/* * * Copyright (C) 2004-2007 Freescale Semiconductor, Inc. * TsiChung Liew (Tsi-Chung.Liew@freescale.com) * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #include <asm/processor.h> #include <asm/immap.h> DECLARE_GLOBAL_DATA_PTR; /* * Low Power Divider specifications */ #define CLOCK_LPD_MIN (1 << 0) /* Divider (decoded) */ #define CLOCK_LPD_MAX (1 << 15) /* Divider (decoded) */ #define CLOCK_PLL_FVCO_MAX 540000000 #define CLOCK_PLL_FVCO_MIN 300000000 #define CLOCK_PLL_FSYS_MAX 266666666 #define CLOCK_PLL_FSYS_MIN 100000000 #define MHZ 1000000 void clock_enter_limp(int lpdiv) { volatile ccm_t *ccm = (volatile ccm_t *)MMAP_CCM; int i, j; /* Check bounds of divider */ if (lpdiv < CLOCK_LPD_MIN) lpdiv = CLOCK_LPD_MIN; if (lpdiv > CLOCK_LPD_MAX) lpdiv = CLOCK_LPD_MAX; /* Round divider down to nearest power of two */ for (i = 0, j = lpdiv; j != 1; j >>= 1, i++) ; /* Apply the divider to the system clock */ ccm->cdr = (ccm->cdr & 0xF0FF) | CCM_CDR_LPDIV(i); /* Enable Limp Mode */ ccm->misccr |= CCM_MISCCR_LIMP; } /* * brief Exit Limp mode * warning The PLL should be set and locked prior to exiting Limp mode */ void clock_exit_limp(void) { volatile ccm_t *ccm = (volatile ccm_t *)MMAP_CCM; volatile pll_t *pll = (volatile pll_t *)MMAP_PLL; /* Exit Limp mode */ ccm->misccr &= ~CCM_MISCCR_LIMP; /* Wait for the PLL to lock */ while (!(pll->psr & PLL_PSR_LOCK)) ; } /* * get_clocks() fills in gd->cpu_clock and gd->bus_clk */ int get_clocks(void) { volatile ccm_t *ccm = (volatile ccm_t *)MMAP_CCM; volatile pll_t *pll = (volatile pll_t *)MMAP_PLL; int pllmult_nopci[] = { 20, 10, 24, 18, 12, 6, 16, 8 }; int pllmult_pci[] = { 12, 6, 16, 8 }; int vco = 0, bPci, temp, fbtemp, pcrvalue; int *pPllmult = NULL; u16 fbpll_mask; #ifdef CONFIG_M54455EVB volatile u8 *cpld = (volatile u8 *)(CFG_CS2_BASE + 3); #endif u8 bootmode; /* To determine PCI is present or not */ if (((ccm->ccr & CCM_CCR_360_FBCONFIG_MASK) == 0x00e0) || ((ccm->ccr & CCM_CCR_360_FBCONFIG_MASK) == 0x0060)) { pPllmult = &pllmult_pci[0]; fbpll_mask = 3; /* 11b */ bPci = 1; } else { pPllmult = &pllmult_nopci[0]; fbpll_mask = 7; /* 111b */ #ifdef CONFIG_PCI gd->pci_clk = 0; #endif bPci = 0; } #ifdef CONFIG_M54455EVB bootmode = (*cpld & 0x03); if (bootmode != 3) { /* Temporary read from CCR- fixed fb issue, must be the same clock as pci or input clock, causing cpld/fpga read inconsistancy */ fbtemp = pPllmult[ccm->ccr & fbpll_mask]; /* Break down into small pieces, code still in flex bus */ pcrvalue = pll->pcr & 0xFFFFF0FF; temp = fbtemp - 1; pcrvalue |= PLL_PCR_OUTDIV3(temp); pll->pcr = pcrvalue; } #endif #ifdef CONFIG_M54451EVB /* No external logic to read the bootmode, hard coded from built */ #ifdef CONFIG_CF_SBF bootmode = 3; #else bootmode = 2; /* default value is 16 mul, set to 20 mul */ pcrvalue = (pll->pcr & 0x00FFFFFF) | 0x14000000; pll->pcr = pcrvalue; while ((pll->psr & PLL_PSR_LOCK) != PLL_PSR_LOCK); #endif #endif if (bootmode == 0) { /* RCON mode */ vco = pPllmult[ccm->rcon & fbpll_mask] * CFG_INPUT_CLKSRC; if ((vco < CLOCK_PLL_FVCO_MIN) || (vco > CLOCK_PLL_FVCO_MAX)) { /* invaild range, re-set in PCR */ int temp = ((pll->pcr & PLL_PCR_OUTDIV2_MASK) >> 4) + 1; int i, j, bus; j = (pll->pcr & 0xFF000000) >> 24; for (i = j; i < 0xFF; i++) { vco = i * CFG_INPUT_CLKSRC; if (vco >= CLOCK_PLL_FVCO_MIN) { bus = vco / temp; if (bus <= CLOCK_PLL_FSYS_MIN - MHZ) continue; else break; } } pcrvalue = pll->pcr & 0x00FF00FF; fbtemp = ((i - 1) << 8) | ((i - 1) << 12); pcrvalue |= ((i << 24) | fbtemp); pll->pcr = pcrvalue; } gd->vco_clk = vco; /* Vco clock */ } else if (bootmode == 2) { /* Normal mode */ vco = ((pll->pcr & 0xFF000000) >> 24) * CFG_INPUT_CLKSRC; if ((vco < CLOCK_PLL_FVCO_MIN) || (vco > CLOCK_PLL_FVCO_MAX)) { /* Default value */ pcrvalue = (pll->pcr & 0x00FFFFFF); pcrvalue |= pPllmult[ccm->ccr & fbpll_mask] << 24; pll->pcr = pcrvalue; vco = ((pll->pcr & 0xFF000000) >> 24) * CFG_INPUT_CLKSRC; } gd->vco_clk = vco; /* Vco clock */ } else if (bootmode == 3) { /* serial mode */ vco = ((pll->pcr & 0xFF000000) >> 24) * CFG_INPUT_CLKSRC; gd->vco_clk = vco; /* Vco clock */ } if ((ccm->ccr & CCM_MISCCR_LIMP) == CCM_MISCCR_LIMP) { /* Limp mode */ } else { gd->inp_clk = CFG_INPUT_CLKSRC; /* Input clock */ temp = (pll->pcr & PLL_PCR_OUTDIV1_MASK) + 1; gd->cpu_clk = vco / temp; /* cpu clock */ temp = ((pll->pcr & PLL_PCR_OUTDIV2_MASK) >> 4) + 1; gd->bus_clk = vco / temp; /* bus clock */ temp = ((pll->pcr & PLL_PCR_OUTDIV3_MASK) >> 8) + 1; gd->flb_clk = vco / temp; /* FlexBus clock */ #ifdef CONFIG_PCI if (bPci) { temp = ((pll->pcr & PLL_PCR_OUTDIV4_MASK) >> 12) + 1; gd->pci_clk = vco / temp; /* PCI clock */ } #endif } return (0); }