/* * (C) Copyright 2000 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ /* * Memory Functions * * Copied from FADS ROM, Dan Malek (dmalek@jlc.net) */ #include <common.h> #include <command.h> #ifdef CONFIG_HAS_DATAFLASH #include <dataflash.h> #endif #include <watchdog.h> #include <u-boot/md5.h> #include <sha1.h> #ifdef CMD_MEM_DEBUG #define PRINTF(fmt,args...) printf (fmt ,##args) #else #define PRINTF(fmt,args...) #endif static int mod_mem(cmd_tbl_t *, int, int, int, char * const []); /* Display values from last command. * Memory modify remembered values are different from display memory. */ uint dp_last_addr, dp_last_size; uint dp_last_length = 0x40; uint mm_last_addr, mm_last_size; static ulong base_address = 0; /* Memory Display * * Syntax: * md{.b, .w, .l} {addr} {len} */ #define DISP_LINE_LEN 16 int do_mem_md ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { ulong addr, length; #if defined(CONFIG_HAS_DATAFLASH) ulong nbytes, linebytes; #endif int size; int rc = 0; /* We use the last specified parameters, unless new ones are * entered. */ addr = dp_last_addr; size = dp_last_size; length = dp_last_length; if (argc < 2) return cmd_usage(cmdtp); if ((flag & CMD_FLAG_REPEAT) == 0) { /* New command specified. Check for a size specification. * Defaults to long if no or incorrect specification. */ if ((size = cmd_get_data_size(argv[0], 4)) < 0) return 1; /* Address is specified since argc > 1 */ addr = simple_strtoul(argv[1], NULL, 16); addr += base_address; /* If another parameter, it is the length to display. * Length is the number of objects, not number of bytes. */ if (argc > 2) length = simple_strtoul(argv[2], NULL, 16); } #if defined(CONFIG_HAS_DATAFLASH) /* Print the lines. * * We buffer all read data, so we can make sure data is read only * once, and all accesses are with the specified bus width. */ nbytes = length * size; do { char linebuf[DISP_LINE_LEN]; void* p; linebytes = (nbytes>DISP_LINE_LEN)?DISP_LINE_LEN:nbytes; rc = read_dataflash(addr, (linebytes/size)*size, linebuf); p = (rc == DATAFLASH_OK) ? linebuf : (void*)addr; print_buffer(addr, p, size, linebytes/size, DISP_LINE_LEN/size); nbytes -= linebytes; addr += linebytes; if (ctrlc()) { rc = 1; break; } } while (nbytes > 0); #else # if defined(CONFIG_BLACKFIN) /* See if we're trying to display L1 inst */ if (addr_bfin_on_chip_mem(addr)) { char linebuf[DISP_LINE_LEN]; ulong linebytes, nbytes = length * size; do { linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes; memcpy(linebuf, (void *)addr, linebytes); print_buffer(addr, linebuf, size, linebytes/size, DISP_LINE_LEN/size); nbytes -= linebytes; addr += linebytes; if (ctrlc()) { rc = 1; break; } } while (nbytes > 0); } else # endif { /* Print the lines. */ print_buffer(addr, (void*)addr, size, length, DISP_LINE_LEN/size); addr += size*length; } #endif dp_last_addr = addr; dp_last_length = length; dp_last_size = size; return (rc); } int do_mem_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { return mod_mem (cmdtp, 1, flag, argc, argv); } int do_mem_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { return mod_mem (cmdtp, 0, flag, argc, argv); } int do_mem_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { ulong addr, writeval, count; int size; if ((argc < 3) || (argc > 4)) return cmd_usage(cmdtp); /* Check for size specification. */ if ((size = cmd_get_data_size(argv[0], 4)) < 1) return 1; /* Address is specified since argc > 1 */ addr = simple_strtoul(argv[1], NULL, 16); addr += base_address; /* Get the value to write. */ writeval = simple_strtoul(argv[2], NULL, 16); /* Count ? */ if (argc == 4) { count = simple_strtoul(argv[3], NULL, 16); } else { count = 1; } while (count-- > 0) { if (size == 4) *((ulong *)addr) = (ulong )writeval; else if (size == 2) *((ushort *)addr) = (ushort)writeval; else *((u_char *)addr) = (u_char)writeval; addr += size; } return 0; } #ifdef CONFIG_MX_CYCLIC int do_mem_mdc ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { int i; ulong count; if (argc < 4) return cmd_usage(cmdtp); count = simple_strtoul(argv[3], NULL, 10); for (;;) { do_mem_md (NULL, 0, 3, argv); /* delay for <count> ms... */ for (i=0; i<count; i++) udelay (1000); /* check for ctrl-c to abort... */ if (ctrlc()) { puts("Abort\n"); return 0; } } return 0; } int do_mem_mwc ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { int i; ulong count; if (argc < 4) return cmd_usage(cmdtp); count = simple_strtoul(argv[3], NULL, 10); for (;;) { do_mem_mw (NULL, 0, 3, argv); /* delay for <count> ms... */ for (i=0; i<count; i++) udelay (1000); /* check for ctrl-c to abort... */ if (ctrlc()) { puts("Abort\n"); return 0; } } return 0; } #endif /* CONFIG_MX_CYCLIC */ int do_mem_cmp (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { ulong addr1, addr2, count, ngood; int size; int rcode = 0; if (argc != 4) return cmd_usage(cmdtp); /* Check for size specification. */ if ((size = cmd_get_data_size(argv[0], 4)) < 0) return 1; addr1 = simple_strtoul(argv[1], NULL, 16); addr1 += base_address; addr2 = simple_strtoul(argv[2], NULL, 16); addr2 += base_address; count = simple_strtoul(argv[3], NULL, 16); #ifdef CONFIG_HAS_DATAFLASH if (addr_dataflash(addr1) | addr_dataflash(addr2)){ puts ("Comparison with DataFlash space not supported.\n\r"); return 0; } #endif #ifdef CONFIG_BLACKFIN if (addr_bfin_on_chip_mem(addr1) || addr_bfin_on_chip_mem(addr2)) { puts ("Comparison with L1 instruction memory not supported.\n\r"); return 0; } #endif ngood = 0; while (count-- > 0) { if (size == 4) { ulong word1 = *(ulong *)addr1; ulong word2 = *(ulong *)addr2; if (word1 != word2) { printf("word at 0x%08lx (0x%08lx) " "!= word at 0x%08lx (0x%08lx)\n", addr1, word1, addr2, word2); rcode = 1; break; } } else if (size == 2) { ushort hword1 = *(ushort *)addr1; ushort hword2 = *(ushort *)addr2; if (hword1 != hword2) { printf("halfword at 0x%08lx (0x%04x) " "!= halfword at 0x%08lx (0x%04x)\n", addr1, hword1, addr2, hword2); rcode = 1; break; } } else { u_char byte1 = *(u_char *)addr1; u_char byte2 = *(u_char *)addr2; if (byte1 != byte2) { printf("byte at 0x%08lx (0x%02x) " "!= byte at 0x%08lx (0x%02x)\n", addr1, byte1, addr2, byte2); rcode = 1; break; } } ngood++; addr1 += size; addr2 += size; /* reset watchdog from time to time */ if ((count % (64 << 10)) == 0) WATCHDOG_RESET(); } printf("Total of %ld %s%s were the same\n", ngood, size == 4 ? "word" : size == 2 ? "halfword" : "byte", ngood == 1 ? "" : "s"); return rcode; } int do_mem_cp ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { ulong addr, dest, count; int size; if (argc != 4) return cmd_usage(cmdtp); /* Check for size specification. */ if ((size = cmd_get_data_size(argv[0], 4)) < 0) return 1; addr = simple_strtoul(argv[1], NULL, 16); addr += base_address; dest = simple_strtoul(argv[2], NULL, 16); dest += base_address; count = simple_strtoul(argv[3], NULL, 16); if (count == 0) { puts ("Zero length ???\n"); return 1; } #ifndef CONFIG_SYS_NO_FLASH /* check if we are copying to Flash */ if ( (addr2info(dest) != NULL) #ifdef CONFIG_HAS_DATAFLASH && (!addr_dataflash(dest)) #endif ) { int rc; puts ("Copy to Flash... "); rc = flash_write ((char *)addr, dest, count*size); if (rc != 0) { flash_perror (rc); return (1); } puts ("done\n"); return 0; } #endif #ifdef CONFIG_HAS_DATAFLASH /* Check if we are copying from RAM or Flash to DataFlash */ if (addr_dataflash(dest) && !addr_dataflash(addr)){ int rc; puts ("Copy to DataFlash... "); rc = write_dataflash (dest, addr, count*size); if (rc != 1) { dataflash_perror (rc); return (1); } puts ("done\n"); return 0; } /* Check if we are copying from DataFlash to RAM */ if (addr_dataflash(addr) && !addr_dataflash(dest) #ifndef CONFIG_SYS_NO_FLASH && (addr2info(dest) == NULL) #endif ){ int rc; rc = read_dataflash(addr, count * size, (char *) dest); if (rc != 1) { dataflash_perror (rc); return (1); } return 0; } if (addr_dataflash(addr) && addr_dataflash(dest)){ puts ("Unsupported combination of source/destination.\n\r"); return 1; } #endif #ifdef CONFIG_BLACKFIN /* See if we're copying to/from L1 inst */ if (addr_bfin_on_chip_mem(dest) || addr_bfin_on_chip_mem(addr)) { memcpy((void *)dest, (void *)addr, count * size); return 0; } #endif while (count-- > 0) { if (size == 4) *((ulong *)dest) = *((ulong *)addr); else if (size == 2) *((ushort *)dest) = *((ushort *)addr); else *((u_char *)dest) = *((u_char *)addr); addr += size; dest += size; /* reset watchdog from time to time */ if ((count % (64 << 10)) == 0) WATCHDOG_RESET(); } return 0; } int do_mem_base (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { if (argc > 1) { /* Set new base address. */ base_address = simple_strtoul(argv[1], NULL, 16); } /* Print the current base address. */ printf("Base Address: 0x%08lx\n", base_address); return 0; } int do_mem_loop (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { ulong addr, length, i, junk; int size; volatile uint *longp; volatile ushort *shortp; volatile u_char *cp; if (argc < 3) return cmd_usage(cmdtp); /* Check for a size spefication. * Defaults to long if no or incorrect specification. */ if ((size = cmd_get_data_size(argv[0], 4)) < 0) return 1; /* Address is always specified. */ addr = simple_strtoul(argv[1], NULL, 16); /* Length is the number of objects, not number of bytes. */ length = simple_strtoul(argv[2], NULL, 16); /* We want to optimize the loops to run as fast as possible. * If we have only one object, just run infinite loops. */ if (length == 1) { if (size == 4) { longp = (uint *)addr; for (;;) i = *longp; } if (size == 2) { shortp = (ushort *)addr; for (;;) i = *shortp; } cp = (u_char *)addr; for (;;) i = *cp; } if (size == 4) { for (;;) { longp = (uint *)addr; i = length; while (i-- > 0) junk = *longp++; } } if (size == 2) { for (;;) { shortp = (ushort *)addr; i = length; while (i-- > 0) junk = *shortp++; } } for (;;) { cp = (u_char *)addr; i = length; while (i-- > 0) junk = *cp++; } } #ifdef CONFIG_LOOPW int do_mem_loopw (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { ulong addr, length, i, data; int size; volatile uint *longp; volatile ushort *shortp; volatile u_char *cp; if (argc < 4) return cmd_usage(cmdtp); /* Check for a size spefication. * Defaults to long if no or incorrect specification. */ if ((size = cmd_get_data_size(argv[0], 4)) < 0) return 1; /* Address is always specified. */ addr = simple_strtoul(argv[1], NULL, 16); /* Length is the number of objects, not number of bytes. */ length = simple_strtoul(argv[2], NULL, 16); /* data to write */ data = simple_strtoul(argv[3], NULL, 16); /* We want to optimize the loops to run as fast as possible. * If we have only one object, just run infinite loops. */ if (length == 1) { if (size == 4) { longp = (uint *)addr; for (;;) *longp = data; } if (size == 2) { shortp = (ushort *)addr; for (;;) *shortp = data; } cp = (u_char *)addr; for (;;) *cp = data; } if (size == 4) { for (;;) { longp = (uint *)addr; i = length; while (i-- > 0) *longp++ = data; } } if (size == 2) { for (;;) { shortp = (ushort *)addr; i = length; while (i-- > 0) *shortp++ = data; } } for (;;) { cp = (u_char *)addr; i = length; while (i-- > 0) *cp++ = data; } } #endif /* CONFIG_LOOPW */ /* * Perform a memory test. A more complete alternative test can be * configured using CONFIG_SYS_ALT_MEMTEST. The complete test loops until * interrupted by ctrl-c or by a failure of one of the sub-tests. */ int do_mem_mtest (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { vu_long *addr, *start, *end; ulong val; ulong readback; ulong errs = 0; int iterations = 1; int iteration_limit; #if defined(CONFIG_SYS_ALT_MEMTEST) vu_long len; vu_long offset; vu_long test_offset; vu_long pattern; vu_long temp; vu_long anti_pattern; vu_long num_words; #if defined(CONFIG_SYS_MEMTEST_SCRATCH) vu_long *dummy = (vu_long*)CONFIG_SYS_MEMTEST_SCRATCH; #else vu_long *dummy = 0; /* yes, this is address 0x0, not NULL */ #endif int j; static const ulong bitpattern[] = { 0x00000001, /* single bit */ 0x00000003, /* two adjacent bits */ 0x00000007, /* three adjacent bits */ 0x0000000F, /* four adjacent bits */ 0x00000005, /* two non-adjacent bits */ 0x00000015, /* three non-adjacent bits */ 0x00000055, /* four non-adjacent bits */ 0xaaaaaaaa, /* alternating 1/0 */ }; #else ulong incr; ulong pattern; #endif if (argc > 1) start = (ulong *)simple_strtoul(argv[1], NULL, 16); else start = (ulong *)CONFIG_SYS_MEMTEST_START; if (argc > 2) end = (ulong *)simple_strtoul(argv[2], NULL, 16); else end = (ulong *)(CONFIG_SYS_MEMTEST_END); if (argc > 3) pattern = (ulong)simple_strtoul(argv[3], NULL, 16); else pattern = 0; if (argc > 4) iteration_limit = (ulong)simple_strtoul(argv[4], NULL, 16); else iteration_limit = 0; #if defined(CONFIG_SYS_ALT_MEMTEST) printf ("Testing %08x ... %08x:\n", (uint)start, (uint)end); PRINTF("%s:%d: start 0x%p end 0x%p\n", __FUNCTION__, __LINE__, start, end); for (;;) { if (ctrlc()) { putc ('\n'); return 1; } if (iteration_limit && iterations > iteration_limit) { printf("Tested %d iteration(s) with %lu errors.\n", iterations-1, errs); return errs != 0; } printf("Iteration: %6d\r", iterations); PRINTF("\n"); iterations++; /* * Data line test: write a pattern to the first * location, write the 1's complement to a 'parking' * address (changes the state of the data bus so a * floating bus doen't give a false OK), and then * read the value back. Note that we read it back * into a variable because the next time we read it, * it might be right (been there, tough to explain to * the quality guys why it prints a failure when the * "is" and "should be" are obviously the same in the * error message). * * Rather than exhaustively testing, we test some * patterns by shifting '1' bits through a field of * '0's and '0' bits through a field of '1's (i.e. * pattern and ~pattern). */ addr = start; for (j = 0; j < sizeof(bitpattern)/sizeof(bitpattern[0]); j++) { val = bitpattern[j]; for(; val != 0; val <<= 1) { *addr = val; *dummy = ~val; /* clear the test data off of the bus */ readback = *addr; if(readback != val) { printf ("FAILURE (data line): " "expected %08lx, actual %08lx\n", val, readback); errs++; if (ctrlc()) { putc ('\n'); return 1; } } *addr = ~val; *dummy = val; readback = *addr; if(readback != ~val) { printf ("FAILURE (data line): " "Is %08lx, should be %08lx\n", readback, ~val); errs++; if (ctrlc()) { putc ('\n'); return 1; } } } } /* * Based on code whose Original Author and Copyright * information follows: Copyright (c) 1998 by Michael * Barr. This software is placed into the public * domain and may be used for any purpose. However, * this notice must not be changed or removed and no * warranty is either expressed or implied by its * publication or distribution. */ /* * Address line test * * Description: Test the address bus wiring in a * memory region by performing a walking * 1's test on the relevant bits of the * address and checking for aliasing. * This test will find single-bit * address failures such as stuck -high, * stuck-low, and shorted pins. The base * address and size of the region are * selected by the caller. * * Notes: For best results, the selected base * address should have enough LSB 0's to * guarantee single address bit changes. * For example, to test a 64-Kbyte * region, select a base address on a * 64-Kbyte boundary. Also, select the * region size as a power-of-two if at * all possible. * * Returns: 0 if the test succeeds, 1 if the test fails. */ len = ((ulong)end - (ulong)start)/sizeof(vu_long); pattern = (vu_long) 0xaaaaaaaa; anti_pattern = (vu_long) 0x55555555; PRINTF("%s:%d: length = 0x%.8lx\n", __FUNCTION__, __LINE__, len); /* * Write the default pattern at each of the * power-of-two offsets. */ for (offset = 1; offset < len; offset <<= 1) { start[offset] = pattern; } /* * Check for address bits stuck high. */ test_offset = 0; start[test_offset] = anti_pattern; for (offset = 1; offset < len; offset <<= 1) { temp = start[offset]; if (temp != pattern) { printf ("\nFAILURE: Address bit stuck high @ 0x%.8lx:" " expected 0x%.8lx, actual 0x%.8lx\n", (ulong)&start[offset], pattern, temp); errs++; if (ctrlc()) { putc ('\n'); return 1; } } } start[test_offset] = pattern; WATCHDOG_RESET(); /* * Check for addr bits stuck low or shorted. */ for (test_offset = 1; test_offset < len; test_offset <<= 1) { start[test_offset] = anti_pattern; for (offset = 1; offset < len; offset <<= 1) { temp = start[offset]; if ((temp != pattern) && (offset != test_offset)) { printf ("\nFAILURE: Address bit stuck low or shorted @" " 0x%.8lx: expected 0x%.8lx, actual 0x%.8lx\n", (ulong)&start[offset], pattern, temp); errs++; if (ctrlc()) { putc ('\n'); return 1; } } } start[test_offset] = pattern; } /* * Description: Test the integrity of a physical * memory device by performing an * increment/decrement test over the * entire region. In the process every * storage bit in the device is tested * as a zero and a one. The base address * and the size of the region are * selected by the caller. * * Returns: 0 if the test succeeds, 1 if the test fails. */ num_words = ((ulong)end - (ulong)start)/sizeof(vu_long) + 1; /* * Fill memory with a known pattern. */ for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) { WATCHDOG_RESET(); start[offset] = pattern; } /* * Check each location and invert it for the second pass. */ for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) { WATCHDOG_RESET(); temp = start[offset]; if (temp != pattern) { printf ("\nFAILURE (read/write) @ 0x%.8lx:" " expected 0x%.8lx, actual 0x%.8lx)\n", (ulong)&start[offset], pattern, temp); errs++; if (ctrlc()) { putc ('\n'); return 1; } } anti_pattern = ~pattern; start[offset] = anti_pattern; } /* * Check each location for the inverted pattern and zero it. */ for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) { WATCHDOG_RESET(); anti_pattern = ~pattern; temp = start[offset]; if (temp != anti_pattern) { printf ("\nFAILURE (read/write): @ 0x%.8lx:" " expected 0x%.8lx, actual 0x%.8lx)\n", (ulong)&start[offset], anti_pattern, temp); errs++; if (ctrlc()) { putc ('\n'); return 1; } } start[offset] = 0; } } #else /* The original, quickie test */ incr = 1; for (;;) { if (ctrlc()) { putc ('\n'); return 1; } if (iteration_limit && iterations > iteration_limit) { printf("Tested %d iteration(s) with %lu errors.\n", iterations-1, errs); return errs != 0; } ++iterations; printf ("\rPattern %08lX Writing..." "%12s" "\b\b\b\b\b\b\b\b\b\b", pattern, ""); for (addr=start,val=pattern; addr<end; addr++) { WATCHDOG_RESET(); *addr = val; val += incr; } puts ("Reading..."); for (addr=start,val=pattern; addr<end; addr++) { WATCHDOG_RESET(); readback = *addr; if (readback != val) { printf ("\nMem error @ 0x%08X: " "found %08lX, expected %08lX\n", (uint)addr, readback, val); errs++; if (ctrlc()) { putc ('\n'); return 1; } } val += incr; } /* * Flip the pattern each time to make lots of zeros and * then, the next time, lots of ones. We decrement * the "negative" patterns and increment the "positive" * patterns to preserve this feature. */ if(pattern & 0x80000000) { pattern = -pattern; /* complement & increment */ } else { pattern = ~pattern; } incr = -incr; } #endif return 0; /* not reached */ } /* Modify memory. * * Syntax: * mm{.b, .w, .l} {addr} * nm{.b, .w, .l} {addr} */ static int mod_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char * const argv[]) { ulong addr, i; int nbytes, size; extern char console_buffer[]; if (argc != 2) return cmd_usage(cmdtp); #ifdef CONFIG_BOOT_RETRY_TIME reset_cmd_timeout(); /* got a good command to get here */ #endif /* We use the last specified parameters, unless new ones are * entered. */ addr = mm_last_addr; size = mm_last_size; if ((flag & CMD_FLAG_REPEAT) == 0) { /* New command specified. Check for a size specification. * Defaults to long if no or incorrect specification. */ if ((size = cmd_get_data_size(argv[0], 4)) < 0) return 1; /* Address is specified since argc > 1 */ addr = simple_strtoul(argv[1], NULL, 16); addr += base_address; } #ifdef CONFIG_HAS_DATAFLASH if (addr_dataflash(addr)){ puts ("Can't modify DataFlash in place. Use cp instead.\n\r"); return 0; } #endif #ifdef CONFIG_BLACKFIN if (addr_bfin_on_chip_mem(addr)) { puts ("Can't modify L1 instruction in place. Use cp instead.\n\r"); return 0; } #endif /* Print the address, followed by value. Then accept input for * the next value. A non-converted value exits. */ do { printf("%08lx:", addr); if (size == 4) printf(" %08x", *((uint *)addr)); else if (size == 2) printf(" %04x", *((ushort *)addr)); else printf(" %02x", *((u_char *)addr)); nbytes = readline (" ? "); if (nbytes == 0 || (nbytes == 1 && console_buffer[0] == '-')) { /* <CR> pressed as only input, don't modify current * location and move to next. "-" pressed will go back. */ if (incrflag) addr += nbytes ? -size : size; nbytes = 1; #ifdef CONFIG_BOOT_RETRY_TIME reset_cmd_timeout(); /* good enough to not time out */ #endif } #ifdef CONFIG_BOOT_RETRY_TIME else if (nbytes == -2) { break; /* timed out, exit the command */ } #endif else { char *endp; i = simple_strtoul(console_buffer, &endp, 16); nbytes = endp - console_buffer; if (nbytes) { #ifdef CONFIG_BOOT_RETRY_TIME /* good enough to not time out */ reset_cmd_timeout(); #endif if (size == 4) *((uint *)addr) = i; else if (size == 2) *((ushort *)addr) = i; else *((u_char *)addr) = i; if (incrflag) addr += size; } } } while (nbytes); mm_last_addr = addr; mm_last_size = size; return 0; } #ifndef CONFIG_CRC32_VERIFY int do_mem_crc (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { ulong addr, length; ulong crc; ulong *ptr; if (argc < 3) return cmd_usage(cmdtp); addr = simple_strtoul (argv[1], NULL, 16); addr += base_address; length = simple_strtoul (argv[2], NULL, 16); crc = crc32 (0, (const uchar *) addr, length); printf ("CRC32 for %08lx ... %08lx ==> %08lx\n", addr, addr + length - 1, crc); if (argc > 3) { ptr = (ulong *) simple_strtoul (argv[3], NULL, 16); *ptr = crc; } return 0; } #else /* CONFIG_CRC32_VERIFY */ int do_mem_crc (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { ulong addr, length; ulong crc; ulong *ptr; ulong vcrc; int verify; int ac; char * const *av; if (argc < 3) { usage: return cmd_usage(cmdtp); } av = argv + 1; ac = argc - 1; if (strcmp(*av, "-v") == 0) { verify = 1; av++; ac--; if (ac < 3) goto usage; } else verify = 0; addr = simple_strtoul(*av++, NULL, 16); addr += base_address; length = simple_strtoul(*av++, NULL, 16); crc = crc32(0, (const uchar *) addr, length); if (!verify) { printf ("CRC32 for %08lx ... %08lx ==> %08lx\n", addr, addr + length - 1, crc); if (ac > 2) { ptr = (ulong *) simple_strtoul (*av++, NULL, 16); *ptr = crc; } } else { vcrc = simple_strtoul(*av++, NULL, 16); if (vcrc != crc) { printf ("CRC32 for %08lx ... %08lx ==> %08lx != %08lx ** ERROR **\n", addr, addr + length - 1, crc, vcrc); return 1; } } return 0; } #endif /* CONFIG_CRC32_VERIFY */ #ifdef CONFIG_CMD_MD5SUM int do_md5sum(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { unsigned long addr, len; unsigned int i; u8 output[16]; if (argc < 3) return cmd_usage(cmdtp); addr = simple_strtoul(argv[1], NULL, 16); len = simple_strtoul(argv[2], NULL, 16); md5((unsigned char *) addr, len, output); printf("md5 for %08lx ... %08lx ==> ", addr, addr + len - 1); for (i = 0; i < 16; i++) printf("%02x", output[i]); printf("\n"); return 0; } #endif #ifdef CONFIG_CMD_SHA1 int do_sha1sum(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { unsigned long addr, len; unsigned int i; u8 output[20]; if (argc < 3) return cmd_usage(cmdtp); addr = simple_strtoul(argv[1], NULL, 16); len = simple_strtoul(argv[2], NULL, 16); sha1_csum((unsigned char *) addr, len, output); printf("SHA1 for %08lx ... %08lx ==> ", addr, addr + len - 1); for (i = 0; i < 20; i++) printf("%02x", output[i]); printf("\n"); return 0; } #endif #ifdef CONFIG_CMD_UNZIP int do_unzip ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { unsigned long src, dst; unsigned long src_len = ~0UL, dst_len = ~0UL; switch (argc) { case 4: dst_len = simple_strtoul(argv[3], NULL, 16); /* fall through */ case 3: src = simple_strtoul(argv[1], NULL, 16); dst = simple_strtoul(argv[2], NULL, 16); break; default: return cmd_usage(cmdtp); } return !!gunzip((void *) dst, dst_len, (void *) src, &src_len); } #endif /* CONFIG_CMD_UNZIP */ /**************************************************/ U_BOOT_CMD( md, 3, 1, do_mem_md, "memory display", "[.b, .w, .l] address [# of objects]" ); U_BOOT_CMD( mm, 2, 1, do_mem_mm, "memory modify (auto-incrementing address)", "[.b, .w, .l] address" ); U_BOOT_CMD( nm, 2, 1, do_mem_nm, "memory modify (constant address)", "[.b, .w, .l] address" ); U_BOOT_CMD( mw, 4, 1, do_mem_mw, "memory write (fill)", "[.b, .w, .l] address value [count]" ); U_BOOT_CMD( cp, 4, 1, do_mem_cp, "memory copy", "[.b, .w, .l] source target count" ); U_BOOT_CMD( cmp, 4, 1, do_mem_cmp, "memory compare", "[.b, .w, .l] addr1 addr2 count" ); #ifndef CONFIG_CRC32_VERIFY U_BOOT_CMD( crc32, 4, 1, do_mem_crc, "checksum calculation", "address count [addr]\n - compute CRC32 checksum [save at addr]" ); #else /* CONFIG_CRC32_VERIFY */ U_BOOT_CMD( crc32, 5, 1, do_mem_crc, "checksum calculation", "address count [addr]\n - compute CRC32 checksum [save at addr]\n" "-v address count crc\n - verify crc of memory area" ); #endif /* CONFIG_CRC32_VERIFY */ U_BOOT_CMD( base, 2, 1, do_mem_base, "print or set address offset", "\n - print address offset for memory commands\n" "base off\n - set address offset for memory commands to 'off'" ); U_BOOT_CMD( loop, 3, 1, do_mem_loop, "infinite loop on address range", "[.b, .w, .l] address number_of_objects" ); #ifdef CONFIG_LOOPW U_BOOT_CMD( loopw, 4, 1, do_mem_loopw, "infinite write loop on address range", "[.b, .w, .l] address number_of_objects data_to_write" ); #endif /* CONFIG_LOOPW */ U_BOOT_CMD( mtest, 5, 1, do_mem_mtest, "simple RAM read/write test", "[start [end [pattern [iterations]]]]" ); #ifdef CONFIG_MX_CYCLIC U_BOOT_CMD( mdc, 4, 1, do_mem_mdc, "memory display cyclic", "[.b, .w, .l] address count delay(ms)" ); U_BOOT_CMD( mwc, 4, 1, do_mem_mwc, "memory write cyclic", "[.b, .w, .l] address value delay(ms)" ); #endif /* CONFIG_MX_CYCLIC */ #ifdef CONFIG_CMD_MD5SUM U_BOOT_CMD( md5sum, 3, 1, do_md5sum, "compute MD5 message digest", "address count" ); #endif #ifdef CONFIG_CMD_SHA1SUM U_BOOT_CMD( sha1sum, 3, 1, do_sha1sum, "compute SHA1 message digest", "address count" ); #endif /* CONFIG_CMD_SHA1 */ #ifdef CONFIG_CMD_UNZIP U_BOOT_CMD( unzip, 4, 1, do_unzip, "unzip a memory region", "srcaddr dstaddr [dstsize]" ); #endif /* CONFIG_CMD_UNZIP */