/* * (C) Copyright 2008 Semihalf * * (C) Copyright 2000-2006 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #ifndef USE_HOSTCC #include #include #ifdef CONFIG_SHOW_BOOT_PROGRESS #include #endif #ifdef CONFIG_HAS_DATAFLASH #include #endif #ifdef CONFIG_LOGBUFFER #include #endif #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) #include #endif #include #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) #include #include #include #endif #if defined(CONFIG_FIT) #include #include static int fit_check_ramdisk(const void *fit, int os_noffset, uint8_t arch, int verify); #endif #ifdef CONFIG_CMD_BDI extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); #endif DECLARE_GLOBAL_DATA_PTR; static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, int verify); #else #include "mkimage.h" #include #include #include #endif /* !USE_HOSTCC*/ static const table_entry_t uimage_arch[] = { { IH_ARCH_INVALID, NULL, "Invalid ARCH", }, { IH_ARCH_ALPHA, "alpha", "Alpha", }, { IH_ARCH_ARM, "arm", "ARM", }, { IH_ARCH_I386, "x86", "Intel x86", }, { IH_ARCH_IA64, "ia64", "IA64", }, { IH_ARCH_M68K, "m68k", "M68K", }, { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", }, { IH_ARCH_MIPS, "mips", "MIPS", }, { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", }, { IH_ARCH_NIOS2, "nios2", "NIOS II", }, { IH_ARCH_PPC, "powerpc", "PowerPC", }, { IH_ARCH_PPC, "ppc", "PowerPC", }, { IH_ARCH_S390, "s390", "IBM S390", }, { IH_ARCH_SH, "sh", "SuperH", }, { IH_ARCH_SPARC, "sparc", "SPARC", }, { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", }, { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", }, { IH_ARCH_AVR32, "avr32", "AVR32", }, { IH_ARCH_NDS32, "nds32", "NDS32", }, { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",}, { -1, "", "", }, }; static const table_entry_t uimage_os[] = { { IH_OS_INVALID, NULL, "Invalid OS", }, { IH_OS_LINUX, "linux", "Linux", }, #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC) { IH_OS_LYNXOS, "lynxos", "LynxOS", }, #endif { IH_OS_NETBSD, "netbsd", "NetBSD", }, { IH_OS_OSE, "ose", "Enea OSE", }, { IH_OS_RTEMS, "rtems", "RTEMS", }, { IH_OS_U_BOOT, "u-boot", "U-Boot", }, #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC) { IH_OS_QNX, "qnx", "QNX", }, { IH_OS_VXWORKS, "vxworks", "VxWorks", }, #endif #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC) { IH_OS_INTEGRITY,"integrity", "INTEGRITY", }, #endif #ifdef USE_HOSTCC { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", }, { IH_OS_DELL, "dell", "Dell", }, { IH_OS_ESIX, "esix", "Esix", }, { IH_OS_FREEBSD, "freebsd", "FreeBSD", }, { IH_OS_IRIX, "irix", "Irix", }, { IH_OS_NCR, "ncr", "NCR", }, { IH_OS_OPENBSD, "openbsd", "OpenBSD", }, { IH_OS_PSOS, "psos", "pSOS", }, { IH_OS_SCO, "sco", "SCO", }, { IH_OS_SOLARIS, "solaris", "Solaris", }, { IH_OS_SVR4, "svr4", "SVR4", }, #endif { -1, "", "", }, }; static const table_entry_t uimage_type[] = { { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",}, { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", }, { IH_TYPE_FIRMWARE, "firmware", "Firmware", }, { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", }, { IH_TYPE_KERNEL, "kernel", "Kernel Image", }, { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", }, { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",}, { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",}, { IH_TYPE_INVALID, NULL, "Invalid Image", }, { IH_TYPE_MULTI, "multi", "Multi-File Image", }, { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",}, { IH_TYPE_PBLIMAGE, "pblimage", "Freescale PBL Boot Image",}, { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", }, { IH_TYPE_SCRIPT, "script", "Script", }, { IH_TYPE_STANDALONE, "standalone", "Standalone Program", }, { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",}, { -1, "", "", }, }; static const table_entry_t uimage_comp[] = { { IH_COMP_NONE, "none", "uncompressed", }, { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", }, { IH_COMP_GZIP, "gzip", "gzip compressed", }, { IH_COMP_LZMA, "lzma", "lzma compressed", }, { IH_COMP_LZO, "lzo", "lzo compressed", }, { -1, "", "", }, }; uint32_t crc32(uint32_t, const unsigned char *, uint); uint32_t crc32_wd(uint32_t, const unsigned char *, uint, uint); #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) static void genimg_print_time(time_t timestamp); #endif /*****************************************************************************/ /* Legacy format routines */ /*****************************************************************************/ int image_check_hcrc(const image_header_t *hdr) { ulong hcrc; ulong len = image_get_header_size(); image_header_t header; /* Copy header so we can blank CRC field for re-calculation */ memmove(&header, (char *)hdr, image_get_header_size()); image_set_hcrc(&header, 0); hcrc = crc32(0, (unsigned char *)&header, len); return (hcrc == image_get_hcrc(hdr)); } int image_check_dcrc(const image_header_t *hdr) { ulong data = image_get_data(hdr); ulong len = image_get_data_size(hdr); ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32); return (dcrc == image_get_dcrc(hdr)); } /** * image_multi_count - get component (sub-image) count * @hdr: pointer to the header of the multi component image * * image_multi_count() returns number of components in a multi * component image. * * Note: no checking of the image type is done, caller must pass * a valid multi component image. * * returns: * number of components */ ulong image_multi_count(const image_header_t *hdr) { ulong i, count = 0; uint32_t *size; /* get start of the image payload, which in case of multi * component images that points to a table of component sizes */ size = (uint32_t *)image_get_data(hdr); /* count non empty slots */ for (i = 0; size[i]; ++i) count++; return count; } /** * image_multi_getimg - get component data address and size * @hdr: pointer to the header of the multi component image * @idx: index of the requested component * @data: pointer to a ulong variable, will hold component data address * @len: pointer to a ulong variable, will hold component size * * image_multi_getimg() returns size and data address for the requested * component in a multi component image. * * Note: no checking of the image type is done, caller must pass * a valid multi component image. * * returns: * data address and size of the component, if idx is valid * 0 in data and len, if idx is out of range */ void image_multi_getimg(const image_header_t *hdr, ulong idx, ulong *data, ulong *len) { int i; uint32_t *size; ulong offset, count, img_data; /* get number of component */ count = image_multi_count(hdr); /* get start of the image payload, which in case of multi * component images that points to a table of component sizes */ size = (uint32_t *)image_get_data(hdr); /* get address of the proper component data start, which means * skipping sizes table (add 1 for last, null entry) */ img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t); if (idx < count) { *len = uimage_to_cpu(size[idx]); offset = 0; /* go over all indices preceding requested component idx */ for (i = 0; i < idx; i++) { /* add up i-th component size, rounding up to 4 bytes */ offset += (uimage_to_cpu(size[i]) + 3) & ~3 ; } /* calculate idx-th component data address */ *data = img_data + offset; } else { *len = 0; *data = 0; } } static void image_print_type(const image_header_t *hdr) { const char *os, *arch, *type, *comp; os = genimg_get_os_name(image_get_os(hdr)); arch = genimg_get_arch_name(image_get_arch(hdr)); type = genimg_get_type_name(image_get_type(hdr)); comp = genimg_get_comp_name(image_get_comp(hdr)); printf("%s %s %s (%s)\n", arch, os, type, comp); } /** * image_print_contents - prints out the contents of the legacy format image * @ptr: pointer to the legacy format image header * @p: pointer to prefix string * * image_print_contents() formats a multi line legacy image contents description. * The routine prints out all header fields followed by the size/offset data * for MULTI/SCRIPT images. * * returns: * no returned results */ void image_print_contents(const void *ptr) { const image_header_t *hdr = (const image_header_t *)ptr; const char *p; #ifdef USE_HOSTCC p = ""; #else p = " "; #endif printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr)); #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) printf("%sCreated: ", p); genimg_print_time((time_t)image_get_time(hdr)); #endif printf("%sImage Type: ", p); image_print_type(hdr); printf("%sData Size: ", p); genimg_print_size(image_get_data_size(hdr)); printf("%sLoad Address: %08x\n", p, image_get_load(hdr)); printf("%sEntry Point: %08x\n", p, image_get_ep(hdr)); if (image_check_type(hdr, IH_TYPE_MULTI) || image_check_type(hdr, IH_TYPE_SCRIPT)) { int i; ulong data, len; ulong count = image_multi_count(hdr); printf("%sContents:\n", p); for (i = 0; i < count; i++) { image_multi_getimg(hdr, i, &data, &len); printf("%s Image %d: ", p, i); genimg_print_size(len); if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) { /* * the user may need to know offsets * if planning to do something with * multiple files */ printf("%s Offset = 0x%08lx\n", p, data); } } } } #ifndef USE_HOSTCC /** * image_get_ramdisk - get and verify ramdisk image * @rd_addr: ramdisk image start address * @arch: expected ramdisk architecture * @verify: checksum verification flag * * image_get_ramdisk() returns a pointer to the verified ramdisk image * header. Routine receives image start address and expected architecture * flag. Verification done covers data and header integrity and os/type/arch * fields checking. * * If dataflash support is enabled routine checks for dataflash addresses * and handles required dataflash reads. * * returns: * pointer to a ramdisk image header, if image was found and valid * otherwise, return NULL */ static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, int verify) { const image_header_t *rd_hdr = (const image_header_t *)rd_addr; if (!image_check_magic(rd_hdr)) { puts("Bad Magic Number\n"); bootstage_error(BOOTSTAGE_ID_RD_MAGIC); return NULL; } if (!image_check_hcrc(rd_hdr)) { puts("Bad Header Checksum\n"); bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM); return NULL; } bootstage_mark(BOOTSTAGE_ID_RD_MAGIC); image_print_contents(rd_hdr); if (verify) { puts(" Verifying Checksum ... "); if (!image_check_dcrc(rd_hdr)) { puts("Bad Data CRC\n"); bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM); return NULL; } puts("OK\n"); } bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM); if (!image_check_os(rd_hdr, IH_OS_LINUX) || !image_check_arch(rd_hdr, arch) || !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) { printf("No Linux %s Ramdisk Image\n", genimg_get_arch_name(arch)); bootstage_error(BOOTSTAGE_ID_RAMDISK); return NULL; } return rd_hdr; } #endif /* !USE_HOSTCC */ /*****************************************************************************/ /* Shared dual-format routines */ /*****************************************************************************/ #ifndef USE_HOSTCC int getenv_yesno(char *var) { char *s = getenv(var); return (s && (*s == 'n')) ? 0 : 1; } ulong getenv_bootm_low(void) { char *s = getenv("bootm_low"); if (s) { ulong tmp = simple_strtoul(s, NULL, 16); return tmp; } #if defined(CONFIG_SYS_SDRAM_BASE) return CONFIG_SYS_SDRAM_BASE; #elif defined(CONFIG_ARM) return gd->bd->bi_dram[0].start; #else return 0; #endif } phys_size_t getenv_bootm_size(void) { phys_size_t tmp; char *s = getenv("bootm_size"); if (s) { tmp = (phys_size_t)simple_strtoull(s, NULL, 16); return tmp; } s = getenv("bootm_low"); if (s) tmp = (phys_size_t)simple_strtoull(s, NULL, 16); else tmp = 0; #if defined(CONFIG_ARM) return gd->bd->bi_dram[0].size - tmp; #else return gd->bd->bi_memsize - tmp; #endif } phys_size_t getenv_bootm_mapsize(void) { phys_size_t tmp; char *s = getenv("bootm_mapsize"); if (s) { tmp = (phys_size_t)simple_strtoull(s, NULL, 16); return tmp; } #if defined(CONFIG_SYS_BOOTMAPSZ) return CONFIG_SYS_BOOTMAPSZ; #else return getenv_bootm_size(); #endif } void memmove_wd(void *to, void *from, size_t len, ulong chunksz) { if (to == from) return; #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) while (len > 0) { size_t tail = (len > chunksz) ? chunksz : len; WATCHDOG_RESET(); memmove(to, from, tail); to += tail; from += tail; len -= tail; } #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */ memmove(to, from, len); #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */ } #endif /* !USE_HOSTCC */ void genimg_print_size(uint32_t size) { #ifndef USE_HOSTCC printf("%d Bytes = ", size); print_size(size, "\n"); #else printf("%d Bytes = %.2f kB = %.2f MB\n", size, (double)size / 1.024e3, (double)size / 1.048576e6); #endif } #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) static void genimg_print_time(time_t timestamp) { #ifndef USE_HOSTCC struct rtc_time tm; to_tm(timestamp, &tm); printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n", tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec); #else printf("%s", ctime(×tamp)); #endif } #endif /* CONFIG_TIMESTAMP || CONFIG_CMD_DATE || USE_HOSTCC */ /** * get_table_entry_name - translate entry id to long name * @table: pointer to a translation table for entries of a specific type * @msg: message to be returned when translation fails * @id: entry id to be translated * * get_table_entry_name() will go over translation table trying to find * entry that matches given id. If matching entry is found, its long * name is returned to the caller. * * returns: * long entry name if translation succeeds * msg otherwise */ char *get_table_entry_name(const table_entry_t *table, char *msg, int id) { for (; table->id >= 0; ++table) { if (table->id == id) #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) return table->lname; #else return table->lname + gd->reloc_off; #endif } return (msg); } const char *genimg_get_os_name(uint8_t os) { return (get_table_entry_name(uimage_os, "Unknown OS", os)); } const char *genimg_get_arch_name(uint8_t arch) { return (get_table_entry_name(uimage_arch, "Unknown Architecture", arch)); } const char *genimg_get_type_name(uint8_t type) { return (get_table_entry_name(uimage_type, "Unknown Image", type)); } const char *genimg_get_comp_name(uint8_t comp) { return (get_table_entry_name(uimage_comp, "Unknown Compression", comp)); } /** * get_table_entry_id - translate short entry name to id * @table: pointer to a translation table for entries of a specific type * @table_name: to be used in case of error * @name: entry short name to be translated * * get_table_entry_id() will go over translation table trying to find * entry that matches given short name. If matching entry is found, * its id returned to the caller. * * returns: * entry id if translation succeeds * -1 otherwise */ int get_table_entry_id(const table_entry_t *table, const char *table_name, const char *name) { const table_entry_t *t; #ifdef USE_HOSTCC int first = 1; for (t = table; t->id >= 0; ++t) { if (t->sname && strcasecmp(t->sname, name) == 0) return(t->id); } fprintf(stderr, "\nInvalid %s Type - valid names are", table_name); for (t = table; t->id >= 0; ++t) { if (t->sname == NULL) continue; fprintf(stderr, "%c %s", (first) ? ':' : ',', t->sname); first = 0; } fprintf(stderr, "\n"); #else for (t = table; t->id >= 0; ++t) { #ifdef CONFIG_NEEDS_MANUAL_RELOC if (t->sname && strcmp(t->sname + gd->reloc_off, name) == 0) #else if (t->sname && strcmp(t->sname, name) == 0) #endif return (t->id); } debug("Invalid %s Type: %s\n", table_name, name); #endif /* USE_HOSTCC */ return (-1); } int genimg_get_os_id(const char *name) { return (get_table_entry_id(uimage_os, "OS", name)); } int genimg_get_arch_id(const char *name) { return (get_table_entry_id(uimage_arch, "CPU", name)); } int genimg_get_type_id(const char *name) { return (get_table_entry_id(uimage_type, "Image", name)); } int genimg_get_comp_id(const char *name) { return (get_table_entry_id(uimage_comp, "Compression", name)); } #ifndef USE_HOSTCC /** * genimg_get_format - get image format type * @img_addr: image start address * * genimg_get_format() checks whether provided address points to a valid * legacy or FIT image. * * New uImage format and FDT blob are based on a libfdt. FDT blob * may be passed directly or embedded in a FIT image. In both situations * genimg_get_format() must be able to dectect libfdt header. * * returns: * image format type or IMAGE_FORMAT_INVALID if no image is present */ int genimg_get_format(void *img_addr) { ulong format = IMAGE_FORMAT_INVALID; const image_header_t *hdr; #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) char *fit_hdr; #endif hdr = (const image_header_t *)img_addr; if (image_check_magic(hdr)) format = IMAGE_FORMAT_LEGACY; #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) else { fit_hdr = (char *)img_addr; if (fdt_check_header(fit_hdr) == 0) format = IMAGE_FORMAT_FIT; } #endif return format; } /** * genimg_get_image - get image from special storage (if necessary) * @img_addr: image start address * * genimg_get_image() checks if provided image start adddress is located * in a dataflash storage. If so, image is moved to a system RAM memory. * * returns: * image start address after possible relocation from special storage */ ulong genimg_get_image(ulong img_addr) { ulong ram_addr = img_addr; #ifdef CONFIG_HAS_DATAFLASH ulong h_size, d_size; if (addr_dataflash(img_addr)) { /* ger RAM address */ ram_addr = CONFIG_SYS_LOAD_ADDR; /* get header size */ h_size = image_get_header_size(); #if defined(CONFIG_FIT) if (sizeof(struct fdt_header) > h_size) h_size = sizeof(struct fdt_header); #endif /* read in header */ debug(" Reading image header from dataflash address " "%08lx to RAM address %08lx\n", img_addr, ram_addr); read_dataflash(img_addr, h_size, (char *)ram_addr); /* get data size */ switch (genimg_get_format((void *)ram_addr)) { case IMAGE_FORMAT_LEGACY: d_size = image_get_data_size( (const image_header_t *)ram_addr); debug(" Legacy format image found at 0x%08lx, " "size 0x%08lx\n", ram_addr, d_size); break; #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: d_size = fit_get_size((const void *)ram_addr) - h_size; debug(" FIT/FDT format image found at 0x%08lx, " "size 0x%08lx\n", ram_addr, d_size); break; #endif default: printf(" No valid image found at 0x%08lx\n", img_addr); return ram_addr; } /* read in image data */ debug(" Reading image remaining data from dataflash address " "%08lx to RAM address %08lx\n", img_addr + h_size, ram_addr + h_size); read_dataflash(img_addr + h_size, d_size, (char *)(ram_addr + h_size)); } #endif /* CONFIG_HAS_DATAFLASH */ return ram_addr; } /** * fit_has_config - check if there is a valid FIT configuration * @images: pointer to the bootm command headers structure * * fit_has_config() checks if there is a FIT configuration in use * (if FTI support is present). * * returns: * 0, no FIT support or no configuration found * 1, configuration found */ int genimg_has_config(bootm_headers_t *images) { #if defined(CONFIG_FIT) if (images->fit_uname_cfg) return 1; #endif return 0; } /** * boot_get_ramdisk - main ramdisk handling routine * @argc: command argument count * @argv: command argument list * @images: pointer to the bootm images structure * @arch: expected ramdisk architecture * @rd_start: pointer to a ulong variable, will hold ramdisk start address * @rd_end: pointer to a ulong variable, will hold ramdisk end * * boot_get_ramdisk() is responsible for finding a valid ramdisk image. * Curently supported are the following ramdisk sources: * - multicomponent kernel/ramdisk image, * - commandline provided address of decicated ramdisk image. * * returns: * 0, if ramdisk image was found and valid, or skiped * rd_start and rd_end are set to ramdisk start/end addresses if * ramdisk image is found and valid * * 1, if ramdisk image is found but corrupted, or invalid * rd_start and rd_end are set to 0 if no ramdisk exists */ int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images, uint8_t arch, ulong *rd_start, ulong *rd_end) { ulong rd_addr, rd_load; ulong rd_data, rd_len; const image_header_t *rd_hdr; #ifdef CONFIG_SUPPORT_RAW_INITRD char *end; #endif #if defined(CONFIG_FIT) void *fit_hdr; const char *fit_uname_config = NULL; const char *fit_uname_ramdisk = NULL; ulong default_addr; int rd_noffset; int cfg_noffset; const void *data; size_t size; #endif *rd_start = 0; *rd_end = 0; /* * Look for a '-' which indicates to ignore the * ramdisk argument */ if ((argc >= 3) && (strcmp(argv[2], "-") == 0)) { debug("## Skipping init Ramdisk\n"); rd_len = rd_data = 0; } else if (argc >= 3 || genimg_has_config(images)) { #if defined(CONFIG_FIT) if (argc >= 3) { /* * If the init ramdisk comes from the FIT image and * the FIT image address is omitted in the command * line argument, try to use os FIT image address or * default load address. */ if (images->fit_uname_os) default_addr = (ulong)images->fit_hdr_os; else default_addr = load_addr; if (fit_parse_conf(argv[2], default_addr, &rd_addr, &fit_uname_config)) { debug("* ramdisk: config '%s' from image at " "0x%08lx\n", fit_uname_config, rd_addr); } else if (fit_parse_subimage(argv[2], default_addr, &rd_addr, &fit_uname_ramdisk)) { debug("* ramdisk: subimage '%s' from image at " "0x%08lx\n", fit_uname_ramdisk, rd_addr); } else #endif { rd_addr = simple_strtoul(argv[2], NULL, 16); debug("* ramdisk: cmdline image address = " "0x%08lx\n", rd_addr); } #if defined(CONFIG_FIT) } else { /* use FIT configuration provided in first bootm * command argument */ rd_addr = (ulong)images->fit_hdr_os; fit_uname_config = images->fit_uname_cfg; debug("* ramdisk: using config '%s' from image " "at 0x%08lx\n", fit_uname_config, rd_addr); /* * Check whether configuration has ramdisk defined, * if not, don't try to use it, quit silently. */ fit_hdr = (void *)rd_addr; cfg_noffset = fit_conf_get_node(fit_hdr, fit_uname_config); if (cfg_noffset < 0) { debug("* ramdisk: no such config\n"); return 1; } rd_noffset = fit_conf_get_ramdisk_node(fit_hdr, cfg_noffset); if (rd_noffset < 0) { debug("* ramdisk: no ramdisk in config\n"); return 0; } } #endif /* copy from dataflash if needed */ rd_addr = genimg_get_image(rd_addr); /* * Check if there is an initrd image at the * address provided in the second bootm argument * check image type, for FIT images get FIT node. */ switch (genimg_get_format((void *)rd_addr)) { case IMAGE_FORMAT_LEGACY: printf("## Loading init Ramdisk from Legacy " "Image at %08lx ...\n", rd_addr); bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK); rd_hdr = image_get_ramdisk(rd_addr, arch, images->verify); if (rd_hdr == NULL) return 1; rd_data = image_get_data(rd_hdr); rd_len = image_get_data_size(rd_hdr); rd_load = image_get_load(rd_hdr); break; #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: fit_hdr = (void *)rd_addr; printf("## Loading init Ramdisk from FIT " "Image at %08lx ...\n", rd_addr); bootstage_mark(BOOTSTAGE_ID_FIT_RD_FORMAT); if (!fit_check_format(fit_hdr)) { puts("Bad FIT ramdisk image format!\n"); bootstage_error( BOOTSTAGE_ID_FIT_RD_FORMAT); return 1; } bootstage_mark(BOOTSTAGE_ID_FIT_RD_FORMAT_OK); if (!fit_uname_ramdisk) { /* * no ramdisk image node unit name, try to get config * node first. If config unit node name is NULL * fit_conf_get_node() will try to find default config node */ bootstage_mark( BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME); cfg_noffset = fit_conf_get_node(fit_hdr, fit_uname_config); if (cfg_noffset < 0) { puts("Could not find configuration " "node\n"); bootstage_error( BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME); return 1; } fit_uname_config = fdt_get_name(fit_hdr, cfg_noffset, NULL); printf(" Using '%s' configuration\n", fit_uname_config); rd_noffset = fit_conf_get_ramdisk_node(fit_hdr, cfg_noffset); fit_uname_ramdisk = fit_get_name(fit_hdr, rd_noffset, NULL); } else { /* get ramdisk component image node offset */ bootstage_mark( BOOTSTAGE_ID_FIT_RD_UNIT_NAME); rd_noffset = fit_image_get_node(fit_hdr, fit_uname_ramdisk); } if (rd_noffset < 0) { puts("Could not find subimage node\n"); bootstage_error(BOOTSTAGE_ID_FIT_RD_SUBNODE); return 1; } printf(" Trying '%s' ramdisk subimage\n", fit_uname_ramdisk); bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK); if (!fit_check_ramdisk(fit_hdr, rd_noffset, arch, images->verify)) return 1; /* get ramdisk image data address and length */ if (fit_image_get_data(fit_hdr, rd_noffset, &data, &size)) { puts("Could not find ramdisk subimage data!\n"); bootstage_error(BOOTSTAGE_ID_FIT_RD_GET_DATA); return 1; } bootstage_mark(BOOTSTAGE_ID_FIT_RD_GET_DATA_OK); rd_data = (ulong)data; rd_len = size; if (fit_image_get_load(fit_hdr, rd_noffset, &rd_load)) { puts("Can't get ramdisk subimage load " "address!\n"); bootstage_error(BOOTSTAGE_ID_FIT_RD_LOAD); return 1; } bootstage_mark(BOOTSTAGE_ID_FIT_RD_LOAD); images->fit_hdr_rd = fit_hdr; images->fit_uname_rd = fit_uname_ramdisk; images->fit_noffset_rd = rd_noffset; break; #endif default: #ifdef CONFIG_SUPPORT_RAW_INITRD if (argc >= 3 && (end = strchr(argv[2], ':'))) { rd_len = simple_strtoul(++end, NULL, 16); rd_data = rd_addr; } else #endif { puts("Wrong Ramdisk Image Format\n"); rd_data = rd_len = rd_load = 0; return 1; } } } else if (images->legacy_hdr_valid && image_check_type(&images->legacy_hdr_os_copy, IH_TYPE_MULTI)) { /* * Now check if we have a legacy mult-component image, * get second entry data start address and len. */ bootstage_mark(BOOTSTAGE_ID_RAMDISK); printf("## Loading init Ramdisk from multi component " "Legacy Image at %08lx ...\n", (ulong)images->legacy_hdr_os); image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len); } else { /* * no initrd image */ bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK); rd_len = rd_data = 0; } if (!rd_data) { debug("## No init Ramdisk\n"); } else { *rd_start = rd_data; *rd_end = rd_data + rd_len; } debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n", *rd_start, *rd_end); return 0; } #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH /** * boot_ramdisk_high - relocate init ramdisk * @lmb: pointer to lmb handle, will be used for memory mgmt * @rd_data: ramdisk data start address * @rd_len: ramdisk data length * @initrd_start: pointer to a ulong variable, will hold final init ramdisk * start address (after possible relocation) * @initrd_end: pointer to a ulong variable, will hold final init ramdisk * end address (after possible relocation) * * boot_ramdisk_high() takes a relocation hint from "initrd_high" environement * variable and if requested ramdisk data is moved to a specified location. * * Initrd_start and initrd_end are set to final (after relocation) ramdisk * start/end addresses if ramdisk image start and len were provided, * otherwise set initrd_start and initrd_end set to zeros. * * returns: * 0 - success * -1 - failure */ int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, ulong *initrd_start, ulong *initrd_end) { char *s; ulong initrd_high; int initrd_copy_to_ram = 1; if ((s = getenv("initrd_high")) != NULL) { /* a value of "no" or a similar string will act like 0, * turning the "load high" feature off. This is intentional. */ initrd_high = simple_strtoul(s, NULL, 16); if (initrd_high == ~0) initrd_copy_to_ram = 0; } else { /* not set, no restrictions to load high */ initrd_high = ~0; } #ifdef CONFIG_LOGBUFFER /* Prevent initrd from overwriting logbuffer */ lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE); #endif debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", initrd_high, initrd_copy_to_ram); if (rd_data) { if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ debug(" in-place initrd\n"); *initrd_start = rd_data; *initrd_end = rd_data + rd_len; lmb_reserve(lmb, rd_data, rd_len); } else { if (initrd_high) *initrd_start = (ulong)lmb_alloc_base(lmb, rd_len, 0x1000, initrd_high); else *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 0x1000); if (*initrd_start == 0) { puts("ramdisk - allocation error\n"); goto error; } bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK); *initrd_end = *initrd_start + rd_len; printf(" Loading Ramdisk to %08lx, end %08lx ... ", *initrd_start, *initrd_end); memmove_wd((void *)*initrd_start, (void *)rd_data, rd_len, CHUNKSZ); #ifdef CONFIG_MP /* * Ensure the image is flushed to memory to handle * AMP boot scenarios in which we might not be * HW cache coherent */ flush_cache((unsigned long)*initrd_start, rd_len); #endif puts("OK\n"); } } else { *initrd_start = 0; *initrd_end = 0; } debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", *initrd_start, *initrd_end); return 0; error: return -1; } #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */ #ifdef CONFIG_OF_LIBFDT static void fdt_error(const char *msg) { puts("ERROR: "); puts(msg); puts(" - must RESET the board to recover.\n"); } static const image_header_t *image_get_fdt(ulong fdt_addr) { const image_header_t *fdt_hdr = (const image_header_t *)fdt_addr; image_print_contents(fdt_hdr); puts(" Verifying Checksum ... "); if (!image_check_hcrc(fdt_hdr)) { fdt_error("fdt header checksum invalid"); return NULL; } if (!image_check_dcrc(fdt_hdr)) { fdt_error("fdt checksum invalid"); return NULL; } puts("OK\n"); if (!image_check_type(fdt_hdr, IH_TYPE_FLATDT)) { fdt_error("uImage is not a fdt"); return NULL; } if (image_get_comp(fdt_hdr) != IH_COMP_NONE) { fdt_error("uImage is compressed"); return NULL; } if (fdt_check_header((char *)image_get_data(fdt_hdr)) != 0) { fdt_error("uImage data is not a fdt"); return NULL; } return fdt_hdr; } /** * fit_check_fdt - verify FIT format FDT subimage * @fit_hdr: pointer to the FIT header * fdt_noffset: FDT subimage node offset within FIT image * @verify: data CRC verification flag * * fit_check_fdt() verifies integrity of the FDT subimage and from * specified FIT image. * * returns: * 1, on success * 0, on failure */ #if defined(CONFIG_FIT) static int fit_check_fdt(const void *fit, int fdt_noffset, int verify) { fit_image_print(fit, fdt_noffset, " "); if (verify) { puts(" Verifying Hash Integrity ... "); if (!fit_image_check_hashes(fit, fdt_noffset)) { fdt_error("Bad Data Hash"); return 0; } puts("OK\n"); } if (!fit_image_check_type(fit, fdt_noffset, IH_TYPE_FLATDT)) { fdt_error("Not a FDT image"); return 0; } if (!fit_image_check_comp(fit, fdt_noffset, IH_COMP_NONE)) { fdt_error("FDT image is compressed"); return 0; } return 1; } #endif /* CONFIG_FIT */ #ifndef CONFIG_SYS_FDT_PAD #define CONFIG_SYS_FDT_PAD 0x3000 #endif #if defined(CONFIG_OF_LIBFDT) /** * boot_fdt_add_mem_rsv_regions - Mark the memreserve sections as unusable * @lmb: pointer to lmb handle, will be used for memory mgmt * @fdt_blob: pointer to fdt blob base address * * Adds the memreserve regions in the dtb to the lmb block. Adding the * memreserve regions prevents u-boot from using them to store the initrd * or the fdt blob. */ void boot_fdt_add_mem_rsv_regions(struct lmb *lmb, void *fdt_blob) { uint64_t addr, size; int i, total; if (fdt_check_header(fdt_blob) != 0) return; total = fdt_num_mem_rsv(fdt_blob); for (i = 0; i < total; i++) { if (fdt_get_mem_rsv(fdt_blob, i, &addr, &size) != 0) continue; printf(" reserving fdt memory region: addr=%llx size=%llx\n", (unsigned long long)addr, (unsigned long long)size); lmb_reserve(lmb, addr, size); } } /** * boot_relocate_fdt - relocate flat device tree * @lmb: pointer to lmb handle, will be used for memory mgmt * @of_flat_tree: pointer to a char* variable, will hold fdt start address * @of_size: pointer to a ulong variable, will hold fdt length * * boot_relocate_fdt() allocates a region of memory within the bootmap and * relocates the of_flat_tree into that region, even if the fdt is already in * the bootmap. It also expands the size of the fdt by CONFIG_SYS_FDT_PAD * bytes. * * of_flat_tree and of_size are set to final (after relocation) values * * returns: * 0 - success * 1 - failure */ int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size) { void *fdt_blob = *of_flat_tree; void *of_start = 0; char *fdt_high; ulong of_len = 0; int err; int disable_relocation = 0; /* nothing to do */ if (*of_size == 0) return 0; if (fdt_check_header(fdt_blob) != 0) { fdt_error("image is not a fdt"); goto error; } /* position on a 4K boundary before the alloc_current */ /* Pad the FDT by a specified amount */ of_len = *of_size + CONFIG_SYS_FDT_PAD; /* If fdt_high is set use it to select the relocation address */ fdt_high = getenv("fdt_high"); if (fdt_high) { void *desired_addr = (void *)simple_strtoul(fdt_high, NULL, 16); if (((ulong) desired_addr) == ~0UL) { /* All ones means use fdt in place */ of_start = fdt_blob; lmb_reserve(lmb, (ulong)of_start, of_len); disable_relocation = 1; } else if (desired_addr) { of_start = (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000, (ulong)desired_addr); if (of_start == 0) { puts("Failed using fdt_high value for Device Tree"); goto error; } } else { of_start = (void *)(ulong) lmb_alloc(lmb, of_len, 0x1000); } } else { of_start = (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000, getenv_bootm_mapsize() + getenv_bootm_low()); } if (of_start == 0) { puts("device tree - allocation error\n"); goto error; } if (disable_relocation) { /* We assume there is space after the existing fdt to use for padding */ fdt_set_totalsize(of_start, of_len); printf(" Using Device Tree in place at %p, end %p\n", of_start, of_start + of_len - 1); } else { debug("## device tree at %p ... %p (len=%ld [0x%lX])\n", fdt_blob, fdt_blob + *of_size - 1, of_len, of_len); printf(" Loading Device Tree to %p, end %p ... ", of_start, of_start + of_len - 1); err = fdt_open_into(fdt_blob, of_start, of_len); if (err != 0) { fdt_error("fdt move failed"); goto error; } puts("OK\n"); } *of_flat_tree = of_start; *of_size = of_len; set_working_fdt_addr(*of_flat_tree); return 0; error: return 1; } #endif /* CONFIG_OF_LIBFDT */ /** * boot_get_fdt - main fdt handling routine * @argc: command argument count * @argv: command argument list * @images: pointer to the bootm images structure * @of_flat_tree: pointer to a char* variable, will hold fdt start address * @of_size: pointer to a ulong variable, will hold fdt length * * boot_get_fdt() is responsible for finding a valid flat device tree image. * Curently supported are the following ramdisk sources: * - multicomponent kernel/ramdisk image, * - commandline provided address of decicated ramdisk image. * * returns: * 0, if fdt image was found and valid, or skipped * of_flat_tree and of_size are set to fdt start address and length if * fdt image is found and valid * * 1, if fdt image is found but corrupted * of_flat_tree and of_size are set to 0 if no fdt exists */ int boot_get_fdt(int flag, int argc, char * const argv[], bootm_headers_t *images, char **of_flat_tree, ulong *of_size) { const image_header_t *fdt_hdr; ulong fdt_addr; char *fdt_blob = NULL; ulong image_start, image_data, image_end; ulong load_start, load_end; #if defined(CONFIG_FIT) void *fit_hdr; const char *fit_uname_config = NULL; const char *fit_uname_fdt = NULL; ulong default_addr; int cfg_noffset; int fdt_noffset; const void *data; size_t size; #endif *of_flat_tree = NULL; *of_size = 0; if (argc > 3 || genimg_has_config(images)) { #if defined(CONFIG_FIT) if (argc > 3) { /* * If the FDT blob comes from the FIT image and the * FIT image address is omitted in the command line * argument, try to use ramdisk or os FIT image * address or default load address. */ if (images->fit_uname_rd) default_addr = (ulong)images->fit_hdr_rd; else if (images->fit_uname_os) default_addr = (ulong)images->fit_hdr_os; else default_addr = load_addr; if (fit_parse_conf(argv[3], default_addr, &fdt_addr, &fit_uname_config)) { debug("* fdt: config '%s' from image at " "0x%08lx\n", fit_uname_config, fdt_addr); } else if (fit_parse_subimage(argv[3], default_addr, &fdt_addr, &fit_uname_fdt)) { debug("* fdt: subimage '%s' from image at " "0x%08lx\n", fit_uname_fdt, fdt_addr); } else #endif { fdt_addr = simple_strtoul(argv[3], NULL, 16); debug("* fdt: cmdline image address = " "0x%08lx\n", fdt_addr); } #if defined(CONFIG_FIT) } else { /* use FIT configuration provided in first bootm * command argument */ fdt_addr = (ulong)images->fit_hdr_os; fit_uname_config = images->fit_uname_cfg; debug("* fdt: using config '%s' from image " "at 0x%08lx\n", fit_uname_config, fdt_addr); /* * Check whether configuration has FDT blob defined, * if not quit silently. */ fit_hdr = (void *)fdt_addr; cfg_noffset = fit_conf_get_node(fit_hdr, fit_uname_config); if (cfg_noffset < 0) { debug("* fdt: no such config\n"); return 0; } fdt_noffset = fit_conf_get_fdt_node(fit_hdr, cfg_noffset); if (fdt_noffset < 0) { debug("* fdt: no fdt in config\n"); return 0; } } #endif debug("## Checking for 'FDT'/'FDT Image' at %08lx\n", fdt_addr); /* copy from dataflash if needed */ fdt_addr = genimg_get_image(fdt_addr); /* * Check if there is an FDT image at the * address provided in the second bootm argument * check image type, for FIT images get a FIT node. */ switch (genimg_get_format((void *)fdt_addr)) { case IMAGE_FORMAT_LEGACY: /* verify fdt_addr points to a valid image header */ printf("## Flattened Device Tree from Legacy Image " "at %08lx\n", fdt_addr); fdt_hdr = image_get_fdt(fdt_addr); if (!fdt_hdr) goto error; /* * move image data to the load address, * make sure we don't overwrite initial image */ image_start = (ulong)fdt_hdr; image_data = (ulong)image_get_data(fdt_hdr); image_end = image_get_image_end(fdt_hdr); load_start = image_get_load(fdt_hdr); load_end = load_start + image_get_data_size(fdt_hdr); if (load_start == image_start || load_start == image_data) { fdt_blob = (char *)image_data; break; } if ((load_start < image_end) && (load_end > image_start)) { fdt_error("fdt overwritten"); goto error; } debug(" Loading FDT from 0x%08lx to 0x%08lx\n", image_data, load_start); memmove((void *)load_start, (void *)image_data, image_get_data_size(fdt_hdr)); fdt_blob = (char *)load_start; break; case IMAGE_FORMAT_FIT: /* * This case will catch both: new uImage format * (libfdt based) and raw FDT blob (also libfdt * based). */ #if defined(CONFIG_FIT) /* check FDT blob vs FIT blob */ if (fit_check_format((const void *)fdt_addr)) { /* * FIT image */ fit_hdr = (void *)fdt_addr; printf("## Flattened Device Tree from FIT " "Image at %08lx\n", fdt_addr); if (!fit_uname_fdt) { /* * no FDT blob image node unit name, * try to get config node first. If * config unit node name is NULL * fit_conf_get_node() will try to * find default config node */ cfg_noffset = fit_conf_get_node(fit_hdr, fit_uname_config); if (cfg_noffset < 0) { fdt_error("Could not find " "configuration " "node\n"); goto error; } fit_uname_config = fdt_get_name(fit_hdr, cfg_noffset, NULL); printf(" Using '%s' configuration\n", fit_uname_config); fdt_noffset = fit_conf_get_fdt_node( fit_hdr, cfg_noffset); fit_uname_fdt = fit_get_name(fit_hdr, fdt_noffset, NULL); } else { /* get FDT component image node offset */ fdt_noffset = fit_image_get_node( fit_hdr, fit_uname_fdt); } if (fdt_noffset < 0) { fdt_error("Could not find subimage " "node\n"); goto error; } printf(" Trying '%s' FDT blob subimage\n", fit_uname_fdt); if (!fit_check_fdt(fit_hdr, fdt_noffset, images->verify)) goto error; /* get ramdisk image data address and length */ if (fit_image_get_data(fit_hdr, fdt_noffset, &data, &size)) { fdt_error("Could not find FDT " "subimage data"); goto error; } /* verift that image data is a proper FDT blob */ if (fdt_check_header((char *)data) != 0) { fdt_error("Subimage data is not a FTD"); goto error; } /* * move image data to the load address, * make sure we don't overwrite initial image */ image_start = (ulong)fit_hdr; image_end = fit_get_end(fit_hdr); if (fit_image_get_load(fit_hdr, fdt_noffset, &load_start) == 0) { load_end = load_start + size; if ((load_start < image_end) && (load_end > image_start)) { fdt_error("FDT overwritten"); goto error; } printf(" Loading FDT from 0x%08lx " "to 0x%08lx\n", (ulong)data, load_start); memmove((void *)load_start, (void *)data, size); fdt_blob = (char *)load_start; } else { fdt_blob = (char *)data; } images->fit_hdr_fdt = fit_hdr; images->fit_uname_fdt = fit_uname_fdt; images->fit_noffset_fdt = fdt_noffset; break; } else #endif { /* * FDT blob */ fdt_blob = (char *)fdt_addr; debug("* fdt: raw FDT blob\n"); printf("## Flattened Device Tree blob at " "%08lx\n", (long)fdt_blob); } break; default: puts("ERROR: Did not find a cmdline Flattened Device " "Tree\n"); goto error; } printf(" Booting using the fdt blob at 0x%p\n", fdt_blob); } else if (images->legacy_hdr_valid && image_check_type(&images->legacy_hdr_os_copy, IH_TYPE_MULTI)) { ulong fdt_data, fdt_len; /* * Now check if we have a legacy multi-component image, * get second entry data start address and len. */ printf("## Flattened Device Tree from multi " "component Image at %08lX\n", (ulong)images->legacy_hdr_os); image_multi_getimg(images->legacy_hdr_os, 2, &fdt_data, &fdt_len); if (fdt_len) { fdt_blob = (char *)fdt_data; printf(" Booting using the fdt at 0x%p\n", fdt_blob); if (fdt_check_header(fdt_blob) != 0) { fdt_error("image is not a fdt"); goto error; } if (fdt_totalsize(fdt_blob) != fdt_len) { fdt_error("fdt size != image size"); goto error; } } else { debug("## No Flattened Device Tree\n"); return 0; } } else { debug("## No Flattened Device Tree\n"); return 0; } *of_flat_tree = fdt_blob; *of_size = fdt_totalsize(fdt_blob); debug(" of_flat_tree at 0x%08lx size 0x%08lx\n", (ulong)*of_flat_tree, *of_size); return 0; error: *of_flat_tree = 0; *of_size = 0; return 1; } #endif /* CONFIG_OF_LIBFDT */ #ifdef CONFIG_SYS_BOOT_GET_CMDLINE /** * boot_get_cmdline - allocate and initialize kernel cmdline * @lmb: pointer to lmb handle, will be used for memory mgmt * @cmd_start: pointer to a ulong variable, will hold cmdline start * @cmd_end: pointer to a ulong variable, will hold cmdline end * * boot_get_cmdline() allocates space for kernel command line below * BOOTMAPSZ + getenv_bootm_low() address. If "bootargs" U-boot environemnt * variable is present its contents is copied to allocated kernel * command line. * * returns: * 0 - success * -1 - failure */ int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end) { char *cmdline; char *s; cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf, getenv_bootm_mapsize() + getenv_bootm_low()); if (cmdline == NULL) return -1; if ((s = getenv("bootargs")) == NULL) s = ""; strcpy(cmdline, s); *cmd_start = (ulong) & cmdline[0]; *cmd_end = *cmd_start + strlen(cmdline); debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end); return 0; } #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */ #ifdef CONFIG_SYS_BOOT_GET_KBD /** * boot_get_kbd - allocate and initialize kernel copy of board info * @lmb: pointer to lmb handle, will be used for memory mgmt * @kbd: double pointer to board info data * * boot_get_kbd() allocates space for kernel copy of board info data below * BOOTMAPSZ + getenv_bootm_low() address and kernel board info is initialized * with the current u-boot board info data. * * returns: * 0 - success * -1 - failure */ int boot_get_kbd(struct lmb *lmb, bd_t **kbd) { *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf, getenv_bootm_mapsize() + getenv_bootm_low()); if (*kbd == NULL) return -1; **kbd = *(gd->bd); debug("## kernel board info at 0x%08lx\n", (ulong)*kbd); #if defined(DEBUG) && defined(CONFIG_CMD_BDI) do_bdinfo(NULL, 0, 0, NULL); #endif return 0; } #endif /* CONFIG_SYS_BOOT_GET_KBD */ #endif /* !USE_HOSTCC */ #if defined(CONFIG_FIT) /*****************************************************************************/ /* New uImage format routines */ /*****************************************************************************/ #ifndef USE_HOSTCC static int fit_parse_spec(const char *spec, char sepc, ulong addr_curr, ulong *addr, const char **name) { const char *sep; *addr = addr_curr; *name = NULL; sep = strchr(spec, sepc); if (sep) { if (sep - spec > 0) *addr = simple_strtoul(spec, NULL, 16); *name = sep + 1; return 1; } return 0; } /** * fit_parse_conf - parse FIT configuration spec * @spec: input string, containing configuration spec * @add_curr: current image address (to be used as a possible default) * @addr: pointer to a ulong variable, will hold FIT image address of a given * configuration * @conf_name double pointer to a char, will hold pointer to a configuration * unit name * * fit_parse_conf() expects configuration spec in the for of []#, * where is a FIT image address that contains configuration * with a unit name. * * Address part is optional, and if omitted default add_curr will * be used instead. * * returns: * 1 if spec is a valid configuration string, * addr and conf_name are set accordingly * 0 otherwise */ int fit_parse_conf(const char *spec, ulong addr_curr, ulong *addr, const char **conf_name) { return fit_parse_spec(spec, '#', addr_curr, addr, conf_name); } /** * fit_parse_subimage - parse FIT subimage spec * @spec: input string, containing subimage spec * @add_curr: current image address (to be used as a possible default) * @addr: pointer to a ulong variable, will hold FIT image address of a given * subimage * @image_name: double pointer to a char, will hold pointer to a subimage name * * fit_parse_subimage() expects subimage spec in the for of * []:, where is a FIT image address that contains * subimage with a unit name. * * Address part is optional, and if omitted default add_curr will * be used instead. * * returns: * 1 if spec is a valid subimage string, * addr and image_name are set accordingly * 0 otherwise */ int fit_parse_subimage(const char *spec, ulong addr_curr, ulong *addr, const char **image_name) { return fit_parse_spec(spec, ':', addr_curr, addr, image_name); } #endif /* !USE_HOSTCC */ static void fit_get_debug(const void *fit, int noffset, char *prop_name, int err) { debug("Can't get '%s' property from FIT 0x%08lx, " "node: offset %d, name %s (%s)\n", prop_name, (ulong)fit, noffset, fit_get_name(fit, noffset, NULL), fdt_strerror(err)); } /** * fit_print_contents - prints out the contents of the FIT format image * @fit: pointer to the FIT format image header * @p: pointer to prefix string * * fit_print_contents() formats a multi line FIT image contents description. * The routine prints out FIT image properties (root node level) follwed by * the details of each component image. * * returns: * no returned results */ void fit_print_contents(const void *fit) { char *desc; char *uname; int images_noffset; int confs_noffset; int noffset; int ndepth; int count = 0; int ret; const char *p; #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) time_t timestamp; #endif #ifdef USE_HOSTCC p = ""; #else p = " "; #endif /* Root node properties */ ret = fit_get_desc(fit, 0, &desc); printf("%sFIT description: ", p); if (ret) printf("unavailable\n"); else printf("%s\n", desc); #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) ret = fit_get_timestamp(fit, 0, ×tamp); printf("%sCreated: ", p); if (ret) printf("unavailable\n"); else genimg_print_time(timestamp); #endif /* Find images parent node offset */ images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); if (images_noffset < 0) { printf("Can't find images parent node '%s' (%s)\n", FIT_IMAGES_PATH, fdt_strerror(images_noffset)); return; } /* Process its subnodes, print out component images details */ for (ndepth = 0, count = 0, noffset = fdt_next_node(fit, images_noffset, &ndepth); (noffset >= 0) && (ndepth > 0); noffset = fdt_next_node(fit, noffset, &ndepth)) { if (ndepth == 1) { /* * Direct child node of the images parent node, * i.e. component image node. */ printf("%s Image %u (%s)\n", p, count++, fit_get_name(fit, noffset, NULL)); fit_image_print(fit, noffset, p); } } /* Find configurations parent node offset */ confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH); if (confs_noffset < 0) { debug("Can't get configurations parent node '%s' (%s)\n", FIT_CONFS_PATH, fdt_strerror(confs_noffset)); return; } /* get default configuration unit name from default property */ uname = (char *)fdt_getprop(fit, noffset, FIT_DEFAULT_PROP, NULL); if (uname) printf("%s Default Configuration: '%s'\n", p, uname); /* Process its subnodes, print out configurations details */ for (ndepth = 0, count = 0, noffset = fdt_next_node(fit, confs_noffset, &ndepth); (noffset >= 0) && (ndepth > 0); noffset = fdt_next_node(fit, noffset, &ndepth)) { if (ndepth == 1) { /* * Direct child node of the configurations parent node, * i.e. configuration node. */ printf("%s Configuration %u (%s)\n", p, count++, fit_get_name(fit, noffset, NULL)); fit_conf_print(fit, noffset, p); } } } /** * fit_image_print - prints out the FIT component image details * @fit: pointer to the FIT format image header * @image_noffset: offset of the component image node * @p: pointer to prefix string * * fit_image_print() lists all mandatory properies for the processed component * image. If present, hash nodes are printed out as well. Load * address for images of type firmware is also printed out. Since the load * address is not mandatory for firmware images, it will be output as * "unavailable" when not present. * * returns: * no returned results */ void fit_image_print(const void *fit, int image_noffset, const char *p) { char *desc; uint8_t type, arch, os, comp; size_t size; ulong load, entry; const void *data; int noffset; int ndepth; int ret; /* Mandatory properties */ ret = fit_get_desc(fit, image_noffset, &desc); printf("%s Description: ", p); if (ret) printf("unavailable\n"); else printf("%s\n", desc); fit_image_get_type(fit, image_noffset, &type); printf("%s Type: %s\n", p, genimg_get_type_name(type)); fit_image_get_comp(fit, image_noffset, &comp); printf("%s Compression: %s\n", p, genimg_get_comp_name(comp)); ret = fit_image_get_data(fit, image_noffset, &data, &size); #ifndef USE_HOSTCC printf("%s Data Start: ", p); if (ret) printf("unavailable\n"); else printf("0x%08lx\n", (ulong)data); #endif printf("%s Data Size: ", p); if (ret) printf("unavailable\n"); else genimg_print_size(size); /* Remaining, type dependent properties */ if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) || (type == IH_TYPE_RAMDISK) || (type == IH_TYPE_FIRMWARE) || (type == IH_TYPE_FLATDT)) { fit_image_get_arch(fit, image_noffset, &arch); printf("%s Architecture: %s\n", p, genimg_get_arch_name(arch)); } if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_RAMDISK)) { fit_image_get_os(fit, image_noffset, &os); printf("%s OS: %s\n", p, genimg_get_os_name(os)); } if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) || (type == IH_TYPE_FIRMWARE) || (type == IH_TYPE_RAMDISK)) { ret = fit_image_get_load(fit, image_noffset, &load); printf("%s Load Address: ", p); if (ret) printf("unavailable\n"); else printf("0x%08lx\n", load); } if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) || (type == IH_TYPE_RAMDISK)) { fit_image_get_entry(fit, image_noffset, &entry); printf("%s Entry Point: ", p); if (ret) printf("unavailable\n"); else printf("0x%08lx\n", entry); } /* Process all hash subnodes of the component image node */ for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); (noffset >= 0) && (ndepth > 0); noffset = fdt_next_node(fit, noffset, &ndepth)) { if (ndepth == 1) { /* Direct child node of the component image node */ fit_image_print_hash(fit, noffset, p); } } } /** * fit_image_print_hash - prints out the hash node details * @fit: pointer to the FIT format image header * @noffset: offset of the hash node * @p: pointer to prefix string * * fit_image_print_hash() lists properies for the processed hash node * * returns: * no returned results */ void fit_image_print_hash(const void *fit, int noffset, const char *p) { char *algo; uint8_t *value; int value_len; int i, ret; /* * Check subnode name, must be equal to "hash". * Multiple hash nodes require unique unit node * names, e.g. hash@1, hash@2, etc. */ if (strncmp(fit_get_name(fit, noffset, NULL), FIT_HASH_NODENAME, strlen(FIT_HASH_NODENAME)) != 0) return; debug("%s Hash node: '%s'\n", p, fit_get_name(fit, noffset, NULL)); printf("%s Hash algo: ", p); if (fit_image_hash_get_algo(fit, noffset, &algo)) { printf("invalid/unsupported\n"); return; } printf("%s\n", algo); ret = fit_image_hash_get_value(fit, noffset, &value, &value_len); printf("%s Hash value: ", p); if (ret) { printf("unavailable\n"); } else { for (i = 0; i < value_len; i++) printf("%02x", value[i]); printf("\n"); } debug("%s Hash len: %d\n", p, value_len); } /** * fit_get_desc - get node description property * @fit: pointer to the FIT format image header * @noffset: node offset * @desc: double pointer to the char, will hold pointer to the descrption * * fit_get_desc() reads description property from a given node, if * description is found pointer to it is returened in third call argument. * * returns: * 0, on success * -1, on failure */ int fit_get_desc(const void *fit, int noffset, char **desc) { int len; *desc = (char *)fdt_getprop(fit, noffset, FIT_DESC_PROP, &len); if (*desc == NULL) { fit_get_debug(fit, noffset, FIT_DESC_PROP, len); return -1; } return 0; } /** * fit_get_timestamp - get node timestamp property * @fit: pointer to the FIT format image header * @noffset: node offset * @timestamp: pointer to the time_t, will hold read timestamp * * fit_get_timestamp() reads timestamp poperty from given node, if timestamp * is found and has a correct size its value is retured in third call * argument. * * returns: * 0, on success * -1, on property read failure * -2, on wrong timestamp size */ int fit_get_timestamp(const void *fit, int noffset, time_t *timestamp) { int len; const void *data; data = fdt_getprop(fit, noffset, FIT_TIMESTAMP_PROP, &len); if (data == NULL) { fit_get_debug(fit, noffset, FIT_TIMESTAMP_PROP, len); return -1; } if (len != sizeof(uint32_t)) { debug("FIT timestamp with incorrect size of (%u)\n", len); return -2; } *timestamp = uimage_to_cpu(*((uint32_t *)data)); return 0; } /** * fit_image_get_node - get node offset for component image of a given unit name * @fit: pointer to the FIT format image header * @image_uname: component image node unit name * * fit_image_get_node() finds a component image (withing the '/images' * node) of a provided unit name. If image is found its node offset is * returned to the caller. * * returns: * image node offset when found (>=0) * negative number on failure (FDT_ERR_* code) */ int fit_image_get_node(const void *fit, const char *image_uname) { int noffset, images_noffset; images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); if (images_noffset < 0) { debug("Can't find images parent node '%s' (%s)\n", FIT_IMAGES_PATH, fdt_strerror(images_noffset)); return images_noffset; } noffset = fdt_subnode_offset(fit, images_noffset, image_uname); if (noffset < 0) { debug("Can't get node offset for image unit name: '%s' (%s)\n", image_uname, fdt_strerror(noffset)); } return noffset; } /** * fit_image_get_os - get os id for a given component image node * @fit: pointer to the FIT format image header * @noffset: component image node offset * @os: pointer to the uint8_t, will hold os numeric id * * fit_image_get_os() finds os property in a given component image node. * If the property is found, its (string) value is translated to the numeric * id which is returned to the caller. * * returns: * 0, on success * -1, on failure */ int fit_image_get_os(const void *fit, int noffset, uint8_t *os) { int len; const void *data; /* Get OS name from property data */ data = fdt_getprop(fit, noffset, FIT_OS_PROP, &len); if (data == NULL) { fit_get_debug(fit, noffset, FIT_OS_PROP, len); *os = -1; return -1; } /* Translate OS name to id */ *os = genimg_get_os_id(data); return 0; } /** * fit_image_get_arch - get arch id for a given component image node * @fit: pointer to the FIT format image header * @noffset: component image node offset * @arch: pointer to the uint8_t, will hold arch numeric id * * fit_image_get_arch() finds arch property in a given component image node. * If the property is found, its (string) value is translated to the numeric * id which is returned to the caller. * * returns: * 0, on success * -1, on failure */ int fit_image_get_arch(const void *fit, int noffset, uint8_t *arch) { int len; const void *data; /* Get architecture name from property data */ data = fdt_getprop(fit, noffset, FIT_ARCH_PROP, &len); if (data == NULL) { fit_get_debug(fit, noffset, FIT_ARCH_PROP, len); *arch = -1; return -1; } /* Translate architecture name to id */ *arch = genimg_get_arch_id(data); return 0; } /** * fit_image_get_type - get type id for a given component image node * @fit: pointer to the FIT format image header * @noffset: component image node offset * @type: pointer to the uint8_t, will hold type numeric id * * fit_image_get_type() finds type property in a given component image node. * If the property is found, its (string) value is translated to the numeric * id which is returned to the caller. * * returns: * 0, on success * -1, on failure */ int fit_image_get_type(const void *fit, int noffset, uint8_t *type) { int len; const void *data; /* Get image type name from property data */ data = fdt_getprop(fit, noffset, FIT_TYPE_PROP, &len); if (data == NULL) { fit_get_debug(fit, noffset, FIT_TYPE_PROP, len); *type = -1; return -1; } /* Translate image type name to id */ *type = genimg_get_type_id(data); return 0; } /** * fit_image_get_comp - get comp id for a given component image node * @fit: pointer to the FIT format image header * @noffset: component image node offset * @comp: pointer to the uint8_t, will hold comp numeric id * * fit_image_get_comp() finds comp property in a given component image node. * If the property is found, its (string) value is translated to the numeric * id which is returned to the caller. * * returns: * 0, on success * -1, on failure */ int fit_image_get_comp(const void *fit, int noffset, uint8_t *comp) { int len; const void *data; /* Get compression name from property data */ data = fdt_getprop(fit, noffset, FIT_COMP_PROP, &len); if (data == NULL) { fit_get_debug(fit, noffset, FIT_COMP_PROP, len); *comp = -1; return -1; } /* Translate compression name to id */ *comp = genimg_get_comp_id(data); return 0; } /** * fit_image_get_load - get load address property for a given component image node * @fit: pointer to the FIT format image header * @noffset: component image node offset * @load: pointer to the uint32_t, will hold load address * * fit_image_get_load() finds load address property in a given component image node. * If the property is found, its value is returned to the caller. * * returns: * 0, on success * -1, on failure */ int fit_image_get_load(const void *fit, int noffset, ulong *load) { int len; const uint32_t *data; data = fdt_getprop(fit, noffset, FIT_LOAD_PROP, &len); if (data == NULL) { fit_get_debug(fit, noffset, FIT_LOAD_PROP, len); return -1; } *load = uimage_to_cpu(*data); return 0; } /** * fit_image_get_entry - get entry point address property for a given component image node * @fit: pointer to the FIT format image header * @noffset: component image node offset * @entry: pointer to the uint32_t, will hold entry point address * * fit_image_get_entry() finds entry point address property in a given component image node. * If the property is found, its value is returned to the caller. * * returns: * 0, on success * -1, on failure */ int fit_image_get_entry(const void *fit, int noffset, ulong *entry) { int len; const uint32_t *data; data = fdt_getprop(fit, noffset, FIT_ENTRY_PROP, &len); if (data == NULL) { fit_get_debug(fit, noffset, FIT_ENTRY_PROP, len); return -1; } *entry = uimage_to_cpu(*data); return 0; } /** * fit_image_get_data - get data property and its size for a given component image node * @fit: pointer to the FIT format image header * @noffset: component image node offset * @data: double pointer to void, will hold data property's data address * @size: pointer to size_t, will hold data property's data size * * fit_image_get_data() finds data property in a given component image node. * If the property is found its data start address and size are returned to * the caller. * * returns: * 0, on success * -1, on failure */ int fit_image_get_data(const void *fit, int noffset, const void **data, size_t *size) { int len; *data = fdt_getprop(fit, noffset, FIT_DATA_PROP, &len); if (*data == NULL) { fit_get_debug(fit, noffset, FIT_DATA_PROP, len); *size = 0; return -1; } *size = len; return 0; } /** * fit_image_hash_get_algo - get hash algorithm name * @fit: pointer to the FIT format image header * @noffset: hash node offset * @algo: double pointer to char, will hold pointer to the algorithm name * * fit_image_hash_get_algo() finds hash algorithm property in a given hash node. * If the property is found its data start address is returned to the caller. * * returns: * 0, on success * -1, on failure */ int fit_image_hash_get_algo(const void *fit, int noffset, char **algo) { int len; *algo = (char *)fdt_getprop(fit, noffset, FIT_ALGO_PROP, &len); if (*algo == NULL) { fit_get_debug(fit, noffset, FIT_ALGO_PROP, len); return -1; } return 0; } /** * fit_image_hash_get_value - get hash value and length * @fit: pointer to the FIT format image header * @noffset: hash node offset * @value: double pointer to uint8_t, will hold address of a hash value data * @value_len: pointer to an int, will hold hash data length * * fit_image_hash_get_value() finds hash value property in a given hash node. * If the property is found its data start address and size are returned to * the caller. * * returns: * 0, on success * -1, on failure */ int fit_image_hash_get_value(const void *fit, int noffset, uint8_t **value, int *value_len) { int len; *value = (uint8_t *)fdt_getprop(fit, noffset, FIT_VALUE_PROP, &len); if (*value == NULL) { fit_get_debug(fit, noffset, FIT_VALUE_PROP, len); *value_len = 0; return -1; } *value_len = len; return 0; } /** * fit_set_timestamp - set node timestamp property * @fit: pointer to the FIT format image header * @noffset: node offset * @timestamp: timestamp value to be set * * fit_set_timestamp() attempts to set timestamp property in the requested * node and returns operation status to the caller. * * returns: * 0, on success * -1, on property read failure */ int fit_set_timestamp(void *fit, int noffset, time_t timestamp) { uint32_t t; int ret; t = cpu_to_uimage(timestamp); ret = fdt_setprop(fit, noffset, FIT_TIMESTAMP_PROP, &t, sizeof(uint32_t)); if (ret) { printf("Can't set '%s' property for '%s' node (%s)\n", FIT_TIMESTAMP_PROP, fit_get_name(fit, noffset, NULL), fdt_strerror(ret)); return -1; } return 0; } /** * calculate_hash - calculate and return hash for provided input data * @data: pointer to the input data * @data_len: data length * @algo: requested hash algorithm * @value: pointer to the char, will hold hash value data (caller must * allocate enough free space) * value_len: length of the calculated hash * * calculate_hash() computes input data hash according to the requested algorithm. * Resulting hash value is placed in caller provided 'value' buffer, length * of the calculated hash is returned via value_len pointer argument. * * returns: * 0, on success * -1, when algo is unsupported */ static int calculate_hash(const void *data, int data_len, const char *algo, uint8_t *value, int *value_len) { if (strcmp(algo, "crc32") == 0) { *((uint32_t *)value) = crc32_wd(0, data, data_len, CHUNKSZ_CRC32); *((uint32_t *)value) = cpu_to_uimage(*((uint32_t *)value)); *value_len = 4; } else if (strcmp(algo, "sha1") == 0) { sha1_csum_wd((unsigned char *) data, data_len, (unsigned char *) value, CHUNKSZ_SHA1); *value_len = 20; } else if (strcmp(algo, "md5") == 0) { md5_wd((unsigned char *)data, data_len, value, CHUNKSZ_MD5); *value_len = 16; } else { debug("Unsupported hash alogrithm\n"); return -1; } return 0; } #ifdef USE_HOSTCC /** * fit_set_hashes - process FIT component image nodes and calculate hashes * @fit: pointer to the FIT format image header * * fit_set_hashes() adds hash values for all component images in the FIT blob. * Hashes are calculated for all component images which have hash subnodes * with algorithm property set to one of the supported hash algorithms. * * returns * 0, on success * libfdt error code, on failure */ int fit_set_hashes(void *fit) { int images_noffset; int noffset; int ndepth; int ret; /* Find images parent node offset */ images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); if (images_noffset < 0) { printf("Can't find images parent node '%s' (%s)\n", FIT_IMAGES_PATH, fdt_strerror(images_noffset)); return images_noffset; } /* Process its subnodes, print out component images details */ for (ndepth = 0, noffset = fdt_next_node(fit, images_noffset, &ndepth); (noffset >= 0) && (ndepth > 0); noffset = fdt_next_node(fit, noffset, &ndepth)) { if (ndepth == 1) { /* * Direct child node of the images parent node, * i.e. component image node. */ ret = fit_image_set_hashes(fit, noffset); if (ret) return ret; } } return 0; } /** * fit_image_set_hashes - calculate/set hashes for given component image node * @fit: pointer to the FIT format image header * @image_noffset: requested component image node * * fit_image_set_hashes() adds hash values for an component image node. All * existing hash subnodes are checked, if algorithm property is set to one of * the supported hash algorithms, hash value is computed and corresponding * hash node property is set, for example: * * Input component image node structure: * * o image@1 (at image_noffset) * | - data = [binary data] * o hash@1 * |- algo = "sha1" * * Output component image node structure: * * o image@1 (at image_noffset) * | - data = [binary data] * o hash@1 * |- algo = "sha1" * |- value = sha1(data) * * returns: * 0 on sucess * <0 on failure */ int fit_image_set_hashes(void *fit, int image_noffset) { const void *data; size_t size; char *algo; uint8_t value[FIT_MAX_HASH_LEN]; int value_len; int noffset; int ndepth; /* Get image data and data length */ if (fit_image_get_data(fit, image_noffset, &data, &size)) { printf("Can't get image data/size\n"); return -1; } /* Process all hash subnodes of the component image node */ for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); (noffset >= 0) && (ndepth > 0); noffset = fdt_next_node(fit, noffset, &ndepth)) { if (ndepth == 1) { /* Direct child node of the component image node */ /* * Check subnode name, must be equal to "hash". * Multiple hash nodes require unique unit node * names, e.g. hash@1, hash@2, etc. */ if (strncmp(fit_get_name(fit, noffset, NULL), FIT_HASH_NODENAME, strlen(FIT_HASH_NODENAME)) != 0) { /* Not a hash subnode, skip it */ continue; } if (fit_image_hash_get_algo(fit, noffset, &algo)) { printf("Can't get hash algo property for " "'%s' hash node in '%s' image node\n", fit_get_name(fit, noffset, NULL), fit_get_name(fit, image_noffset, NULL)); return -1; } if (calculate_hash(data, size, algo, value, &value_len)) { printf("Unsupported hash algorithm (%s) for " "'%s' hash node in '%s' image node\n", algo, fit_get_name(fit, noffset, NULL), fit_get_name(fit, image_noffset, NULL)); return -1; } if (fit_image_hash_set_value(fit, noffset, value, value_len)) { printf("Can't set hash value for " "'%s' hash node in '%s' image node\n", fit_get_name(fit, noffset, NULL), fit_get_name(fit, image_noffset, NULL)); return -1; } } } return 0; } /** * fit_image_hash_set_value - set hash value in requested has node * @fit: pointer to the FIT format image header * @noffset: hash node offset * @value: hash value to be set * @value_len: hash value length * * fit_image_hash_set_value() attempts to set hash value in a node at offset * given and returns operation status to the caller. * * returns * 0, on success * -1, on failure */ int fit_image_hash_set_value(void *fit, int noffset, uint8_t *value, int value_len) { int ret; ret = fdt_setprop(fit, noffset, FIT_VALUE_PROP, value, value_len); if (ret) { printf("Can't set hash '%s' property for '%s' node(%s)\n", FIT_VALUE_PROP, fit_get_name(fit, noffset, NULL), fdt_strerror(ret)); return -1; } return 0; } #endif /* USE_HOSTCC */ /** * fit_image_check_hashes - verify data intergity * @fit: pointer to the FIT format image header * @image_noffset: component image node offset * * fit_image_check_hashes() goes over component image hash nodes, * re-calculates each data hash and compares with the value stored in hash * node. * * returns: * 1, if all hashes are valid * 0, otherwise (or on error) */ int fit_image_check_hashes(const void *fit, int image_noffset) { const void *data; size_t size; char *algo; uint8_t *fit_value; int fit_value_len; uint8_t value[FIT_MAX_HASH_LEN]; int value_len; int noffset; int ndepth; char *err_msg = ""; /* Get image data and data length */ if (fit_image_get_data(fit, image_noffset, &data, &size)) { printf("Can't get image data/size\n"); return 0; } /* Process all hash subnodes of the component image node */ for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); (noffset >= 0) && (ndepth > 0); noffset = fdt_next_node(fit, noffset, &ndepth)) { if (ndepth == 1) { /* Direct child node of the component image node */ /* * Check subnode name, must be equal to "hash". * Multiple hash nodes require unique unit node * names, e.g. hash@1, hash@2, etc. */ if (strncmp(fit_get_name(fit, noffset, NULL), FIT_HASH_NODENAME, strlen(FIT_HASH_NODENAME)) != 0) continue; if (fit_image_hash_get_algo(fit, noffset, &algo)) { err_msg = " error!\nCan't get hash algo " "property"; goto error; } printf("%s", algo); if (fit_image_hash_get_value(fit, noffset, &fit_value, &fit_value_len)) { err_msg = " error!\nCan't get hash value " "property"; goto error; } if (calculate_hash(data, size, algo, value, &value_len)) { err_msg = " error!\n" "Unsupported hash algorithm"; goto error; } if (value_len != fit_value_len) { err_msg = " error !\nBad hash value len"; goto error; } else if (memcmp(value, fit_value, value_len) != 0) { err_msg = " error!\nBad hash value"; goto error; } printf("+ "); } } if (noffset == -FDT_ERR_TRUNCATED || noffset == -FDT_ERR_BADSTRUCTURE) { err_msg = " error!\nCorrupted or truncated tree"; goto error; } return 1; error: printf("%s for '%s' hash node in '%s' image node\n", err_msg, fit_get_name(fit, noffset, NULL), fit_get_name(fit, image_noffset, NULL)); return 0; } /** * fit_all_image_check_hashes - verify data intergity for all images * @fit: pointer to the FIT format image header * * fit_all_image_check_hashes() goes over all images in the FIT and * for every images checks if all it's hashes are valid. * * returns: * 1, if all hashes of all images are valid * 0, otherwise (or on error) */ int fit_all_image_check_hashes(const void *fit) { int images_noffset; int noffset; int ndepth; int count; /* Find images parent node offset */ images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); if (images_noffset < 0) { printf("Can't find images parent node '%s' (%s)\n", FIT_IMAGES_PATH, fdt_strerror(images_noffset)); return 0; } /* Process all image subnodes, check hashes for each */ printf("## Checking hash(es) for FIT Image at %08lx ...\n", (ulong)fit); for (ndepth = 0, count = 0, noffset = fdt_next_node(fit, images_noffset, &ndepth); (noffset >= 0) && (ndepth > 0); noffset = fdt_next_node(fit, noffset, &ndepth)) { if (ndepth == 1) { /* * Direct child node of the images parent node, * i.e. component image node. */ printf(" Hash(es) for Image %u (%s): ", count++, fit_get_name(fit, noffset, NULL)); if (!fit_image_check_hashes(fit, noffset)) return 0; printf("\n"); } } return 1; } /** * fit_image_check_os - check whether image node is of a given os type * @fit: pointer to the FIT format image header * @noffset: component image node offset * @os: requested image os * * fit_image_check_os() reads image os property and compares its numeric * id with the requested os. Comparison result is returned to the caller. * * returns: * 1 if image is of given os type * 0 otherwise (or on error) */ int fit_image_check_os(const void *fit, int noffset, uint8_t os) { uint8_t image_os; if (fit_image_get_os(fit, noffset, &image_os)) return 0; return (os == image_os); } /** * fit_image_check_arch - check whether image node is of a given arch * @fit: pointer to the FIT format image header * @noffset: component image node offset * @arch: requested imagearch * * fit_image_check_arch() reads image arch property and compares its numeric * id with the requested arch. Comparison result is returned to the caller. * * returns: * 1 if image is of given arch * 0 otherwise (or on error) */ int fit_image_check_arch(const void *fit, int noffset, uint8_t arch) { uint8_t image_arch; if (fit_image_get_arch(fit, noffset, &image_arch)) return 0; return (arch == image_arch); } /** * fit_image_check_type - check whether image node is of a given type * @fit: pointer to the FIT format image header * @noffset: component image node offset * @type: requested image type * * fit_image_check_type() reads image type property and compares its numeric * id with the requested type. Comparison result is returned to the caller. * * returns: * 1 if image is of given type * 0 otherwise (or on error) */ int fit_image_check_type(const void *fit, int noffset, uint8_t type) { uint8_t image_type; if (fit_image_get_type(fit, noffset, &image_type)) return 0; return (type == image_type); } /** * fit_image_check_comp - check whether image node uses given compression * @fit: pointer to the FIT format image header * @noffset: component image node offset * @comp: requested image compression type * * fit_image_check_comp() reads image compression property and compares its * numeric id with the requested compression type. Comparison result is * returned to the caller. * * returns: * 1 if image uses requested compression * 0 otherwise (or on error) */ int fit_image_check_comp(const void *fit, int noffset, uint8_t comp) { uint8_t image_comp; if (fit_image_get_comp(fit, noffset, &image_comp)) return 0; return (comp == image_comp); } /** * fit_check_format - sanity check FIT image format * @fit: pointer to the FIT format image header * * fit_check_format() runs a basic sanity FIT image verification. * Routine checks for mandatory properties, nodes, etc. * * returns: * 1, on success * 0, on failure */ int fit_check_format(const void *fit) { /* mandatory / node 'description' property */ if (fdt_getprop(fit, 0, FIT_DESC_PROP, NULL) == NULL) { debug("Wrong FIT format: no description\n"); return 0; } #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) /* mandatory / node 'timestamp' property */ if (fdt_getprop(fit, 0, FIT_TIMESTAMP_PROP, NULL) == NULL) { debug("Wrong FIT format: no timestamp\n"); return 0; } #endif /* mandatory subimages parent '/images' node */ if (fdt_path_offset(fit, FIT_IMAGES_PATH) < 0) { debug("Wrong FIT format: no images parent node\n"); return 0; } return 1; } /** * fit_conf_get_node - get node offset for configuration of a given unit name * @fit: pointer to the FIT format image header * @conf_uname: configuration node unit name * * fit_conf_get_node() finds a configuration (withing the '/configurations' * parant node) of a provided unit name. If configuration is found its node offset * is returned to the caller. * * When NULL is provided in second argument fit_conf_get_node() will search * for a default configuration node instead. Default configuration node unit name * is retrived from FIT_DEFAULT_PROP property of the '/configurations' node. * * returns: * configuration node offset when found (>=0) * negative number on failure (FDT_ERR_* code) */ int fit_conf_get_node(const void *fit, const char *conf_uname) { int noffset, confs_noffset; int len; confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH); if (confs_noffset < 0) { debug("Can't find configurations parent node '%s' (%s)\n", FIT_CONFS_PATH, fdt_strerror(confs_noffset)); return confs_noffset; } if (conf_uname == NULL) { /* get configuration unit name from the default property */ debug("No configuration specified, trying default...\n"); conf_uname = (char *)fdt_getprop(fit, confs_noffset, FIT_DEFAULT_PROP, &len); if (conf_uname == NULL) { fit_get_debug(fit, confs_noffset, FIT_DEFAULT_PROP, len); return len; } debug("Found default configuration: '%s'\n", conf_uname); } noffset = fdt_subnode_offset(fit, confs_noffset, conf_uname); if (noffset < 0) { debug("Can't get node offset for configuration unit name: " "'%s' (%s)\n", conf_uname, fdt_strerror(noffset)); } return noffset; } static int __fit_conf_get_prop_node(const void *fit, int noffset, const char *prop_name) { char *uname; int len; /* get kernel image unit name from configuration kernel property */ uname = (char *)fdt_getprop(fit, noffset, prop_name, &len); if (uname == NULL) return len; return fit_image_get_node(fit, uname); } /** * fit_conf_get_kernel_node - get kernel image node offset that corresponds to * a given configuration * @fit: pointer to the FIT format image header * @noffset: configuration node offset * * fit_conf_get_kernel_node() retrives kernel image node unit name from * configuration FIT_KERNEL_PROP property and translates it to the node * offset. * * returns: * image node offset when found (>=0) * negative number on failure (FDT_ERR_* code) */ int fit_conf_get_kernel_node(const void *fit, int noffset) { return __fit_conf_get_prop_node(fit, noffset, FIT_KERNEL_PROP); } /** * fit_conf_get_ramdisk_node - get ramdisk image node offset that corresponds to * a given configuration * @fit: pointer to the FIT format image header * @noffset: configuration node offset * * fit_conf_get_ramdisk_node() retrives ramdisk image node unit name from * configuration FIT_KERNEL_PROP property and translates it to the node * offset. * * returns: * image node offset when found (>=0) * negative number on failure (FDT_ERR_* code) */ int fit_conf_get_ramdisk_node(const void *fit, int noffset) { return __fit_conf_get_prop_node(fit, noffset, FIT_RAMDISK_PROP); } /** * fit_conf_get_fdt_node - get fdt image node offset that corresponds to * a given configuration * @fit: pointer to the FIT format image header * @noffset: configuration node offset * * fit_conf_get_fdt_node() retrives fdt image node unit name from * configuration FIT_KERNEL_PROP property and translates it to the node * offset. * * returns: * image node offset when found (>=0) * negative number on failure (FDT_ERR_* code) */ int fit_conf_get_fdt_node(const void *fit, int noffset) { return __fit_conf_get_prop_node(fit, noffset, FIT_FDT_PROP); } /** * fit_conf_print - prints out the FIT configuration details * @fit: pointer to the FIT format image header * @noffset: offset of the configuration node * @p: pointer to prefix string * * fit_conf_print() lists all mandatory properies for the processed * configuration node. * * returns: * no returned results */ void fit_conf_print(const void *fit, int noffset, const char *p) { char *desc; char *uname; int ret; /* Mandatory properties */ ret = fit_get_desc(fit, noffset, &desc); printf("%s Description: ", p); if (ret) printf("unavailable\n"); else printf("%s\n", desc); uname = (char *)fdt_getprop(fit, noffset, FIT_KERNEL_PROP, NULL); printf("%s Kernel: ", p); if (uname == NULL) printf("unavailable\n"); else printf("%s\n", uname); /* Optional properties */ uname = (char *)fdt_getprop(fit, noffset, FIT_RAMDISK_PROP, NULL); if (uname) printf("%s Init Ramdisk: %s\n", p, uname); uname = (char *)fdt_getprop(fit, noffset, FIT_FDT_PROP, NULL); if (uname) printf("%s FDT: %s\n", p, uname); } /** * fit_check_ramdisk - verify FIT format ramdisk subimage * @fit_hdr: pointer to the FIT ramdisk header * @rd_noffset: ramdisk subimage node offset within FIT image * @arch: requested ramdisk image architecture type * @verify: data CRC verification flag * * fit_check_ramdisk() verifies integrity of the ramdisk subimage and from * specified FIT image. * * returns: * 1, on success * 0, on failure */ #ifndef USE_HOSTCC static int fit_check_ramdisk(const void *fit, int rd_noffset, uint8_t arch, int verify) { fit_image_print(fit, rd_noffset, " "); if (verify) { puts(" Verifying Hash Integrity ... "); if (!fit_image_check_hashes(fit, rd_noffset)) { puts("Bad Data Hash\n"); bootstage_error(BOOTSTAGE_ID_FIT_RD_HASH); return 0; } puts("OK\n"); } bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK_ALL); if (!fit_image_check_os(fit, rd_noffset, IH_OS_LINUX) || !fit_image_check_arch(fit, rd_noffset, arch) || !fit_image_check_type(fit, rd_noffset, IH_TYPE_RAMDISK)) { printf("No Linux %s Ramdisk Image\n", genimg_get_arch_name(arch)); bootstage_error(BOOTSTAGE_ID_FIT_RD_CHECK_ALL); return 0; } bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK_ALL_OK); return 1; } #endif /* USE_HOSTCC */ #endif /* CONFIG_FIT */