/* * (C) Copyright 2000-2009 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ /* * Boot support */ #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_CMD_USB) #include #endif #ifdef CONFIG_SYS_HUSH_PARSER #include #endif #if defined(CONFIG_OF_LIBFDT) #include #include #endif #ifdef CONFIG_LZMA #include #include #include #endif /* CONFIG_LZMA */ #ifdef CONFIG_LZO #include #endif /* CONFIG_LZO */ DECLARE_GLOBAL_DATA_PTR; #ifndef CONFIG_SYS_BOOTM_LEN #define CONFIG_SYS_BOOTM_LEN 0x800000 /* use 8MByte as default max gunzip size */ #endif #ifdef CONFIG_BZIP2 extern void bz_internal_error(int); #endif #if defined(CONFIG_CMD_IMI) static int image_info(unsigned long addr); #endif #if defined(CONFIG_CMD_IMLS) #include #include extern flash_info_t flash_info[]; /* info for FLASH chips */ #endif #if defined(CONFIG_CMD_IMLS) || defined(CONFIG_CMD_IMLS_NAND) static int do_imls(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); #endif #include #include #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY) static void fixup_silent_linux(void); #endif static image_header_t *image_get_kernel(ulong img_addr, int verify); #if defined(CONFIG_FIT) static int fit_check_kernel(const void *fit, int os_noffset, int verify); #endif static void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[], bootm_headers_t *images, ulong *os_data, ulong *os_len); /* * Continue booting an OS image; caller already has: * - copied image header to global variable `header' * - checked header magic number, checksums (both header & image), * - verified image architecture (PPC) and type (KERNEL or MULTI), * - loaded (first part of) image to header load address, * - disabled interrupts. */ typedef int boot_os_fn(int flag, int argc, char * const argv[], bootm_headers_t *images); /* pointers to os/initrd/fdt */ #ifdef CONFIG_BOOTM_LINUX extern boot_os_fn do_bootm_linux; #endif #ifdef CONFIG_BOOTM_NETBSD static boot_os_fn do_bootm_netbsd; #endif #if defined(CONFIG_LYNXKDI) static boot_os_fn do_bootm_lynxkdi; extern void lynxkdi_boot(image_header_t *); #endif #ifdef CONFIG_BOOTM_RTEMS static boot_os_fn do_bootm_rtems; #endif #if defined(CONFIG_BOOTM_OSE) static boot_os_fn do_bootm_ose; #endif #if defined(CONFIG_BOOTM_PLAN9) static boot_os_fn do_bootm_plan9; #endif #if defined(CONFIG_CMD_ELF) static boot_os_fn do_bootm_vxworks; static boot_os_fn do_bootm_qnxelf; int do_bootvx(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); int do_bootelf(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); #endif #if defined(CONFIG_INTEGRITY) static boot_os_fn do_bootm_integrity; #endif static boot_os_fn *boot_os[] = { #ifdef CONFIG_BOOTM_LINUX [IH_OS_LINUX] = do_bootm_linux, #endif #ifdef CONFIG_BOOTM_NETBSD [IH_OS_NETBSD] = do_bootm_netbsd, #endif #ifdef CONFIG_LYNXKDI [IH_OS_LYNXOS] = do_bootm_lynxkdi, #endif #ifdef CONFIG_BOOTM_RTEMS [IH_OS_RTEMS] = do_bootm_rtems, #endif #if defined(CONFIG_BOOTM_OSE) [IH_OS_OSE] = do_bootm_ose, #endif #if defined(CONFIG_BOOTM_PLAN9) [IH_OS_PLAN9] = do_bootm_plan9, #endif #if defined(CONFIG_CMD_ELF) [IH_OS_VXWORKS] = do_bootm_vxworks, [IH_OS_QNX] = do_bootm_qnxelf, #endif #ifdef CONFIG_INTEGRITY [IH_OS_INTEGRITY] = do_bootm_integrity, #endif }; bootm_headers_t images; /* pointers to os/initrd/fdt images */ /* Allow for arch specific config before we boot */ static void __arch_preboot_os(void) { /* please define platform specific arch_preboot_os() */ } void arch_preboot_os(void) __attribute__((weak, alias("__arch_preboot_os"))); #define IH_INITRD_ARCH IH_ARCH_DEFAULT #ifdef CONFIG_LMB static void boot_start_lmb(bootm_headers_t *images) { ulong mem_start; phys_size_t mem_size; lmb_init(&images->lmb); mem_start = getenv_bootm_low(); mem_size = getenv_bootm_size(); lmb_add(&images->lmb, (phys_addr_t)mem_start, mem_size); arch_lmb_reserve(&images->lmb); board_lmb_reserve(&images->lmb); } #else #define lmb_reserve(lmb, base, size) static inline void boot_start_lmb(bootm_headers_t *images) { } #endif static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { void *os_hdr; int ret; memset((void *)&images, 0, sizeof(images)); images.verify = getenv_yesno("verify"); boot_start_lmb(&images); bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start"); /* get kernel image header, start address and length */ os_hdr = boot_get_kernel(cmdtp, flag, argc, argv, &images, &images.os.image_start, &images.os.image_len); if (images.os.image_len == 0) { puts("ERROR: can't get kernel image!\n"); return 1; } /* get image parameters */ switch (genimg_get_format(os_hdr)) { case IMAGE_FORMAT_LEGACY: images.os.type = image_get_type(os_hdr); images.os.comp = image_get_comp(os_hdr); images.os.os = image_get_os(os_hdr); images.os.end = image_get_image_end(os_hdr); images.os.load = image_get_load(os_hdr); break; #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: if (fit_image_get_type(images.fit_hdr_os, images.fit_noffset_os, &images.os.type)) { puts("Can't get image type!\n"); bootstage_error(BOOTSTAGE_ID_FIT_TYPE); return 1; } if (fit_image_get_comp(images.fit_hdr_os, images.fit_noffset_os, &images.os.comp)) { puts("Can't get image compression!\n"); bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION); return 1; } if (fit_image_get_os(images.fit_hdr_os, images.fit_noffset_os, &images.os.os)) { puts("Can't get image OS!\n"); bootstage_error(BOOTSTAGE_ID_FIT_OS); return 1; } images.os.end = fit_get_end(images.fit_hdr_os); if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os, &images.os.load)) { puts("Can't get image load address!\n"); bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR); return 1; } break; #endif default: puts("ERROR: unknown image format type!\n"); return 1; } /* find kernel entry point */ if (images.legacy_hdr_valid) { images.ep = image_get_ep(&images.legacy_hdr_os_copy); #if defined(CONFIG_FIT) } else if (images.fit_uname_os) { ret = fit_image_get_entry(images.fit_hdr_os, images.fit_noffset_os, &images.ep); if (ret) { puts("Can't get entry point property!\n"); return 1; } #endif } else { puts("Could not find kernel entry point!\n"); return 1; } if (images.os.type == IH_TYPE_KERNEL_NOLOAD) { images.os.load = images.os.image_start; images.ep += images.os.load; } if (((images.os.type == IH_TYPE_KERNEL) || (images.os.type == IH_TYPE_KERNEL_NOLOAD) || (images.os.type == IH_TYPE_MULTI)) && (images.os.os == IH_OS_LINUX)) { /* find ramdisk */ ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH, &images.rd_start, &images.rd_end); if (ret) { puts("Ramdisk image is corrupt or invalid\n"); return 1; } #if defined(CONFIG_OF_LIBFDT) /* find flattened device tree */ ret = boot_get_fdt(flag, argc, argv, &images, &images.ft_addr, &images.ft_len); if (ret) { puts("Could not find a valid device tree\n"); return 1; } set_working_fdt_addr(images.ft_addr); #endif } images.os.start = (ulong)os_hdr; images.state = BOOTM_STATE_START; return 0; } #define BOOTM_ERR_RESET -1 #define BOOTM_ERR_OVERLAP -2 #define BOOTM_ERR_UNIMPLEMENTED -3 static int bootm_load_os(image_info_t os, ulong *load_end, int boot_progress) { uint8_t comp = os.comp; ulong load = os.load; ulong blob_start = os.start; ulong blob_end = os.end; ulong image_start = os.image_start; ulong image_len = os.image_len; __maybe_unused uint unc_len = CONFIG_SYS_BOOTM_LEN; int no_overlap = 0; #if defined(CONFIG_LZMA) || defined(CONFIG_LZO) int ret; #endif /* defined(CONFIG_LZMA) || defined(CONFIG_LZO) */ const char *type_name = genimg_get_type_name(os.type); switch (comp) { case IH_COMP_NONE: if (load == blob_start || load == image_start) { printf(" XIP %s ... ", type_name); no_overlap = 1; } else { printf(" Loading %s ... ", type_name); memmove_wd((void *)load, (void *)image_start, image_len, CHUNKSZ); } *load_end = load + image_len; puts("OK\n"); break; #ifdef CONFIG_GZIP case IH_COMP_GZIP: printf(" Uncompressing %s ... ", type_name); if (gunzip((void *)load, unc_len, (uchar *)image_start, &image_len) != 0) { puts("GUNZIP: uncompress, out-of-mem or overwrite " "error - must RESET board to recover\n"); if (boot_progress) bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); return BOOTM_ERR_RESET; } *load_end = load + image_len; break; #endif /* CONFIG_GZIP */ #ifdef CONFIG_BZIP2 case IH_COMP_BZIP2: printf(" Uncompressing %s ... ", type_name); /* * If we've got less than 4 MB of malloc() space, * use slower decompression algorithm which requires * at most 2300 KB of memory. */ int i = BZ2_bzBuffToBuffDecompress((char *)load, &unc_len, (char *)image_start, image_len, CONFIG_SYS_MALLOC_LEN < (4096 * 1024), 0); if (i != BZ_OK) { printf("BUNZIP2: uncompress or overwrite error %d " "- must RESET board to recover\n", i); if (boot_progress) bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); return BOOTM_ERR_RESET; } *load_end = load + unc_len; break; #endif /* CONFIG_BZIP2 */ #ifdef CONFIG_LZMA case IH_COMP_LZMA: { SizeT lzma_len = unc_len; printf(" Uncompressing %s ... ", type_name); ret = lzmaBuffToBuffDecompress( (unsigned char *)load, &lzma_len, (unsigned char *)image_start, image_len); unc_len = lzma_len; if (ret != SZ_OK) { printf("LZMA: uncompress or overwrite error %d " "- must RESET board to recover\n", ret); bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); return BOOTM_ERR_RESET; } *load_end = load + unc_len; break; } #endif /* CONFIG_LZMA */ #ifdef CONFIG_LZO case IH_COMP_LZO: printf(" Uncompressing %s ... ", type_name); ret = lzop_decompress((const unsigned char *)image_start, image_len, (unsigned char *)load, &unc_len); if (ret != LZO_E_OK) { printf("LZO: uncompress or overwrite error %d " "- must RESET board to recover\n", ret); if (boot_progress) bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); return BOOTM_ERR_RESET; } *load_end = load + unc_len; break; #endif /* CONFIG_LZO */ default: printf("Unimplemented compression type %d\n", comp); return BOOTM_ERR_UNIMPLEMENTED; } flush_cache(load, (*load_end - load) * sizeof(ulong)); puts("OK\n"); debug(" kernel loaded at 0x%08lx, end = 0x%08lx\n", load, *load_end); bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED); if (!no_overlap && (load < blob_end) && (*load_end > blob_start)) { debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n", blob_start, blob_end); debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load, *load_end); return BOOTM_ERR_OVERLAP; } return 0; } static int bootm_start_standalone(ulong iflag, int argc, char * const argv[]) { char *s; int (*appl)(int, char * const []); /* Don't start if "autostart" is set to "no" */ if (((s = getenv("autostart")) != NULL) && (strcmp(s, "no") == 0)) { setenv_hex("filesize", images.os.image_len); return 0; } appl = (int (*)(int, char * const []))(ulong)ntohl(images.ep); (*appl)(argc-1, &argv[1]); return 0; } /* we overload the cmd field with our state machine info instead of a * function pointer */ static cmd_tbl_t cmd_bootm_sub[] = { U_BOOT_CMD_MKENT(start, 0, 1, (void *)BOOTM_STATE_START, "", ""), U_BOOT_CMD_MKENT(loados, 0, 1, (void *)BOOTM_STATE_LOADOS, "", ""), #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH U_BOOT_CMD_MKENT(ramdisk, 0, 1, (void *)BOOTM_STATE_RAMDISK, "", ""), #endif #ifdef CONFIG_OF_LIBFDT U_BOOT_CMD_MKENT(fdt, 0, 1, (void *)BOOTM_STATE_FDT, "", ""), #endif U_BOOT_CMD_MKENT(cmdline, 0, 1, (void *)BOOTM_STATE_OS_CMDLINE, "", ""), U_BOOT_CMD_MKENT(bdt, 0, 1, (void *)BOOTM_STATE_OS_BD_T, "", ""), U_BOOT_CMD_MKENT(prep, 0, 1, (void *)BOOTM_STATE_OS_PREP, "", ""), U_BOOT_CMD_MKENT(go, 0, 1, (void *)BOOTM_STATE_OS_GO, "", ""), }; static int do_bootm_subcommand(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { int ret = 0; long state; cmd_tbl_t *c; boot_os_fn *boot_fn; c = find_cmd_tbl(argv[1], &cmd_bootm_sub[0], ARRAY_SIZE(cmd_bootm_sub)); if (c) { state = (long)c->cmd; /* treat start special since it resets the state machine */ if (state == BOOTM_STATE_START) { argc--; argv++; return bootm_start(cmdtp, flag, argc, argv); } } else { /* Unrecognized command */ return CMD_RET_USAGE; } if (images.state < BOOTM_STATE_START || images.state >= state) { printf("Trying to execute a command out of order\n"); return CMD_RET_USAGE; } images.state |= state; boot_fn = boot_os[images.os.os]; switch (state) { ulong load_end; case BOOTM_STATE_START: /* should never occur */ break; case BOOTM_STATE_LOADOS: ret = bootm_load_os(images.os, &load_end, 0); if (ret) return ret; lmb_reserve(&images.lmb, images.os.load, (load_end - images.os.load)); break; #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH case BOOTM_STATE_RAMDISK: { ulong rd_len = images.rd_end - images.rd_start; ret = boot_ramdisk_high(&images.lmb, images.rd_start, rd_len, &images.initrd_start, &images.initrd_end); if (ret) return ret; setenv_hex("initrd_start", images.initrd_start); setenv_hex("initrd_end", images.initrd_end); } break; #endif #if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_LMB) case BOOTM_STATE_FDT: { boot_fdt_add_mem_rsv_regions(&images.lmb, images.ft_addr); ret = boot_relocate_fdt(&images.lmb, &images.ft_addr, &images.ft_len); break; } #endif case BOOTM_STATE_OS_CMDLINE: ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, &images); if (ret) printf("cmdline subcommand not supported\n"); break; case BOOTM_STATE_OS_BD_T: ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, &images); if (ret) printf("bdt subcommand not supported\n"); break; case BOOTM_STATE_OS_PREP: ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, &images); if (ret) printf("prep subcommand not supported\n"); break; case BOOTM_STATE_OS_GO: disable_interrupts(); #ifdef CONFIG_NETCONSOLE /* * Stop the ethernet stack if NetConsole could have * left it up */ eth_halt(); #endif arch_preboot_os(); boot_fn(BOOTM_STATE_OS_GO, argc, argv, &images); break; } return ret; } /*******************************************************************/ /* bootm - boot application image from image in memory */ /*******************************************************************/ int do_bootm(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { ulong iflag; ulong load_end = 0; int ret; boot_os_fn *boot_fn; #ifdef CONFIG_NEEDS_MANUAL_RELOC static int relocated = 0; if (!relocated) { int i; /* relocate boot function table */ for (i = 0; i < ARRAY_SIZE(boot_os); i++) if (boot_os[i] != NULL) boot_os[i] += gd->reloc_off; /* relocate names of sub-command table */ for (i = 0; i < ARRAY_SIZE(cmd_bootm_sub); i++) cmd_bootm_sub[i].name += gd->reloc_off; relocated = 1; } #endif /* determine if we have a sub command */ if (argc > 1) { char *endp; simple_strtoul(argv[1], &endp, 16); /* endp pointing to NULL means that argv[1] was just a * valid number, pass it along to the normal bootm processing * * If endp is ':' or '#' assume a FIT identifier so pass * along for normal processing. * * Right now we assume the first arg should never be '-' */ if ((*endp != 0) && (*endp != ':') && (*endp != '#')) return do_bootm_subcommand(cmdtp, flag, argc, argv); } #ifdef CONFIG_SECURE_BOOT extern uint32_t authenticate_image( uint32_t ddr_start, uint32_t image_size); if (authenticate_image(load_addr, image_get_image_size((image_header_t *)load_addr)) == 0) { printf("Authenticate UImage Fail, Please check\n"); return 1; } #endif if (bootm_start(cmdtp, flag, argc, argv)) return 1; /* * We have reached the point of no return: we are going to * overwrite all exception vector code, so we cannot easily * recover from any failures any more... */ iflag = disable_interrupts(); #ifdef CONFIG_NETCONSOLE /* Stop the ethernet stack if NetConsole could have left it up */ eth_halt(); #endif #if defined(CONFIG_CMD_USB) /* * turn off USB to prevent the host controller from writing to the * SDRAM while Linux is booting. This could happen (at least for OHCI * controller), because the HCCA (Host Controller Communication Area) * lies within the SDRAM and the host controller writes continously to * this area (as busmaster!). The HccaFrameNumber is for example * updated every 1 ms within the HCCA structure in SDRAM! For more * details see the OpenHCI specification. */ usb_stop(); #endif ret = bootm_load_os(images.os, &load_end, 1); if (ret < 0) { if (ret == BOOTM_ERR_RESET) do_reset(cmdtp, flag, argc, argv); if (ret == BOOTM_ERR_OVERLAP) { if (images.legacy_hdr_valid) { image_header_t *hdr; hdr = &images.legacy_hdr_os_copy; if (image_get_type(hdr) == IH_TYPE_MULTI) puts("WARNING: legacy format multi " "component image " "overwritten\n"); } else { puts("ERROR: new format image overwritten - " "must RESET the board to recover\n"); bootstage_error(BOOTSTAGE_ID_OVERWRITTEN); do_reset(cmdtp, flag, argc, argv); } } if (ret == BOOTM_ERR_UNIMPLEMENTED) { if (iflag) enable_interrupts(); bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL); return 1; } } lmb_reserve(&images.lmb, images.os.load, (load_end - images.os.load)); if (images.os.type == IH_TYPE_STANDALONE) { if (iflag) enable_interrupts(); /* This may return when 'autostart' is 'no' */ bootm_start_standalone(iflag, argc, argv); return 0; } bootstage_mark(BOOTSTAGE_ID_CHECK_BOOT_OS); #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY) if (images.os.os == IH_OS_LINUX) fixup_silent_linux(); #endif boot_fn = boot_os[images.os.os]; if (boot_fn == NULL) { if (iflag) enable_interrupts(); printf("ERROR: booting os '%s' (%d) is not supported\n", genimg_get_os_name(images.os.os), images.os.os); bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS); return 1; } arch_preboot_os(); boot_fn(0, argc, argv, &images); bootstage_error(BOOTSTAGE_ID_BOOT_OS_RETURNED); #ifdef DEBUG puts("\n## Control returned to monitor - resetting...\n"); #endif do_reset(cmdtp, flag, argc, argv); return 1; } int bootm_maybe_autostart(cmd_tbl_t *cmdtp, const char *cmd) { const char *ep = getenv("autostart"); if (ep && !strcmp(ep, "yes")) { char *local_args[2]; local_args[0] = (char *)cmd; local_args[1] = NULL; printf("Automatic boot of image at addr 0x%08lX ...\n", load_addr); return do_bootm(cmdtp, 0, 1, local_args); } return 0; } /** * image_get_kernel - verify legacy format kernel image * @img_addr: in RAM address of the legacy format image to be verified * @verify: data CRC verification flag * * image_get_kernel() verifies legacy image integrity and returns pointer to * legacy image header if image verification was completed successfully. * * returns: * pointer to a legacy image header if valid image was found * otherwise return NULL */ static image_header_t *image_get_kernel(ulong img_addr, int verify) { image_header_t *hdr = (image_header_t *)img_addr; if (!image_check_magic(hdr)) { puts("Bad Magic Number\n"); bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC); return NULL; } bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER); if (!image_check_hcrc(hdr)) { puts("Bad Header Checksum\n"); bootstage_error(BOOTSTAGE_ID_CHECK_HEADER); return NULL; } bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM); image_print_contents(hdr); if (verify) { puts(" Verifying Checksum ... "); if (!image_check_dcrc(hdr)) { printf("Bad Data CRC\n"); bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM); return NULL; } puts("OK\n"); } bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH); if (!image_check_target_arch(hdr)) { printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr)); bootstage_error(BOOTSTAGE_ID_CHECK_ARCH); return NULL; } return hdr; } /** * fit_check_kernel - verify FIT format kernel subimage * @fit_hdr: pointer to the FIT image header * os_noffset: kernel subimage node offset within FIT image * @verify: data CRC verification flag * * fit_check_kernel() verifies integrity of the kernel subimage and from * specified FIT image. * * returns: * 1, on success * 0, on failure */ #if defined(CONFIG_FIT) static int fit_check_kernel(const void *fit, int os_noffset, int verify) { fit_image_print(fit, os_noffset, " "); if (verify) { puts(" Verifying Hash Integrity ... "); if (!fit_image_check_hashes(fit, os_noffset)) { puts("Bad Data Hash\n"); bootstage_error(BOOTSTAGE_ID_FIT_CHECK_HASH); return 0; } puts("OK\n"); } bootstage_mark(BOOTSTAGE_ID_FIT_CHECK_ARCH); if (!fit_image_check_target_arch(fit, os_noffset)) { puts("Unsupported Architecture\n"); bootstage_error(BOOTSTAGE_ID_FIT_CHECK_ARCH); return 0; } bootstage_mark(BOOTSTAGE_ID_FIT_CHECK_KERNEL); if (!fit_image_check_type(fit, os_noffset, IH_TYPE_KERNEL) && !fit_image_check_type(fit, os_noffset, IH_TYPE_KERNEL_NOLOAD)) { puts("Not a kernel image\n"); bootstage_error(BOOTSTAGE_ID_FIT_CHECK_KERNEL); return 0; } bootstage_mark(BOOTSTAGE_ID_FIT_CHECKED); return 1; } #endif /* CONFIG_FIT */ /** * boot_get_kernel - find kernel image * @os_data: pointer to a ulong variable, will hold os data start address * @os_len: pointer to a ulong variable, will hold os data length * * boot_get_kernel() tries to find a kernel image, verifies its integrity * and locates kernel data. * * returns: * pointer to image header if valid image was found, plus kernel start * address and length, otherwise NULL */ static void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[], bootm_headers_t *images, ulong *os_data, ulong *os_len) { image_header_t *hdr; ulong img_addr; #if defined(CONFIG_FIT) void *fit_hdr; const char *fit_uname_config = NULL; const char *fit_uname_kernel = NULL; const void *data; size_t len; int cfg_noffset; int os_noffset; #endif /* find out kernel image address */ if (argc < 2) { img_addr = load_addr; debug("* kernel: default image load address = 0x%08lx\n", load_addr); #if defined(CONFIG_FIT) } else if (fit_parse_conf(argv[1], load_addr, &img_addr, &fit_uname_config)) { debug("* kernel: config '%s' from image at 0x%08lx\n", fit_uname_config, img_addr); } else if (fit_parse_subimage(argv[1], load_addr, &img_addr, &fit_uname_kernel)) { debug("* kernel: subimage '%s' from image at 0x%08lx\n", fit_uname_kernel, img_addr); #endif } else { img_addr = simple_strtoul(argv[1], NULL, 16); debug("* kernel: cmdline image address = 0x%08lx\n", img_addr); } bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC); /* copy from dataflash if needed */ img_addr = genimg_get_image(img_addr); /* check image type, for FIT images get FIT kernel node */ *os_data = *os_len = 0; switch (genimg_get_format((void *)img_addr)) { case IMAGE_FORMAT_LEGACY: printf("## Booting kernel from Legacy Image at %08lx ...\n", img_addr); hdr = image_get_kernel(img_addr, images->verify); if (!hdr) return NULL; bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE); /* get os_data and os_len */ switch (image_get_type(hdr)) { case IH_TYPE_KERNEL: case IH_TYPE_KERNEL_NOLOAD: *os_data = image_get_data(hdr); *os_len = image_get_data_size(hdr); break; case IH_TYPE_MULTI: image_multi_getimg(hdr, 0, os_data, os_len); break; case IH_TYPE_STANDALONE: *os_data = image_get_data(hdr); *os_len = image_get_data_size(hdr); break; default: printf("Wrong Image Type for %s command\n", cmdtp->name); bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE); return NULL; } /* * copy image header to allow for image overwrites during * kernel decompression. */ memmove(&images->legacy_hdr_os_copy, hdr, sizeof(image_header_t)); /* save pointer to image header */ images->legacy_hdr_os = hdr; images->legacy_hdr_valid = 1; bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE); break; #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: fit_hdr = (void *)img_addr; printf("## Booting kernel from FIT Image at %08lx ...\n", img_addr); if (!fit_check_format(fit_hdr)) { puts("Bad FIT kernel image format!\n"); bootstage_error(BOOTSTAGE_ID_FIT_FORMAT); return NULL; } bootstage_mark(BOOTSTAGE_ID_FIT_FORMAT); if (!fit_uname_kernel) { /* * no kernel image node unit name, try to get config * node first. If config unit node name is NULL * fit_conf_get_node() will try to find default config * node */ bootstage_mark(BOOTSTAGE_ID_FIT_NO_UNIT_NAME); #ifdef CONFIG_FIT_BEST_MATCH if (fit_uname_config) cfg_noffset = fit_conf_get_node(fit_hdr, fit_uname_config); else cfg_noffset = fit_conf_find_compat(fit_hdr, gd->fdt_blob); #else cfg_noffset = fit_conf_get_node(fit_hdr, fit_uname_config); #endif if (cfg_noffset < 0) { bootstage_error(BOOTSTAGE_ID_FIT_NO_UNIT_NAME); return NULL; } /* save configuration uname provided in the first * bootm argument */ images->fit_uname_cfg = fdt_get_name(fit_hdr, cfg_noffset, NULL); printf(" Using '%s' configuration\n", images->fit_uname_cfg); bootstage_mark(BOOTSTAGE_ID_FIT_CONFIG); os_noffset = fit_conf_get_kernel_node(fit_hdr, cfg_noffset); fit_uname_kernel = fit_get_name(fit_hdr, os_noffset, NULL); } else { /* get kernel component image node offset */ bootstage_mark(BOOTSTAGE_ID_FIT_UNIT_NAME); os_noffset = fit_image_get_node(fit_hdr, fit_uname_kernel); } if (os_noffset < 0) { bootstage_error(BOOTSTAGE_ID_FIT_CONFIG); return NULL; } printf(" Trying '%s' kernel subimage\n", fit_uname_kernel); bootstage_mark(BOOTSTAGE_ID_FIT_CHECK_SUBIMAGE); if (!fit_check_kernel(fit_hdr, os_noffset, images->verify)) return NULL; /* get kernel image data address and length */ if (fit_image_get_data(fit_hdr, os_noffset, &data, &len)) { puts("Could not find kernel subimage data!\n"); bootstage_error(BOOTSTAGE_ID_FIT_KERNEL_INFO_ERR); return NULL; } bootstage_mark(BOOTSTAGE_ID_FIT_KERNEL_INFO); *os_len = len; *os_data = (ulong)data; images->fit_hdr_os = fit_hdr; images->fit_uname_os = fit_uname_kernel; images->fit_noffset_os = os_noffset; break; #endif default: printf("Wrong Image Format for %s command\n", cmdtp->name); bootstage_error(BOOTSTAGE_ID_FIT_KERNEL_INFO); return NULL; } debug(" kernel data at 0x%08lx, len = 0x%08lx (%ld)\n", *os_data, *os_len, *os_len); return (void *)img_addr; } #ifdef CONFIG_SYS_LONGHELP static char bootm_help_text[] = "[addr [arg ...]]\n - boot application image stored in memory\n" "\tpassing arguments 'arg ...'; when booting a Linux kernel,\n" "\t'arg' can be the address of an initrd image\n" #if defined(CONFIG_OF_LIBFDT) "\tWhen booting a Linux kernel which requires a flat device-tree\n" "\ta third argument is required which is the address of the\n" "\tdevice-tree blob. To boot that kernel without an initrd image,\n" "\tuse a '-' for the second argument. If you do not pass a third\n" "\ta bd_info struct will be passed instead\n" #endif #if defined(CONFIG_FIT) "\t\nFor the new multi component uImage format (FIT) addresses\n" "\tmust be extened to include component or configuration unit name:\n" "\taddr: - direct component image specification\n" "\taddr# - configuration specification\n" "\tUse iminfo command to get the list of existing component\n" "\timages and configurations.\n" #endif "\nSub-commands to do part of the bootm sequence. The sub-commands " "must be\n" "issued in the order below (it's ok to not issue all sub-commands):\n" "\tstart [addr [arg ...]]\n" "\tloados - load OS image\n" #if defined(CONFIG_SYS_BOOT_RAMDISK_HIGH) "\tramdisk - relocate initrd, set env initrd_start/initrd_end\n" #endif #if defined(CONFIG_OF_LIBFDT) "\tfdt - relocate flat device tree\n" #endif "\tcmdline - OS specific command line processing/setup\n" "\tbdt - OS specific bd_t processing\n" "\tprep - OS specific prep before relocation or go\n" "\tgo - start OS"; #endif U_BOOT_CMD( bootm, CONFIG_SYS_MAXARGS, 1, do_bootm, "boot application image from memory", bootm_help_text ); /*******************************************************************/ /* bootd - boot default image */ /*******************************************************************/ #if defined(CONFIG_CMD_BOOTD) int do_bootd(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { int rcode = 0; if (run_command(getenv("bootcmd"), flag) < 0) rcode = 1; return rcode; } U_BOOT_CMD( boot, 1, 1, do_bootd, "boot default, i.e., run 'bootcmd'", "" ); /* keep old command name "bootd" for backward compatibility */ U_BOOT_CMD( bootd, 1, 1, do_bootd, "boot default, i.e., run 'bootcmd'", "" ); #endif /*******************************************************************/ /* iminfo - print header info for a requested image */ /*******************************************************************/ #if defined(CONFIG_CMD_IMI) static int do_iminfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { int arg; ulong addr; int rcode = 0; if (argc < 2) { return image_info(load_addr); } for (arg = 1; arg < argc; ++arg) { addr = simple_strtoul(argv[arg], NULL, 16); if (image_info(addr) != 0) rcode = 1; } return rcode; } static int image_info(ulong addr) { void *hdr = (void *)addr; printf("\n## Checking Image at %08lx ...\n", addr); switch (genimg_get_format(hdr)) { case IMAGE_FORMAT_LEGACY: puts(" Legacy image found\n"); if (!image_check_magic(hdr)) { puts(" Bad Magic Number\n"); return 1; } if (!image_check_hcrc(hdr)) { puts(" Bad Header Checksum\n"); return 1; } image_print_contents(hdr); puts(" Verifying Checksum ... "); if (!image_check_dcrc(hdr)) { puts(" Bad Data CRC\n"); return 1; } puts("OK\n"); return 0; #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: puts(" FIT image found\n"); if (!fit_check_format(hdr)) { puts("Bad FIT image format!\n"); return 1; } fit_print_contents(hdr); if (!fit_all_image_check_hashes(hdr)) { puts("Bad hash in FIT image!\n"); return 1; } return 0; #endif default: puts("Unknown image format!\n"); break; } return 1; } U_BOOT_CMD( iminfo, CONFIG_SYS_MAXARGS, 1, do_iminfo, "print header information for application image", "addr [addr ...]\n" " - print header information for application image starting at\n" " address 'addr' in memory; this includes verification of the\n" " image contents (magic number, header and payload checksums)" ); #endif /*******************************************************************/ /* imls - list all images found in flash */ /*******************************************************************/ #if defined(CONFIG_CMD_IMLS) static int do_imls_nor(void) { flash_info_t *info; int i, j; void *hdr; for (i = 0, info = &flash_info[0]; i < CONFIG_SYS_MAX_FLASH_BANKS; ++i, ++info) { if (info->flash_id == FLASH_UNKNOWN) goto next_bank; for (j = 0; j < info->sector_count; ++j) { hdr = (void *)info->start[j]; if (!hdr) goto next_sector; switch (genimg_get_format(hdr)) { case IMAGE_FORMAT_LEGACY: if (!image_check_hcrc(hdr)) goto next_sector; printf("Legacy Image at %08lX:\n", (ulong)hdr); image_print_contents(hdr); puts(" Verifying Checksum ... "); if (!image_check_dcrc(hdr)) { puts("Bad Data CRC\n"); } else { puts("OK\n"); } break; #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: if (!fit_check_format(hdr)) goto next_sector; printf("FIT Image at %08lX:\n", (ulong)hdr); fit_print_contents(hdr); break; #endif default: goto next_sector; } next_sector: ; } next_bank: ; } return 0; } #endif #if defined(CONFIG_CMD_IMLS_NAND) static int nand_imls_legacyimage(nand_info_t *nand, int nand_dev, loff_t off, size_t len) { void *imgdata; int ret; imgdata = malloc(len); if (!imgdata) { printf("May be a Legacy Image at NAND device %d offset %08llX:\n", nand_dev, off); printf(" Low memory(cannot allocate memory for image)\n"); return -ENOMEM; } ret = nand_read_skip_bad(nand, off, &len, imgdata); if (ret < 0 && ret != -EUCLEAN) { free(imgdata); return ret; } if (!image_check_hcrc(imgdata)) { free(imgdata); return 0; } printf("Legacy Image at NAND device %d offset %08llX:\n", nand_dev, off); image_print_contents(imgdata); puts(" Verifying Checksum ... "); if (!image_check_dcrc(imgdata)) puts("Bad Data CRC\n"); else puts("OK\n"); free(imgdata); return 0; } static int nand_imls_fitimage(nand_info_t *nand, int nand_dev, loff_t off, size_t len) { void *imgdata; int ret; imgdata = malloc(len); if (!imgdata) { printf("May be a FIT Image at NAND device %d offset %08llX:\n", nand_dev, off); printf(" Low memory(cannot allocate memory for image)\n"); return -ENOMEM; } ret = nand_read_skip_bad(nand, off, &len, imgdata); if (ret < 0 && ret != -EUCLEAN) { free(imgdata); return ret; } if (!fit_check_format(imgdata)) { free(imgdata); return 0; } printf("FIT Image at NAND device %d offset %08llX:\n", nand_dev, off); fit_print_contents(imgdata); free(imgdata); return 0; } static int do_imls_nand(void) { nand_info_t *nand; int nand_dev = nand_curr_device; size_t len; loff_t off; u32 buffer[16]; if (nand_dev < 0 || nand_dev >= CONFIG_SYS_MAX_NAND_DEVICE) { puts("\nNo NAND devices available\n"); return -ENODEV; } printf("\n"); for (nand_dev = 0; nand_dev < CONFIG_SYS_MAX_NAND_DEVICE; nand_dev++) { nand = &nand_info[nand_dev]; if (!nand->name || !nand->size) continue; for (off = 0; off < nand->size; off += nand->erasesize) { const image_header_t *header; int ret; if (nand_block_isbad(nand, off)) continue; len = sizeof(buffer); ret = nand_read(nand, off, &len, (u8 *)buffer); if (ret < 0 && ret != -EUCLEAN) { printf("NAND read error %d at offset %08llX\n", ret, off); continue; } switch (genimg_get_format(buffer)) { case IMAGE_FORMAT_LEGACY: header = (const image_header_t *)buffer; len = image_get_image_size(header); nand_imls_legacyimage(nand, nand_dev, off, len); break; #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: len = fit_get_size(buffer); nand_imls_fitimage(nand, nand_dev, off, len); break; #endif } } } return 0; } #endif #if defined(CONFIG_CMD_IMLS) || defined(CONFIG_CMD_IMLS_NAND) static int do_imls(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { int ret_nor = 0, ret_nand = 0; #if defined(CONFIG_CMD_IMLS) ret_nor = do_imls_nor(); #endif #if defined(CONFIG_CMD_IMLS_NAND) ret_nand = do_imls_nand(); #endif if (ret_nor) return ret_nor; if (ret_nand) return ret_nand; return (0); } U_BOOT_CMD( imls, 1, 1, do_imls, "list all images found in flash", "\n" " - Prints information about all images found at sector/block\n" " boundaries in nor/nand flash." ); #endif /*******************************************************************/ /* helper routines */ /*******************************************************************/ #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY) static void fixup_silent_linux(void) { char buf[256], *start, *end; char *cmdline = getenv("bootargs"); /* Only fix cmdline when requested */ if (!(gd->flags & GD_FLG_SILENT)) return; debug("before silent fix-up: %s\n", cmdline); if (cmdline) { start = strstr(cmdline, "console="); if (start) { end = strchr(start, ' '); strncpy(buf, cmdline, (start - cmdline + 8)); if (end) strcpy(buf + (start - cmdline + 8), end); else buf[start - cmdline + 8] = '\0'; } else { strcpy(buf, cmdline); strcat(buf, " console="); } } else { strcpy(buf, "console="); } setenv("bootargs", buf); debug("after silent fix-up: %s\n", buf); } #endif /* CONFIG_SILENT_CONSOLE */ /*******************************************************************/ /* OS booting routines */ /*******************************************************************/ #ifdef CONFIG_BOOTM_NETBSD static int do_bootm_netbsd(int flag, int argc, char * const argv[], bootm_headers_t *images) { void (*loader)(bd_t *, image_header_t *, char *, char *); image_header_t *os_hdr, *hdr; ulong kernel_data, kernel_len; char *consdev; char *cmdline; if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("NetBSD"); return 1; } #endif hdr = images->legacy_hdr_os; /* * Booting a (NetBSD) kernel image * * This process is pretty similar to a standalone application: * The (first part of an multi-) image must be a stage-2 loader, * which in turn is responsible for loading & invoking the actual * kernel. The only differences are the parameters being passed: * besides the board info strucure, the loader expects a command * line, the name of the console device, and (optionally) the * address of the original image header. */ os_hdr = NULL; if (image_check_type(&images->legacy_hdr_os_copy, IH_TYPE_MULTI)) { image_multi_getimg(hdr, 1, &kernel_data, &kernel_len); if (kernel_len) os_hdr = hdr; } consdev = ""; #if defined(CONFIG_8xx_CONS_SMC1) consdev = "smc1"; #elif defined(CONFIG_8xx_CONS_SMC2) consdev = "smc2"; #elif defined(CONFIG_8xx_CONS_SCC2) consdev = "scc2"; #elif defined(CONFIG_8xx_CONS_SCC3) consdev = "scc3"; #endif if (argc > 2) { ulong len; int i; for (i = 2, len = 0; i < argc; i += 1) len += strlen(argv[i]) + 1; cmdline = malloc(len); for (i = 2, len = 0; i < argc; i += 1) { if (i > 2) cmdline[len++] = ' '; strcpy(&cmdline[len], argv[i]); len += strlen(argv[i]); } } else if ((cmdline = getenv("bootargs")) == NULL) { cmdline = ""; } loader = (void (*)(bd_t *, image_header_t *, char *, char *))images->ep; printf("## Transferring control to NetBSD stage-2 loader " "(at address %08lx) ...\n", (ulong)loader); bootstage_mark(BOOTSTAGE_ID_RUN_OS); /* * NetBSD Stage-2 Loader Parameters: * r3: ptr to board info data * r4: image address * r5: console device * r6: boot args string */ (*loader)(gd->bd, os_hdr, consdev, cmdline); return 1; } #endif /* CONFIG_BOOTM_NETBSD*/ #ifdef CONFIG_LYNXKDI static int do_bootm_lynxkdi(int flag, int argc, char * const argv[], bootm_headers_t *images) { image_header_t *hdr = &images->legacy_hdr_os_copy; if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("Lynx"); return 1; } #endif lynxkdi_boot((image_header_t *)hdr); return 1; } #endif /* CONFIG_LYNXKDI */ #ifdef CONFIG_BOOTM_RTEMS static int do_bootm_rtems(int flag, int argc, char * const argv[], bootm_headers_t *images) { void (*entry_point)(bd_t *); if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("RTEMS"); return 1; } #endif entry_point = (void (*)(bd_t *))images->ep; printf("## Transferring control to RTEMS (at address %08lx) ...\n", (ulong)entry_point); bootstage_mark(BOOTSTAGE_ID_RUN_OS); /* * RTEMS Parameters: * r3: ptr to board info data */ (*entry_point)(gd->bd); return 1; } #endif /* CONFIG_BOOTM_RTEMS */ #if defined(CONFIG_BOOTM_OSE) static int do_bootm_ose(int flag, int argc, char * const argv[], bootm_headers_t *images) { void (*entry_point)(void); if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("OSE"); return 1; } #endif entry_point = (void (*)(void))images->ep; printf("## Transferring control to OSE (at address %08lx) ...\n", (ulong)entry_point); bootstage_mark(BOOTSTAGE_ID_RUN_OS); /* * OSE Parameters: * None */ (*entry_point)(); return 1; } #endif /* CONFIG_BOOTM_OSE */ #if defined(CONFIG_BOOTM_PLAN9) static int do_bootm_plan9(int flag, int argc, char * const argv[], bootm_headers_t *images) { void (*entry_point)(void); if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("Plan 9"); return 1; } #endif entry_point = (void (*)(void))images->ep; printf("## Transferring control to Plan 9 (at address %08lx) ...\n", (ulong)entry_point); bootstage_mark(BOOTSTAGE_ID_RUN_OS); /* * Plan 9 Parameters: * None */ (*entry_point)(); return 1; } #endif /* CONFIG_BOOTM_PLAN9 */ #if defined(CONFIG_CMD_ELF) static int do_bootm_vxworks(int flag, int argc, char * const argv[], bootm_headers_t *images) { char str[80]; if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("VxWorks"); return 1; } #endif sprintf(str, "%lx", images->ep); /* write entry-point into string */ setenv("loadaddr", str); do_bootvx(NULL, 0, 0, NULL); return 1; } static int do_bootm_qnxelf(int flag, int argc, char * const argv[], bootm_headers_t *images) { char *local_args[2]; char str[16]; if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("QNX"); return 1; } #endif sprintf(str, "%lx", images->ep); /* write entry-point into string */ local_args[0] = argv[0]; local_args[1] = str; /* and provide it via the arguments */ do_bootelf(NULL, 0, 2, local_args); return 1; } #endif #ifdef CONFIG_INTEGRITY static int do_bootm_integrity(int flag, int argc, char * const argv[], bootm_headers_t *images) { void (*entry_point)(void); if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("INTEGRITY"); return 1; } #endif entry_point = (void (*)(void))images->ep; printf("## Transferring control to INTEGRITY (at address %08lx) ...\n", (ulong)entry_point); bootstage_mark(BOOTSTAGE_ID_RUN_OS); /* * INTEGRITY Parameters: * None */ (*entry_point)(); return 1; } #endif #ifdef CONFIG_CMD_BOOTZ static int __bootz_setup(void *image, void **start, void **end) { /* Please define bootz_setup() for your platform */ puts("Your platform's zImage format isn't supported yet!\n"); return -1; } int bootz_setup(void *image, void **start, void **end) __attribute__((weak, alias("__bootz_setup"))); /* * zImage booting support */ static int bootz_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[], bootm_headers_t *images) { int ret; void *zi_start, *zi_end; memset(images, 0, sizeof(bootm_headers_t)); boot_start_lmb(images); /* Setup Linux kernel zImage entry point */ if (argc < 2) { images->ep = load_addr; debug("* kernel: default image load address = 0x%08lx\n", load_addr); } else { images->ep = simple_strtoul(argv[1], NULL, 16); debug("* kernel: cmdline image address = 0x%08lx\n", images->ep); } ret = bootz_setup((void *)images->ep, &zi_start, &zi_end); if (ret != 0) return 1; lmb_reserve(&images->lmb, images->ep, zi_end - zi_start); /* Find ramdisk */ ret = boot_get_ramdisk(argc, argv, images, IH_INITRD_ARCH, &images->rd_start, &images->rd_end); if (ret) { puts("Ramdisk image is corrupt or invalid\n"); return 1; } #if defined(CONFIG_OF_LIBFDT) /* find flattened device tree */ ret = boot_get_fdt(flag, argc, argv, images, &images->ft_addr, &images->ft_len); if (ret) { puts("Could not find a valid device tree\n"); return 1; } set_working_fdt_addr(images->ft_addr); #endif return 0; } static int do_bootz(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { bootm_headers_t images; if (bootz_start(cmdtp, flag, argc, argv, &images)) return 1; /* * We have reached the point of no return: we are going to * overwrite all exception vector code, so we cannot easily * recover from any failures any more... */ disable_interrupts(); #ifdef CONFIG_NETCONSOLE /* Stop the ethernet stack if NetConsole could have left it up */ eth_halt(); #endif #if defined(CONFIG_CMD_USB) /* * turn off USB to prevent the host controller from writing to the * SDRAM while Linux is booting. This could happen (at least for OHCI * controller), because the HCCA (Host Controller Communication Area) * lies within the SDRAM and the host controller writes continously to * this area (as busmaster!). The HccaFrameNumber is for example * updated every 1 ms within the HCCA structure in SDRAM! For more * details see the OpenHCI specification. */ usb_stop(); #endif #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY) fixup_silent_linux(); #endif arch_preboot_os(); do_bootm_linux(0, argc, argv, &images); #ifdef DEBUG puts("\n## Control returned to monitor - resetting...\n"); #endif do_reset(cmdtp, flag, argc, argv); return 1; } #ifdef CONFIG_SYS_LONGHELP static char bootz_help_text[] = "[addr [initrd[:size]] [fdt]]\n" " - boot Linux zImage stored in memory\n" "\tThe argument 'initrd' is optional and specifies the address\n" "\tof the initrd in memory. The optional argument ':size' allows\n" "\tspecifying the size of RAW initrd.\n" #if defined(CONFIG_OF_LIBFDT) "\tWhen booting a Linux kernel which requires a flat device-tree\n" "\ta third argument is required which is the address of the\n" "\tdevice-tree blob. To boot that kernel without an initrd image,\n" "\tuse a '-' for the second argument. If you do not pass a third\n" "\ta bd_info struct will be passed instead\n" #endif ""; #endif U_BOOT_CMD( bootz, CONFIG_SYS_MAXARGS, 1, do_bootz, "boot Linux zImage image from memory", bootz_help_text ); #endif /* CONFIG_CMD_BOOTZ */