/* * Most of this source has been derived from the Linux USB * project: * (C) Copyright Linus Torvalds 1999 * (C) Copyright Johannes Erdfelt 1999-2001 * (C) Copyright Andreas Gal 1999 * (C) Copyright Gregory P. Smith 1999 * (C) Copyright Deti Fliegl 1999 (new USB architecture) * (C) Copyright Randy Dunlap 2000 * (C) Copyright David Brownell 2000 (kernel hotplug, usb_device_id) * (C) Copyright Yggdrasil Computing, Inc. 2000 * (usb_device_id matching changes by Adam J. Richter) * * Adapted for U-Boot: * (C) Copyright 2001 Denis Peter, MPL AG Switzerland * * SPDX-License-Identifier: GPL-2.0+ */ /* * How it works: * * Since this is a bootloader, the devices will not be automatic * (re)configured on hotplug, but after a restart of the USB the * device should work. * * For each transfer (except "Interrupt") we wait for completion. */ #include <common.h> #include <command.h> #include <dm.h> #include <memalign.h> #include <asm/processor.h> #include <linux/compiler.h> #include <linux/ctype.h> #include <asm/byteorder.h> #include <asm/unaligned.h> #include <errno.h> #include <usb.h> #ifdef CONFIG_4xx #include <asm/4xx_pci.h> #endif #define USB_BUFSIZ 512 static int asynch_allowed; char usb_started; /* flag for the started/stopped USB status */ #ifndef CONFIG_DM_USB static struct usb_device usb_dev[USB_MAX_DEVICE]; static int dev_index; #ifndef CONFIG_USB_MAX_CONTROLLER_COUNT #define CONFIG_USB_MAX_CONTROLLER_COUNT 1 #endif /*************************************************************************** * Init USB Device */ int usb_init(void) { void *ctrl; struct usb_device *dev; int i, start_index = 0; int controllers_initialized = 0; int ret; dev_index = 0; asynch_allowed = 1; usb_hub_reset(); /* first make all devices unknown */ for (i = 0; i < USB_MAX_DEVICE; i++) { memset(&usb_dev[i], 0, sizeof(struct usb_device)); usb_dev[i].devnum = -1; } /* init low_level USB */ for (i = 0; i < CONFIG_USB_MAX_CONTROLLER_COUNT; i++) { /* init low_level USB */ printf("USB%d: ", i); ret = usb_lowlevel_init(i, USB_INIT_HOST, &ctrl); if (ret == -ENODEV) { /* No such device. */ puts("Port not available.\n"); controllers_initialized++; continue; } if (ret) { /* Other error. */ puts("lowlevel init failed\n"); continue; } /* * lowlevel init is OK, now scan the bus for devices * i.e. search HUBs and configure them */ controllers_initialized++; start_index = dev_index; printf("scanning bus %d for devices... ", i); ret = usb_alloc_new_device(ctrl, &dev); if (ret) break; /* * device 0 is always present * (root hub, so let it analyze) */ ret = usb_new_device(dev); if (ret) usb_free_device(dev->controller); if (start_index == dev_index) { puts("No USB Device found\n"); continue; } else { printf("%d USB Device(s) found\n", dev_index - start_index); } usb_started = 1; } debug("scan end\n"); /* if we were not able to find at least one working bus, bail out */ if (controllers_initialized == 0) puts("USB error: all controllers failed lowlevel init\n"); return usb_started ? 0 : -ENODEV; } /****************************************************************************** * Stop USB this stops the LowLevel Part and deregisters USB devices. */ int usb_stop(void) { int i; if (usb_started) { asynch_allowed = 1; usb_started = 0; usb_hub_reset(); for (i = 0; i < CONFIG_USB_MAX_CONTROLLER_COUNT; i++) { if (usb_lowlevel_stop(i)) printf("failed to stop USB controller %d\n", i); } } return 0; } /****************************************************************************** * Detect if a USB device has been plugged or unplugged. */ int usb_detect_change(void) { int i, j; int change = 0; for (j = 0; j < USB_MAX_DEVICE; j++) { for (i = 0; i < usb_dev[j].maxchild; i++) { struct usb_port_status status; if (usb_get_port_status(&usb_dev[j], i + 1, &status) < 0) /* USB request failed */ continue; if (le16_to_cpu(status.wPortChange) & USB_PORT_STAT_C_CONNECTION) change++; } } return change; } /* * disables the asynch behaviour of the control message. This is used for data * transfers that uses the exclusiv access to the control and bulk messages. * Returns the old value so it can be restored later. */ int usb_disable_asynch(int disable) { int old_value = asynch_allowed; asynch_allowed = !disable; return old_value; } #endif /* !CONFIG_DM_USB */ /*------------------------------------------------------------------- * Message wrappers. * */ /* * submits an Interrupt Message */ int usb_submit_int_msg(struct usb_device *dev, unsigned long pipe, void *buffer, int transfer_len, int interval) { return submit_int_msg(dev, pipe, buffer, transfer_len, interval); } /* * submits a control message and waits for comletion (at least timeout * 1ms) * If timeout is 0, we don't wait for completion (used as example to set and * clear keyboards LEDs). For data transfers, (storage transfers) we don't * allow control messages with 0 timeout, by previousely resetting the flag * asynch_allowed (usb_disable_asynch(1)). * returns the transferred length if OK or -1 if error. The transferred length * and the current status are stored in the dev->act_len and dev->status. */ int usb_control_msg(struct usb_device *dev, unsigned int pipe, unsigned char request, unsigned char requesttype, unsigned short value, unsigned short index, void *data, unsigned short size, int timeout) { ALLOC_CACHE_ALIGN_BUFFER(struct devrequest, setup_packet, 1); int err; if ((timeout == 0) && (!asynch_allowed)) { /* request for a asynch control pipe is not allowed */ return -EINVAL; } /* set setup command */ setup_packet->requesttype = requesttype; setup_packet->request = request; setup_packet->value = cpu_to_le16(value); setup_packet->index = cpu_to_le16(index); setup_packet->length = cpu_to_le16(size); debug("usb_control_msg: request: 0x%X, requesttype: 0x%X, " \ "value 0x%X index 0x%X length 0x%X\n", request, requesttype, value, index, size); dev->status = USB_ST_NOT_PROC; /*not yet processed */ err = submit_control_msg(dev, pipe, data, size, setup_packet); if (err < 0) return err; if (timeout == 0) return (int)size; /* * Wait for status to update until timeout expires, USB driver * interrupt handler may set the status when the USB operation has * been completed. */ while (timeout--) { if (!((volatile unsigned long)dev->status & USB_ST_NOT_PROC)) break; mdelay(1); } if (dev->status) return -1; return dev->act_len; } /*------------------------------------------------------------------- * submits bulk message, and waits for completion. returns 0 if Ok or * negative if Error. * synchronous behavior */ int usb_bulk_msg(struct usb_device *dev, unsigned int pipe, void *data, int len, int *actual_length, int timeout) { if (len < 0) return -EINVAL; dev->status = USB_ST_NOT_PROC; /*not yet processed */ if (submit_bulk_msg(dev, pipe, data, len) < 0) return -EIO; while (timeout--) { if (!((volatile unsigned long)dev->status & USB_ST_NOT_PROC)) break; mdelay(1); } *actual_length = dev->act_len; if (dev->status == 0) return 0; else return -EIO; } /*------------------------------------------------------------------- * Max Packet stuff */ /* * returns the max packet size, depending on the pipe direction and * the configurations values */ int usb_maxpacket(struct usb_device *dev, unsigned long pipe) { /* direction is out -> use emaxpacket out */ if ((pipe & USB_DIR_IN) == 0) return dev->epmaxpacketout[((pipe>>15) & 0xf)]; else return dev->epmaxpacketin[((pipe>>15) & 0xf)]; } /* * The routine usb_set_maxpacket_ep() is extracted from the loop of routine * usb_set_maxpacket(), because the optimizer of GCC 4.x chokes on this routine * when it is inlined in 1 single routine. What happens is that the register r3 * is used as loop-count 'i', but gets overwritten later on. * This is clearly a compiler bug, but it is easier to workaround it here than * to update the compiler (Occurs with at least several GCC 4.{1,2},x * CodeSourcery compilers like e.g. 2007q3, 2008q1, 2008q3 lite editions on ARM) * * NOTE: Similar behaviour was observed with GCC4.6 on ARMv5. */ static void noinline usb_set_maxpacket_ep(struct usb_device *dev, int if_idx, int ep_idx) { int b; struct usb_endpoint_descriptor *ep; u16 ep_wMaxPacketSize; ep = &dev->config.if_desc[if_idx].ep_desc[ep_idx]; b = ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; ep_wMaxPacketSize = get_unaligned(&ep->wMaxPacketSize); if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_CONTROL) { /* Control => bidirectional */ dev->epmaxpacketout[b] = ep_wMaxPacketSize; dev->epmaxpacketin[b] = ep_wMaxPacketSize; debug("##Control EP epmaxpacketout/in[%d] = %d\n", b, dev->epmaxpacketin[b]); } else { if ((ep->bEndpointAddress & 0x80) == 0) { /* OUT Endpoint */ if (ep_wMaxPacketSize > dev->epmaxpacketout[b]) { dev->epmaxpacketout[b] = ep_wMaxPacketSize; debug("##EP epmaxpacketout[%d] = %d\n", b, dev->epmaxpacketout[b]); } } else { /* IN Endpoint */ if (ep_wMaxPacketSize > dev->epmaxpacketin[b]) { dev->epmaxpacketin[b] = ep_wMaxPacketSize; debug("##EP epmaxpacketin[%d] = %d\n", b, dev->epmaxpacketin[b]); } } /* if out */ } /* if control */ } /* * set the max packed value of all endpoints in the given configuration */ static int usb_set_maxpacket(struct usb_device *dev) { int i, ii; for (i = 0; i < dev->config.desc.bNumInterfaces; i++) for (ii = 0; ii < dev->config.if_desc[i].desc.bNumEndpoints; ii++) usb_set_maxpacket_ep(dev, i, ii); return 0; } /******************************************************************************* * Parse the config, located in buffer, and fills the dev->config structure. * Note that all little/big endian swapping are done automatically. * (wTotalLength has already been swapped and sanitized when it was read.) */ static int usb_parse_config(struct usb_device *dev, unsigned char *buffer, int cfgno) { struct usb_descriptor_header *head; int index, ifno, epno, curr_if_num; u16 ep_wMaxPacketSize; struct usb_interface *if_desc = NULL; ifno = -1; epno = -1; curr_if_num = -1; dev->configno = cfgno; head = (struct usb_descriptor_header *) &buffer[0]; if (head->bDescriptorType != USB_DT_CONFIG) { printf(" ERROR: NOT USB_CONFIG_DESC %x\n", head->bDescriptorType); return -EINVAL; } if (head->bLength != USB_DT_CONFIG_SIZE) { printf("ERROR: Invalid USB CFG length (%d)\n", head->bLength); return -EINVAL; } memcpy(&dev->config, head, USB_DT_CONFIG_SIZE); dev->config.no_of_if = 0; index = dev->config.desc.bLength; /* Ok the first entry must be a configuration entry, * now process the others */ head = (struct usb_descriptor_header *) &buffer[index]; while (index + 1 < dev->config.desc.wTotalLength && head->bLength) { switch (head->bDescriptorType) { case USB_DT_INTERFACE: if (head->bLength != USB_DT_INTERFACE_SIZE) { printf("ERROR: Invalid USB IF length (%d)\n", head->bLength); break; } if (index + USB_DT_INTERFACE_SIZE > dev->config.desc.wTotalLength) { puts("USB IF descriptor overflowed buffer!\n"); break; } if (((struct usb_interface_descriptor *) \ head)->bInterfaceNumber != curr_if_num) { /* this is a new interface, copy new desc */ ifno = dev->config.no_of_if; if (ifno >= USB_MAXINTERFACES) { puts("Too many USB interfaces!\n"); /* try to go on with what we have */ return -EINVAL; } if_desc = &dev->config.if_desc[ifno]; dev->config.no_of_if++; memcpy(if_desc, head, USB_DT_INTERFACE_SIZE); if_desc->no_of_ep = 0; if_desc->num_altsetting = 1; curr_if_num = if_desc->desc.bInterfaceNumber; } else { /* found alternate setting for the interface */ if (ifno >= 0) { if_desc = &dev->config.if_desc[ifno]; if_desc->num_altsetting++; } } break; case USB_DT_ENDPOINT: if (head->bLength != USB_DT_ENDPOINT_SIZE) { printf("ERROR: Invalid USB EP length (%d)\n", head->bLength); break; } if (index + USB_DT_ENDPOINT_SIZE > dev->config.desc.wTotalLength) { puts("USB EP descriptor overflowed buffer!\n"); break; } if (ifno < 0) { puts("Endpoint descriptor out of order!\n"); break; } epno = dev->config.if_desc[ifno].no_of_ep; if_desc = &dev->config.if_desc[ifno]; if (epno >= USB_MAXENDPOINTS) { printf("Interface %d has too many endpoints!\n", if_desc->desc.bInterfaceNumber); return -EINVAL; } /* found an endpoint */ if_desc->no_of_ep++; memcpy(&if_desc->ep_desc[epno], head, USB_DT_ENDPOINT_SIZE); ep_wMaxPacketSize = get_unaligned(&dev->config.\ if_desc[ifno].\ ep_desc[epno].\ wMaxPacketSize); put_unaligned(le16_to_cpu(ep_wMaxPacketSize), &dev->config.\ if_desc[ifno].\ ep_desc[epno].\ wMaxPacketSize); debug("if %d, ep %d\n", ifno, epno); break; case USB_DT_SS_ENDPOINT_COMP: if (head->bLength != USB_DT_SS_EP_COMP_SIZE) { printf("ERROR: Invalid USB EPC length (%d)\n", head->bLength); break; } if (index + USB_DT_SS_EP_COMP_SIZE > dev->config.desc.wTotalLength) { puts("USB EPC descriptor overflowed buffer!\n"); break; } if (ifno < 0 || epno < 0) { puts("EPC descriptor out of order!\n"); break; } if_desc = &dev->config.if_desc[ifno]; memcpy(&if_desc->ss_ep_comp_desc[epno], head, USB_DT_SS_EP_COMP_SIZE); break; default: if (head->bLength == 0) return -EINVAL; debug("unknown Description Type : %x\n", head->bDescriptorType); #ifdef DEBUG { unsigned char *ch = (unsigned char *)head; int i; for (i = 0; i < head->bLength; i++) debug("%02X ", *ch++); debug("\n\n\n"); } #endif break; } index += head->bLength; head = (struct usb_descriptor_header *)&buffer[index]; } return 0; } /*********************************************************************** * Clears an endpoint * endp: endpoint number in bits 0-3; * direction flag in bit 7 (1 = IN, 0 = OUT) */ int usb_clear_halt(struct usb_device *dev, int pipe) { int result; int endp = usb_pipeendpoint(pipe)|(usb_pipein(pipe)<<7); result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 0, endp, NULL, 0, USB_CNTL_TIMEOUT * 3); /* don't clear if failed */ if (result < 0) return result; /* * NOTE: we do not get status and verify reset was successful * as some devices are reported to lock up upon this check.. */ usb_endpoint_running(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe)); /* toggle is reset on clear */ usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); return 0; } /********************************************************************** * get_descriptor type */ static int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size) { return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, (type << 8) + index, 0, buf, size, USB_CNTL_TIMEOUT); } /********************************************************************** * gets len of configuration cfgno */ int usb_get_configuration_len(struct usb_device *dev, int cfgno) { int result; ALLOC_CACHE_ALIGN_BUFFER(unsigned char, buffer, 9); struct usb_config_descriptor *config; config = (struct usb_config_descriptor *)&buffer[0]; result = usb_get_descriptor(dev, USB_DT_CONFIG, cfgno, buffer, 9); if (result < 9) { if (result < 0) printf("unable to get descriptor, error %lX\n", dev->status); else printf("config descriptor too short " \ "(expected %i, got %i)\n", 9, result); return -EIO; } return le16_to_cpu(config->wTotalLength); } /********************************************************************** * gets configuration cfgno and store it in the buffer */ int usb_get_configuration_no(struct usb_device *dev, int cfgno, unsigned char *buffer, int length) { int result; struct usb_config_descriptor *config; config = (struct usb_config_descriptor *)&buffer[0]; result = usb_get_descriptor(dev, USB_DT_CONFIG, cfgno, buffer, length); debug("get_conf_no %d Result %d, wLength %d\n", cfgno, result, le16_to_cpu(config->wTotalLength)); config->wTotalLength = result; /* validated, with CPU byte order */ return result; } /******************************************************************** * set address of a device to the value in dev->devnum. * This can only be done by addressing the device via the default address (0) */ static int usb_set_address(struct usb_device *dev) { debug("set address %d\n", dev->devnum); return usb_control_msg(dev, usb_snddefctrl(dev), USB_REQ_SET_ADDRESS, 0, (dev->devnum), 0, NULL, 0, USB_CNTL_TIMEOUT); } /******************************************************************** * set interface number to interface */ int usb_set_interface(struct usb_device *dev, int interface, int alternate) { struct usb_interface *if_face = NULL; int ret, i; for (i = 0; i < dev->config.desc.bNumInterfaces; i++) { if (dev->config.if_desc[i].desc.bInterfaceNumber == interface) { if_face = &dev->config.if_desc[i]; break; } } if (!if_face) { printf("selecting invalid interface %d", interface); return -EINVAL; } /* * We should return now for devices with only one alternate setting. * According to 9.4.10 of the Universal Serial Bus Specification * Revision 2.0 such devices can return with a STALL. This results in * some USB sticks timeouting during initialization and then being * unusable in U-Boot. */ if (if_face->num_altsetting == 1) return 0; ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, alternate, interface, NULL, 0, USB_CNTL_TIMEOUT * 5); if (ret < 0) return ret; return 0; } /******************************************************************** * set configuration number to configuration */ static int usb_set_configuration(struct usb_device *dev, int configuration) { int res; debug("set configuration %d\n", configuration); /* set setup command */ res = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), USB_REQ_SET_CONFIGURATION, 0, configuration, 0, NULL, 0, USB_CNTL_TIMEOUT); if (res == 0) { dev->toggle[0] = 0; dev->toggle[1] = 0; return 0; } else return -EIO; } /******************************************************************** * set protocol to protocol */ int usb_set_protocol(struct usb_device *dev, int ifnum, int protocol) { return usb_control_msg(dev, usb_sndctrlpipe(dev, 0), USB_REQ_SET_PROTOCOL, USB_TYPE_CLASS | USB_RECIP_INTERFACE, protocol, ifnum, NULL, 0, USB_CNTL_TIMEOUT); } /******************************************************************** * set idle */ int usb_set_idle(struct usb_device *dev, int ifnum, int duration, int report_id) { return usb_control_msg(dev, usb_sndctrlpipe(dev, 0), USB_REQ_SET_IDLE, USB_TYPE_CLASS | USB_RECIP_INTERFACE, (duration << 8) | report_id, ifnum, NULL, 0, USB_CNTL_TIMEOUT); } /******************************************************************** * get report */ int usb_get_report(struct usb_device *dev, int ifnum, unsigned char type, unsigned char id, void *buf, int size) { return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), USB_REQ_GET_REPORT, USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE, (type << 8) + id, ifnum, buf, size, USB_CNTL_TIMEOUT); } /******************************************************************** * get class descriptor */ int usb_get_class_descriptor(struct usb_device *dev, int ifnum, unsigned char type, unsigned char id, void *buf, int size) { return usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), USB_REQ_GET_DESCRIPTOR, USB_RECIP_INTERFACE | USB_DIR_IN, (type << 8) + id, ifnum, buf, size, USB_CNTL_TIMEOUT); } /******************************************************************** * get string index in buffer */ static int usb_get_string(struct usb_device *dev, unsigned short langid, unsigned char index, void *buf, int size) { int i; int result; for (i = 0; i < 3; ++i) { /* some devices are flaky */ result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, (USB_DT_STRING << 8) + index, langid, buf, size, USB_CNTL_TIMEOUT); if (result > 0) break; } return result; } static void usb_try_string_workarounds(unsigned char *buf, int *length) { int newlength, oldlength = *length; for (newlength = 2; newlength + 1 < oldlength; newlength += 2) if (!isprint(buf[newlength]) || buf[newlength + 1]) break; if (newlength > 2) { buf[0] = newlength; *length = newlength; } } static int usb_string_sub(struct usb_device *dev, unsigned int langid, unsigned int index, unsigned char *buf) { int rc; /* Try to read the string descriptor by asking for the maximum * possible number of bytes */ rc = usb_get_string(dev, langid, index, buf, 255); /* If that failed try to read the descriptor length, then * ask for just that many bytes */ if (rc < 2) { rc = usb_get_string(dev, langid, index, buf, 2); if (rc == 2) rc = usb_get_string(dev, langid, index, buf, buf[0]); } if (rc >= 2) { if (!buf[0] && !buf[1]) usb_try_string_workarounds(buf, &rc); /* There might be extra junk at the end of the descriptor */ if (buf[0] < rc) rc = buf[0]; rc = rc - (rc & 1); /* force a multiple of two */ } if (rc < 2) rc = -EINVAL; return rc; } /******************************************************************** * usb_string: * Get string index and translate it to ascii. * returns string length (> 0) or error (< 0) */ int usb_string(struct usb_device *dev, int index, char *buf, size_t size) { ALLOC_CACHE_ALIGN_BUFFER(unsigned char, mybuf, USB_BUFSIZ); unsigned char *tbuf; int err; unsigned int u, idx; if (size <= 0 || !buf || !index) return -EINVAL; buf[0] = 0; tbuf = &mybuf[0]; /* get langid for strings if it's not yet known */ if (!dev->have_langid) { err = usb_string_sub(dev, 0, 0, tbuf); if (err < 0) { debug("error getting string descriptor 0 " \ "(error=%lx)\n", dev->status); return -EIO; } else if (tbuf[0] < 4) { debug("string descriptor 0 too short\n"); return -EIO; } else { dev->have_langid = -1; dev->string_langid = tbuf[2] | (tbuf[3] << 8); /* always use the first langid listed */ debug("USB device number %d default " \ "language ID 0x%x\n", dev->devnum, dev->string_langid); } } err = usb_string_sub(dev, dev->string_langid, index, tbuf); if (err < 0) return err; size--; /* leave room for trailing NULL char in output buffer */ for (idx = 0, u = 2; u < err; u += 2) { if (idx >= size) break; if (tbuf[u+1]) /* high byte */ buf[idx++] = '?'; /* non-ASCII character */ else buf[idx++] = tbuf[u]; } buf[idx] = 0; err = idx; return err; } /******************************************************************** * USB device handling: * the USB device are static allocated [USB_MAX_DEVICE]. */ #ifndef CONFIG_DM_USB /* returns a pointer to the device with the index [index]. * if the device is not assigned (dev->devnum==-1) returns NULL */ struct usb_device *usb_get_dev_index(int index) { if (usb_dev[index].devnum == -1) return NULL; else return &usb_dev[index]; } int usb_alloc_new_device(struct udevice *controller, struct usb_device **devp) { int i; debug("New Device %d\n", dev_index); if (dev_index == USB_MAX_DEVICE) { printf("ERROR, too many USB Devices, max=%d\n", USB_MAX_DEVICE); return -ENOSPC; } /* default Address is 0, real addresses start with 1 */ usb_dev[dev_index].devnum = dev_index + 1; usb_dev[dev_index].maxchild = 0; for (i = 0; i < USB_MAXCHILDREN; i++) usb_dev[dev_index].children[i] = NULL; usb_dev[dev_index].parent = NULL; usb_dev[dev_index].controller = controller; dev_index++; *devp = &usb_dev[dev_index - 1]; return 0; } /* * Free the newly created device node. * Called in error cases where configuring a newly attached * device fails for some reason. */ void usb_free_device(struct udevice *controller) { dev_index--; debug("Freeing device node: %d\n", dev_index); memset(&usb_dev[dev_index], 0, sizeof(struct usb_device)); usb_dev[dev_index].devnum = -1; } /* * XHCI issues Enable Slot command and thereafter * allocates device contexts. Provide a weak alias * function for the purpose, so that XHCI overrides it * and EHCI/OHCI just work out of the box. */ __weak int usb_alloc_device(struct usb_device *udev) { return 0; } #endif /* !CONFIG_DM_USB */ static int usb_hub_port_reset(struct usb_device *dev, struct usb_device *hub) { if (!hub) usb_reset_root_port(dev); return 0; } static int get_descriptor_len(struct usb_device *dev, int len, int expect_len) { __maybe_unused struct usb_device_descriptor *desc; ALLOC_CACHE_ALIGN_BUFFER(unsigned char, tmpbuf, USB_BUFSIZ); int err; desc = (struct usb_device_descriptor *)tmpbuf; err = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, len); if (err < expect_len) { if (err < 0) { printf("unable to get device descriptor (error=%d)\n", err); return err; } else { printf("USB device descriptor short read (expected %i, got %i)\n", expect_len, err); return -EIO; } } memcpy(&dev->descriptor, tmpbuf, sizeof(dev->descriptor)); return 0; } static int usb_setup_descriptor(struct usb_device *dev, bool do_read) { /* * This is a Windows scheme of initialization sequence, with double * reset of the device (Linux uses the same sequence) * Some equipment is said to work only with such init sequence; this * patch is based on the work by Alan Stern: * http://sourceforge.net/mailarchive/forum.php? * thread_id=5729457&forum_id=5398 */ /* * send 64-byte GET-DEVICE-DESCRIPTOR request. Since the descriptor is * only 18 bytes long, this will terminate with a short packet. But if * the maxpacket size is 8 or 16 the device may be waiting to transmit * some more, or keeps on retransmitting the 8 byte header. */ if (dev->speed == USB_SPEED_LOW) { dev->descriptor.bMaxPacketSize0 = 8; dev->maxpacketsize = PACKET_SIZE_8; } else { dev->descriptor.bMaxPacketSize0 = 64; dev->maxpacketsize = PACKET_SIZE_64; } dev->epmaxpacketin[0] = dev->descriptor.bMaxPacketSize0; dev->epmaxpacketout[0] = dev->descriptor.bMaxPacketSize0; if (do_read) { int err; /* * Validate we've received only at least 8 bytes, not that we've * received the entire descriptor. The reasoning is: * - The code only uses fields in the first 8 bytes, so that's all we * need to have fetched at this stage. * - The smallest maxpacket size is 8 bytes. Before we know the actual * maxpacket the device uses, the USB controller may only accept a * single packet. Consequently we are only guaranteed to receive 1 * packet (at least 8 bytes) even in a non-error case. * * At least the DWC2 controller needs to be programmed with the number * of packets in addition to the number of bytes. A request for 64 * bytes of data with the maxpacket guessed as 64 (above) yields a * request for 1 packet. */ err = get_descriptor_len(dev, 64, 8); if (err) return err; } dev->epmaxpacketin[0] = dev->descriptor.bMaxPacketSize0; dev->epmaxpacketout[0] = dev->descriptor.bMaxPacketSize0; switch (dev->descriptor.bMaxPacketSize0) { case 8: dev->maxpacketsize = PACKET_SIZE_8; break; case 16: dev->maxpacketsize = PACKET_SIZE_16; break; case 32: dev->maxpacketsize = PACKET_SIZE_32; break; case 64: dev->maxpacketsize = PACKET_SIZE_64; break; default: printf("usb_new_device: invalid max packet size\n"); return -EIO; } return 0; } static int usb_prepare_device(struct usb_device *dev, int addr, bool do_read, struct usb_device *parent) { int err; /* * Allocate usb 3.0 device context. * USB 3.0 (xHCI) protocol tries to allocate device slot * and related data structures first. This call does that. * Refer to sec 4.3.2 in xHCI spec rev1.0 */ err = usb_alloc_device(dev); if (err) { printf("Cannot allocate device context to get SLOT_ID\n"); return err; } err = usb_setup_descriptor(dev, do_read); if (err) return err; err = usb_hub_port_reset(dev, parent); if (err) return err; dev->devnum = addr; err = usb_set_address(dev); /* set address */ if (err < 0) { printf("\n USB device not accepting new address " \ "(error=%lX)\n", dev->status); return err; } mdelay(10); /* Let the SET_ADDRESS settle */ return 0; } int usb_select_config(struct usb_device *dev) { unsigned char *tmpbuf = NULL; int err; err = get_descriptor_len(dev, USB_DT_DEVICE_SIZE, USB_DT_DEVICE_SIZE); if (err) return err; /* correct le values */ le16_to_cpus(&dev->descriptor.bcdUSB); le16_to_cpus(&dev->descriptor.idVendor); le16_to_cpus(&dev->descriptor.idProduct); le16_to_cpus(&dev->descriptor.bcdDevice); /* * Kingston DT Ultimate 32GB USB 3.0 seems to be extremely sensitive * about this first Get Descriptor request. If there are any other * requests in the first microframe, the stick crashes. Wait about * one microframe duration here (1mS for USB 1.x , 125uS for USB 2.0). */ mdelay(1); /* only support for one config for now */ err = usb_get_configuration_len(dev, 0); if (err >= 0) { tmpbuf = (unsigned char *)malloc_cache_aligned(err); if (!tmpbuf) err = -ENOMEM; else err = usb_get_configuration_no(dev, 0, tmpbuf, err); } if (err < 0) { printf("usb_new_device: Cannot read configuration, " \ "skipping device %04x:%04x\n", dev->descriptor.idVendor, dev->descriptor.idProduct); free(tmpbuf); return err; } usb_parse_config(dev, tmpbuf, 0); free(tmpbuf); usb_set_maxpacket(dev); /* * we set the default configuration here * This seems premature. If the driver wants a different configuration * it will need to select itself. */ err = usb_set_configuration(dev, dev->config.desc.bConfigurationValue); if (err < 0) { printf("failed to set default configuration " \ "len %d, status %lX\n", dev->act_len, dev->status); return err; } /* * Wait until the Set Configuration request gets processed by the * device. This is required by at least SanDisk Cruzer Pop USB 2.0 * and Kingston DT Ultimate 32GB USB 3.0 on DWC2 OTG controller. */ mdelay(10); debug("new device strings: Mfr=%d, Product=%d, SerialNumber=%d\n", dev->descriptor.iManufacturer, dev->descriptor.iProduct, dev->descriptor.iSerialNumber); memset(dev->mf, 0, sizeof(dev->mf)); memset(dev->prod, 0, sizeof(dev->prod)); memset(dev->serial, 0, sizeof(dev->serial)); if (dev->descriptor.iManufacturer) usb_string(dev, dev->descriptor.iManufacturer, dev->mf, sizeof(dev->mf)); if (dev->descriptor.iProduct) usb_string(dev, dev->descriptor.iProduct, dev->prod, sizeof(dev->prod)); if (dev->descriptor.iSerialNumber) usb_string(dev, dev->descriptor.iSerialNumber, dev->serial, sizeof(dev->serial)); debug("Manufacturer %s\n", dev->mf); debug("Product %s\n", dev->prod); debug("SerialNumber %s\n", dev->serial); return 0; } int usb_setup_device(struct usb_device *dev, bool do_read, struct usb_device *parent) { int addr; int ret; /* We still haven't set the Address yet */ addr = dev->devnum; dev->devnum = 0; ret = usb_prepare_device(dev, addr, do_read, parent); if (ret) return ret; ret = usb_select_config(dev); return ret; } #ifndef CONFIG_DM_USB /* * By the time we get here, the device has gotten a new device ID * and is in the default state. We need to identify the thing and * get the ball rolling.. * * Returns 0 for success, != 0 for error. */ int usb_new_device(struct usb_device *dev) { bool do_read = true; int err; /* * XHCI needs to issue a Address device command to setup * proper device context structures, before it can interact * with the device. So a get_descriptor will fail before any * of that is done for XHCI unlike EHCI. */ #ifdef CONFIG_USB_XHCI_HCD do_read = false; #endif err = usb_setup_device(dev, do_read, dev->parent); if (err) return err; /* Now probe if the device is a hub */ err = usb_hub_probe(dev, 0); if (err < 0) return err; return 0; } #endif __weak int board_usb_init(int index, enum usb_init_type init) { return 0; } __weak int board_usb_cleanup(int index, enum usb_init_type init) { return 0; } bool usb_device_has_child_on_port(struct usb_device *parent, int port) { #ifdef CONFIG_DM_USB return false; #else return parent->children[port] != NULL; #endif } #ifdef CONFIG_DM_USB void usb_find_usb2_hub_address_port(struct usb_device *udev, uint8_t *hub_address, uint8_t *hub_port) { struct udevice *parent; struct usb_device *uparent, *ttdev; /* * When called from usb-uclass.c: usb_scan_device() udev->dev points * to the parent udevice, not the actual udevice belonging to the * udev as the device is not instantiated yet. So when searching * for the first usb-2 parent start with udev->dev not * udev->dev->parent . */ ttdev = udev; parent = udev->dev; uparent = dev_get_parent_priv(parent); while (uparent->speed != USB_SPEED_HIGH) { struct udevice *dev = parent; if (device_get_uclass_id(dev->parent) != UCLASS_USB_HUB) { printf("Error: Cannot find high speed parent of usb-1 device\n"); *hub_address = 0; *hub_port = 0; return; } ttdev = dev_get_parent_priv(dev); parent = dev->parent; uparent = dev_get_parent_priv(parent); } *hub_address = uparent->devnum; *hub_port = ttdev->portnr; } #else void usb_find_usb2_hub_address_port(struct usb_device *udev, uint8_t *hub_address, uint8_t *hub_port) { /* Find out the nearest parent which is high speed */ while (udev->parent->parent != NULL) if (udev->parent->speed != USB_SPEED_HIGH) { udev = udev->parent; } else { *hub_address = udev->parent->devnum; *hub_port = udev->portnr; return; } printf("Error: Cannot find high speed parent of usb-1 device\n"); *hub_address = 0; *hub_port = 0; } #endif /* EOF */