/* * (C) Copyright 2006 DENX Software Engineering * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #if (CONFIG_COMMANDS & CFG_CMD_NAND) || defined(CONFIG_CMD_NAND) #ifdef CONFIG_NEW_NAND_CODE #include <nand.h> #include <asm/arch/pxa-regs.h> #ifdef CFG_DFC_DEBUG1 # define DFC_DEBUG1(fmt, args...) printf(fmt, ##args) #else # define DFC_DEBUG1(fmt, args...) #endif #ifdef CFG_DFC_DEBUG2 # define DFC_DEBUG2(fmt, args...) printf(fmt, ##args) #else # define DFC_DEBUG2(fmt, args...) #endif #ifdef CFG_DFC_DEBUG3 # define DFC_DEBUG3(fmt, args...) printf(fmt, ##args) #else # define DFC_DEBUG3(fmt, args...) #endif #define MIN(x, y) ((x < y) ? x : y) /* These really don't belong here, as they are specific to the NAND Model */ static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; static struct nand_bbt_descr delta_bbt_descr = { .options = 0, .offs = 0, .len = 2, .pattern = scan_ff_pattern }; static struct nand_oobinfo delta_oob = { .useecc = MTD_NANDECC_AUTOPL_USR, /* MTD_NANDECC_PLACEONLY, */ .eccbytes = 6, .eccpos = {2, 3, 4, 5, 6, 7}, .oobfree = { {8, 2}, {12, 4} } }; /* * not required for Monahans DFC */ static void dfc_hwcontrol(struct mtd_info *mtdinfo, int cmd) { return; } #if 0 /* read device ready pin */ static int dfc_device_ready(struct mtd_info *mtdinfo) { if(NDSR & NDSR_RDY) return 1; else return 0; return 0; } #endif /* * Write buf to the DFC Controller Data Buffer */ static void dfc_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { unsigned long bytes_multi = len & 0xfffffffc; unsigned long rest = len & 0x3; unsigned long *long_buf; int i; DFC_DEBUG2("dfc_write_buf: writing %d bytes starting with 0x%x.\n", len, *((unsigned long*) buf)); if(bytes_multi) { for(i=0; i<bytes_multi; i+=4) { long_buf = (unsigned long*) &buf[i]; NDDB = *long_buf; } } if(rest) { printf("dfc_write_buf: ERROR, writing non 4-byte aligned data.\n"); } return; } /* * These functions are quite problematic for the DFC. Luckily they are * not used in the current nand code, except for nand_command, which * we've defined our own anyway. The problem is, that we always need * to write 4 bytes to the DFC Data Buffer, but in these functions we * don't know if to buffer the bytes/half words until we've gathered 4 * bytes or if to send them straight away. * * Solution: Don't use these with Mona's DFC and complain loudly. */ static void dfc_write_word(struct mtd_info *mtd, u16 word) { printf("dfc_write_word: WARNING, this function does not work with the Monahans DFC!\n"); } static void dfc_write_byte(struct mtd_info *mtd, u_char byte) { printf("dfc_write_byte: WARNING, this function does not work with the Monahans DFC!\n"); } /* The original: * static void dfc_read_buf(struct mtd_info *mtd, const u_char *buf, int len) * * Shouldn't this be "u_char * const buf" ? */ static void dfc_read_buf(struct mtd_info *mtd, u_char* const buf, int len) { int i=0, j; /* we have to be carefull not to overflow the buffer if len is * not a multiple of 4 */ unsigned long bytes_multi = len & 0xfffffffc; unsigned long rest = len & 0x3; unsigned long *long_buf; DFC_DEBUG3("dfc_read_buf: reading %d bytes.\n", len); /* if there are any, first copy multiple of 4 bytes */ if(bytes_multi) { for(i=0; i<bytes_multi; i+=4) { long_buf = (unsigned long*) &buf[i]; *long_buf = NDDB; } } /* ...then the rest */ if(rest) { unsigned long rest_data = NDDB; for(j=0;j<rest; j++) buf[i+j] = (u_char) ((rest_data>>j) & 0xff); } return; } /* * read a word. Not implemented as not used in NAND code. */ static u16 dfc_read_word(struct mtd_info *mtd) { printf("dfc_write_byte: UNIMPLEMENTED.\n"); return 0; } /* global var, too bad: mk@tbd: move to ->priv pointer */ static unsigned long read_buf = 0; static int bytes_read = -1; /* * read a byte from NDDB Because we can only read 4 bytes from NDDB at * a time, we buffer the remaining bytes. The buffer is reset when a * new command is sent to the chip. * * WARNING: * This function is currently only used to read status and id * bytes. For these commands always 8 bytes need to be read from * NDDB. So we read and discard these bytes right now. In case this * function is used for anything else in the future, we must check * what was the last command issued and read the appropriate amount of * bytes respectively. */ static u_char dfc_read_byte(struct mtd_info *mtd) { unsigned char byte; unsigned long dummy; if(bytes_read < 0) { read_buf = NDDB; dummy = NDDB; bytes_read = 0; } byte = (unsigned char) (read_buf>>(8 * bytes_read++)); if(bytes_read >= 4) bytes_read = -1; DFC_DEBUG2("dfc_read_byte: byte %u: 0x%x of (0x%x).\n", bytes_read - 1, byte, read_buf); return byte; } /* calculate delta between OSCR values start and now */ static unsigned long get_delta(unsigned long start) { unsigned long cur = OSCR; if(cur < start) /* OSCR overflowed */ return (cur + (start^0xffffffff)); else return (cur - start); } /* delay function, this doesn't belong here */ static void wait_us(unsigned long us) { unsigned long start = OSCR; us *= OSCR_CLK_FREQ; while (get_delta(start) < us) { /* do nothing */ } } static void dfc_clear_nddb(void) { NDCR &= ~NDCR_ND_RUN; wait_us(CFG_NAND_OTHER_TO); } /* wait_event with timeout */ static unsigned long dfc_wait_event(unsigned long event) { unsigned long ndsr, timeout, start = OSCR; if(!event) return 0xff000000; else if(event & (NDSR_CS0_CMDD | NDSR_CS0_BBD)) timeout = CFG_NAND_PROG_ERASE_TO * OSCR_CLK_FREQ; else timeout = CFG_NAND_OTHER_TO * OSCR_CLK_FREQ; while(1) { ndsr = NDSR; if(ndsr & event) { NDSR |= event; break; } if(get_delta(start) > timeout) { DFC_DEBUG1("dfc_wait_event: TIMEOUT waiting for event: 0x%x.\n", event); return 0xff000000; } } return ndsr; } /* we don't always wan't to do this */ static void dfc_new_cmd(void) { int retry = 0; unsigned long status; while(retry++ <= CFG_NAND_SENDCMD_RETRY) { /* Clear NDSR */ NDSR = 0xFFF; /* set NDCR[NDRUN] */ if(!(NDCR & NDCR_ND_RUN)) NDCR |= NDCR_ND_RUN; status = dfc_wait_event(NDSR_WRCMDREQ); if(status & NDSR_WRCMDREQ) return; DFC_DEBUG2("dfc_new_cmd: FAILED to get WRITECMDREQ, retry: %d.\n", retry); dfc_clear_nddb(); } DFC_DEBUG1("dfc_new_cmd: giving up after %d retries.\n", retry); } /* this function is called after Programm and Erase Operations to * check for success or failure */ static int dfc_wait(struct mtd_info *mtd, struct nand_chip *this, int state) { unsigned long ndsr=0, event=0; if(state == FL_WRITING) { event = NDSR_CS0_CMDD | NDSR_CS0_BBD; } else if(state == FL_ERASING) { event = NDSR_CS0_CMDD | NDSR_CS0_BBD; } ndsr = dfc_wait_event(event); if((ndsr & NDSR_CS0_BBD) || (ndsr & 0xff000000)) return(0x1); /* Status Read error */ return 0; } /* cmdfunc send commands to the DFC */ static void dfc_cmdfunc(struct mtd_info *mtd, unsigned command, int column, int page_addr) { /* register struct nand_chip *this = mtd->priv; */ unsigned long ndcb0=0, ndcb1=0, ndcb2=0, event=0; /* clear the ugly byte read buffer */ bytes_read = -1; read_buf = 0; switch (command) { case NAND_CMD_READ0: DFC_DEBUG3("dfc_cmdfunc: NAND_CMD_READ0, page_addr: 0x%x, column: 0x%x.\n", page_addr, (column>>1)); dfc_new_cmd(); ndcb0 = (NAND_CMD_READ0 | (4<<16)); column >>= 1; /* adjust for 16 bit bus */ ndcb1 = (((column>>1) & 0xff) | ((page_addr<<8) & 0xff00) | ((page_addr<<8) & 0xff0000) | ((page_addr<<8) & 0xff000000)); /* make this 0x01000000 ? */ event = NDSR_RDDREQ; goto write_cmd; case NAND_CMD_READ1: DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_READ1 unimplemented!\n"); goto end; case NAND_CMD_READOOB: DFC_DEBUG1("dfc_cmdfunc: NAND_CMD_READOOB unimplemented!\n"); goto end; case NAND_CMD_READID: dfc_new_cmd(); DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_READID.\n"); ndcb0 = (NAND_CMD_READID | (3 << 21) | (1 << 16)); /* addr cycles*/ event = NDSR_RDDREQ; goto write_cmd; case NAND_CMD_PAGEPROG: /* sent as a multicommand in NAND_CMD_SEQIN */ DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_PAGEPROG empty due to multicmd.\n"); goto end; case NAND_CMD_ERASE1: DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_ERASE1, page_addr: 0x%x, column: 0x%x.\n", page_addr, (column>>1)); dfc_new_cmd(); ndcb0 = (0xd060 | (1<<25) | (2<<21) | (1<<19) | (3<<16)); ndcb1 = (page_addr & 0x00ffffff); goto write_cmd; case NAND_CMD_ERASE2: DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_ERASE2 empty due to multicmd.\n"); goto end; case NAND_CMD_SEQIN: /* send PAGE_PROG command(0x1080) */ dfc_new_cmd(); DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, page_addr: 0x%x, column: 0x%x.\n", page_addr, (column>>1)); ndcb0 = (0x1080 | (1<<25) | (1<<21) | (1<<19) | (4<<16)); column >>= 1; /* adjust for 16 bit bus */ ndcb1 = (((column>>1) & 0xff) | ((page_addr<<8) & 0xff00) | ((page_addr<<8) & 0xff0000) | ((page_addr<<8) & 0xff000000)); /* make this 0x01000000 ? */ event = NDSR_WRDREQ; goto write_cmd; case NAND_CMD_STATUS: DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_STATUS.\n"); dfc_new_cmd(); ndcb0 = NAND_CMD_STATUS | (4<<21); event = NDSR_RDDREQ; goto write_cmd; case NAND_CMD_RESET: DFC_DEBUG2("dfc_cmdfunc: NAND_CMD_RESET.\n"); ndcb0 = NAND_CMD_RESET | (5<<21); event = NDSR_CS0_CMDD; goto write_cmd; default: printk("dfc_cmdfunc: error, unsupported command.\n"); goto end; } write_cmd: NDCB0 = ndcb0; NDCB0 = ndcb1; NDCB0 = ndcb2; /* wait_event: */ dfc_wait_event(event); end: return; } static void dfc_gpio_init(void) { DFC_DEBUG2("Setting up DFC GPIO's.\n"); /* no idea what is done here, see zylonite.c */ GPIO4 = 0x1; DF_ALE_WE1 = 0x00000001; DF_ALE_WE2 = 0x00000001; DF_nCS0 = 0x00000001; DF_nCS1 = 0x00000001; DF_nWE = 0x00000001; DF_nRE = 0x00000001; DF_IO0 = 0x00000001; DF_IO8 = 0x00000001; DF_IO1 = 0x00000001; DF_IO9 = 0x00000001; DF_IO2 = 0x00000001; DF_IO10 = 0x00000001; DF_IO3 = 0x00000001; DF_IO11 = 0x00000001; DF_IO4 = 0x00000001; DF_IO12 = 0x00000001; DF_IO5 = 0x00000001; DF_IO13 = 0x00000001; DF_IO6 = 0x00000001; DF_IO14 = 0x00000001; DF_IO7 = 0x00000001; DF_IO15 = 0x00000001; DF_nWE = 0x1901; DF_nRE = 0x1901; DF_CLE_NOE = 0x1900; DF_ALE_WE1 = 0x1901; DF_INT_RnB = 0x1900; } /* * Board-specific NAND initialization. The following members of the * argument are board-specific (per include/linux/mtd/nand_new.h): * - IO_ADDR_R?: address to read the 8 I/O lines of the flash device * - IO_ADDR_W?: address to write the 8 I/O lines of the flash device * - hwcontrol: hardwarespecific function for accesing control-lines * - dev_ready: hardwarespecific function for accesing device ready/busy line * - enable_hwecc?: function to enable (reset) hardware ecc generator. Must * only be provided if a hardware ECC is available * - eccmode: mode of ecc, see defines * - chip_delay: chip dependent delay for transfering data from array to * read regs (tR) * - options: various chip options. They can partly be set to inform * nand_scan about special functionality. See the defines for further * explanation * Members with a "?" were not set in the merged testing-NAND branch, * so they are not set here either. */ int board_nand_init(struct nand_chip *nand) { unsigned long tCH, tCS, tWH, tWP, tRH, tRP, tRP_high, tR, tWHR, tAR; /* set up GPIO Control Registers */ dfc_gpio_init(); /* turn on the NAND Controller Clock (104 MHz @ D0) */ CKENA |= (CKENA_4_NAND | CKENA_9_SMC); #undef CFG_TIMING_TIGHT #ifndef CFG_TIMING_TIGHT tCH = MIN(((unsigned long) (NAND_TIMING_tCH * DFC_CLK_PER_US) + 1), DFC_MAX_tCH); tCS = MIN(((unsigned long) (NAND_TIMING_tCS * DFC_CLK_PER_US) + 1), DFC_MAX_tCS); tWH = MIN(((unsigned long) (NAND_TIMING_tWH * DFC_CLK_PER_US) + 1), DFC_MAX_tWH); tWP = MIN(((unsigned long) (NAND_TIMING_tWP * DFC_CLK_PER_US) + 1), DFC_MAX_tWP); tRH = MIN(((unsigned long) (NAND_TIMING_tRH * DFC_CLK_PER_US) + 1), DFC_MAX_tRH); tRP = MIN(((unsigned long) (NAND_TIMING_tRP * DFC_CLK_PER_US) + 1), DFC_MAX_tRP); tR = MIN(((unsigned long) (NAND_TIMING_tR * DFC_CLK_PER_US) + 1), DFC_MAX_tR); tWHR = MIN(((unsigned long) (NAND_TIMING_tWHR * DFC_CLK_PER_US) + 1), DFC_MAX_tWHR); tAR = MIN(((unsigned long) (NAND_TIMING_tAR * DFC_CLK_PER_US) + 1), DFC_MAX_tAR); #else /* this is the tight timing */ tCH = MIN(((unsigned long) (NAND_TIMING_tCH * DFC_CLK_PER_US)), DFC_MAX_tCH); tCS = MIN(((unsigned long) (NAND_TIMING_tCS * DFC_CLK_PER_US)), DFC_MAX_tCS); tWH = MIN(((unsigned long) (NAND_TIMING_tWH * DFC_CLK_PER_US)), DFC_MAX_tWH); tWP = MIN(((unsigned long) (NAND_TIMING_tWP * DFC_CLK_PER_US)), DFC_MAX_tWP); tRH = MIN(((unsigned long) (NAND_TIMING_tRH * DFC_CLK_PER_US)), DFC_MAX_tRH); tRP = MIN(((unsigned long) (NAND_TIMING_tRP * DFC_CLK_PER_US)), DFC_MAX_tRP); tR = MIN(((unsigned long) (NAND_TIMING_tR * DFC_CLK_PER_US) - tCH - 2), DFC_MAX_tR); tWHR = MIN(((unsigned long) (NAND_TIMING_tWHR * DFC_CLK_PER_US) - tCH - 2), DFC_MAX_tWHR); tAR = MIN(((unsigned long) (NAND_TIMING_tAR * DFC_CLK_PER_US) - 2), DFC_MAX_tAR); #endif /* CFG_TIMING_TIGHT */ DFC_DEBUG2("tCH=%u, tCS=%u, tWH=%u, tWP=%u, tRH=%u, tRP=%u, tR=%u, tWHR=%u, tAR=%u.\n", tCH, tCS, tWH, tWP, tRH, tRP, tR, tWHR, tAR); /* tRP value is split in the register */ if(tRP & (1 << 4)) { tRP_high = 1; tRP &= ~(1 << 4); } else { tRP_high = 0; } NDTR0CS0 = (tCH << 19) | (tCS << 16) | (tWH << 11) | (tWP << 8) | (tRP_high << 6) | (tRH << 3) | (tRP << 0); NDTR1CS0 = (tR << 16) | (tWHR << 4) | (tAR << 0); /* If it doesn't work (unlikely) think about: * - ecc enable * - chip select don't care * - read id byte count * * Intentionally enabled by not setting bits: * - dma (DMA_EN) * - page size = 512 * - cs don't care, see if we can enable later! * - row address start position (after second cycle) * - pages per block = 32 * - ND_RDY : clears command buffer */ /* NDCR_NCSX | /\* Chip select busy don't care *\/ */ NDCR = (NDCR_SPARE_EN | /* use the spare area */ NDCR_DWIDTH_C | /* 16bit DFC data bus width */ NDCR_DWIDTH_M | /* 16 bit Flash device data bus width */ (2 << 16) | /* read id count = 7 ???? mk@tbd */ NDCR_ND_ARB_EN | /* enable bus arbiter */ NDCR_RDYM | /* flash device ready ir masked */ NDCR_CS0_PAGEDM | /* ND_nCSx page done ir masked */ NDCR_CS1_PAGEDM | NDCR_CS0_CMDDM | /* ND_CSx command done ir masked */ NDCR_CS1_CMDDM | NDCR_CS0_BBDM | /* ND_CSx bad block detect ir masked */ NDCR_CS1_BBDM | NDCR_DBERRM | /* double bit error ir masked */ NDCR_SBERRM | /* single bit error ir masked */ NDCR_WRDREQM | /* write data request ir masked */ NDCR_RDDREQM | /* read data request ir masked */ NDCR_WRCMDREQM); /* write command request ir masked */ /* wait 10 us due to cmd buffer clear reset */ /* wait(10); */ nand->hwcontrol = dfc_hwcontrol; /* nand->dev_ready = dfc_device_ready; */ nand->eccmode = NAND_ECC_SOFT; nand->options = NAND_BUSWIDTH_16; nand->waitfunc = dfc_wait; nand->read_byte = dfc_read_byte; nand->write_byte = dfc_write_byte; nand->read_word = dfc_read_word; nand->write_word = dfc_write_word; nand->read_buf = dfc_read_buf; nand->write_buf = dfc_write_buf; nand->cmdfunc = dfc_cmdfunc; nand->autooob = &delta_oob; nand->badblock_pattern = &delta_bbt_descr; return 0; } #else #error "U-Boot legacy NAND support not available for Monahans DFC." #endif #endif