x\n", __FILE__,__LINE__,__FUNCTION__,mii_cmd,mii_reply); #endif return (mii_reply & 0xffff); /* data read from phy */ } #endif #if defined(CFG_DISCOVER_PHY) static int mii_discover_phy(struct eth_device *dev) { #define MAX_PHY_PASSES 11 uint phyno; int pass; uint phytype; int phyaddr; phyaddr = -1; /* didn't find a PHY yet */ for (pass = 1; pass <= MAX_PHY_PASSES && phyaddr < 0; ++pass) { if (pass > 1) { /* PHY may need more time to recover from reset. * The LXT970 needs 50ms typical, no maximum is * specified, so wait 10ms before try again. * With 11 passes this gives it 100ms to wake up. */ udelay(10000); /* wait 10ms */ } for (phyno = 0; phyno < 32 && phyaddr < 0; ++phyno) { phytype = mii_send(mk_mii_read(phyno, PHY_PHYIDR2)); #ifdef ET_DEBUG printf("PHY type 0x%x pass %d type ", phytype, pass); #endif if (phytype != 0xffff) { phyaddr = phyno; phytype |= mii_send(mk_mii_read(phyno, PHY_PHYIDR1)) << 16; #ifdef ET_DEBUG printf("PHY @ 0x%x pass %d type ",phyno,pass); switch (phytype & 0xfffffff0) { case PHY_ID_LXT970: printf("LXT970\n"); break; case PHY_ID_LXT971: printf("LXT971\n"); break; case PHY_ID_82555: printf("82555\n"); break; case PHY_ID_QS6612: printf("QS6612\n"); break; case PHY_ID_AMD79C784: printf("AMD79C784\n"); break; case PHY_ID_LSI80225B: printf("LSI L80225/B\n"); break; case PHY_ID_DM9161: printf("Davicom DM9161\n"); break; case PHY_ID_KSM8995M: printf("MICREL KS8995M\n"); break; default: printf("0x%08x\n", phytype); break; } #endif } } } if (phyaddr < 0) { printf("No PHY device found.\n"); } return phyaddr; } #endif /* CFG_DISCOVER_PHY */ #if (defined(CONFIG_MII) || defined(CONFIG_CMD_MII)) && !defined(CONFIG_BITBANGMII) /**************************************************************************** * mii_init -- Initialize the MII via FEC 1 for MII command without ethernet * This function is a subset of eth_init **************************************************************************** */ static void __mii_init(void) { volatile immap_t *immr = (immap_t *) CFG_IMMR; volatile fec_t *fecp = &(immr->im_cpm.cp_fec); if (fec_reset(fecp) < 0) printf ("FEC_RESET_DELAY timeout\n"); /* We use strictly polling mode only */ fecp->fec_imask = 0; /* Clear any pending interrupt */ fecp->fec_ievent = 0xffc0; /* Now enable the transmit and receive processing */ fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN; } void mii_init (void) { int i; __mii_init(); /* Setup the pin configuration of the FEC(s) */ for (i = 0; i < sizeof(ether_fcc_info) / sizeof(ether_fcc_info[0]); i++) fec_pin_init(ether_fcc_info[i].ether_index); } /***************************************************************************** * Read and write a MII PHY register, routines used by MII Utilities * * FIXME: These routines are expected to return 0 on success, but mii_send * does _not_ return an error code. Maybe 0xFFFF means error, i.e. * no PHY connected... * For now always return 0. * FIXME: These routines only work after calling eth_init() at least once! * Otherwise they hang in mii_send() !!! Sorry! *****************************************************************************/ int fec8xx_miiphy_read(char *devname, unsigned char addr, unsigned char reg, unsigned short *value) { short rdreg; /* register working value */ #ifdef MII_DEBUG printf ("miiphy_read(0x%x) @ 0x%x = ", reg, addr); #endif rdreg = mii_send(mk_mii_read(addr, reg)); *value = rdreg; #ifdef MII_DEBUG printf ("0x%04x\n", *value); #endif return 0; } int fec8xx_miiphy_write(char *devname, unsigned char addr, unsigned char reg, unsigned short value) { short rdreg; /* register working value */ #ifdef MII_DEBUG printf ("miiphy_write(0x%x) @ 0x%x = ", reg, addr); #endif rdreg = mii_send(mk_mii_write(addr, reg, value)); #ifdef MII_DEBUG printf ("0x%04x\n", value); #endif return 0; } #endif #endif