/* * (C) Copyright 2003 * Martin Krause, TQ-Systems GmbH, martin.krause@tqs.de * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #define DEBUG #include <common.h> #include <exports.h> #include <timestamp.h> #include <s3c2400.h> #include "tsc2000.h" #include "rs485.h" /* * define, to wait for the touch to be pressed, before reading coordinates in * command do_touch. If not defined, an error message is printed, when the * command do_touch is invoked and the touch is not pressed within an specific * interval. */ #undef CONFIG_TOUCH_WAIT_PRESSED /* max time to wait for touch is pressed */ #ifndef CONFIG_TOUCH_WAIT_PRESSED #define TOUCH_TIMEOUT 5 #endif /* !CONFIG_TOUCH_WAIT_PRESSED */ /* assignment of CPU internal ADC channels with TRAB hardware */ #define VCC5V 2 #define VCC12V 3 /* CPLD-Register for controlling TRAB hardware functions */ #define CPLD_BUTTONS ((volatile unsigned long *)0x04020000) #define CPLD_FILL_LEVEL ((volatile unsigned long *)0x04008000) #define CPLD_ROTARY_SWITCH ((volatile unsigned long *)0x04018000) #define CPLD_RS485_RE ((volatile unsigned long *)0x04028000) /* timer configuration bits for buzzer and PWM */ #define START2 (1 << 12) #define UPDATE2 (1 << 13) #define INVERT2 (1 << 14) #define RELOAD2 (1 << 15) #define START3 (1 << 16) #define UPDATE3 (1 << 17) #define INVERT3 (1 << 18) #define RELOAD3 (1 << 19) #define PCLK 66000000 #define BUZZER_FREQ 1000 /* frequency in Hz */ #define PWM_FREQ 500 /* definitions of I2C EEPROM device address */ #define I2C_EEPROM_DEV_ADDR 0x54 /* definition for touch panel calibration points */ #define CALIB_TL 0 /* calibration point in (T)op (L)eft corner */ #define CALIB_DR 1 /* calibration point in (D)own (R)ight corner */ /* EEPROM address map */ #define SERIAL_NUMBER 8 #define TOUCH_X0 52 #define TOUCH_Y0 54 #define TOUCH_X1 56 #define TOUCH_Y1 58 #define CRC16 60 /* EEPROM stuff */ #define EEPROM_MAX_CRC_BUF 64 /* RS485 stuff */ #define RS485_MAX_RECEIVE_BUF_LEN 100 /* Bit definitions for ADCCON */ #define ADC_ENABLE_START 0x1 #define ADC_READ_START 0x2 #define ADC_STDBM 0x4 #define ADC_INP_AIN0 (0x0 << 3) #define ADC_INP_AIN1 (0x1 << 3) #define ADC_INP_AIN2 (0x2 << 3) #define ADC_INP_AIN3 (0x3 << 3) #define ADC_INP_AIN4 (0x4 << 3) #define ADC_INP_AIN5 (0x5 << 3) #define ADC_INP_AIN6 (0x6 << 3) #define ADC_INP_AIN7 (0x7 << 3) #define ADC_PRSCEN 0x4000 #define ADC_ECFLG 0x8000 /* function test functions */ int do_dip (void); int do_info (void); int do_vcc5v (void); int do_vcc12v (void); int do_buttons (void); int do_fill_level (void); int do_rotary_switch (void); int do_pressure (void); int do_v_bat (void); int do_vfd_id (void); int do_buzzer (char **); int do_led (char **); int do_full_bridge (char **); int do_dac (char **); int do_motor_contact (void); int do_motor (char **); int do_pwm (char **); int do_thermo (char **); int do_touch (char **); int do_rs485 (char **); int do_serial_number (char **); int do_crc16 (void); int do_power_switch (void); int do_gain (char **); int do_eeprom (char **); /* helper functions */ static void adc_init (void); static int adc_read (unsigned int channel); static void print_identifier (void); #ifdef CONFIG_TOUCH_WAIT_PRESSED static void touch_wait_pressed (void); #else static int touch_check_pressed (void); #endif /* CONFIG_TOUCH_WAIT_PRESSED */ static void touch_read_x_y (int *x, int *y); static int touch_write_clibration_values (int calib_point, int x, int y); static int rs485_send_line (const char *data); static int rs485_receive_chars (char *data, int timeout); static unsigned short updcrc(unsigned short icrc, unsigned char *icp, unsigned int icnt); #if defined(CONFIG_CMD_I2C) static int trab_eeprom_read (char **argv); static int trab_eeprom_write (char **argv); int i2c_write_multiple (uchar chip, uint addr, int alen, uchar *buffer, int len); int i2c_read_multiple ( uchar chip, uint addr, int alen, uchar *buffer, int len); #endif /* * TRAB board specific commands. Especially commands for burn-in and function * test. */ int trab_fkt (int argc, char *argv[]) { int i; app_startup(argv); if (get_version () != XF_VERSION) { printf ("Wrong XF_VERSION. Please re-compile with actual " "u-boot sources\n"); printf ("Example expects ABI version %d\n", XF_VERSION); printf ("Actual U-Boot ABI version %d\n", (int)get_version()); return 1; } debug ("argc = %d\n", argc); for (i=0; i<=argc; ++i) { debug ("argv[%d] = \"%s\"\n", i, argv[i] ? argv[i] : "<NULL>"); } adc_init (); switch (argc) { case 0: case 1: break; case 2: if (strcmp (argv[1], "info") == 0) { return (do_info ()); } if (strcmp (argv[1], "dip") == 0) { return (do_dip ()); } if (strcmp (argv[1], "vcc5v") == 0) { return (do_vcc5v ()); } if (strcmp (argv[1], "vcc12v") == 0) { return (do_vcc12v ()); } if (strcmp (argv[1], "buttons") == 0) { return (do_buttons ()); } if (strcmp (argv[1], "fill_level") == 0) { return (do_fill_level ()); } if (strcmp (argv[1], "rotary_switch") == 0) { return (do_rotary_switch ()); } if (strcmp (argv[1], "pressure") == 0) { return (do_pressure ()); } if (strcmp (argv[1], "v_bat") == 0) { return (do_v_bat ()); } if (strcmp (argv[1], "vfd_id") == 0) { return (do_vfd_id ()); } if (strcmp (argv[1], "motor_contact") == 0) { return (do_motor_contact ()); } if (strcmp (argv[1], "crc16") == 0) { return (do_crc16 ()); } if (strcmp (argv[1], "power_switch") == 0) { return (do_power_switch ()); } break; case 3: if (strcmp (argv[1], "full_bridge") == 0) { return (do_full_bridge (argv)); } if (strcmp (argv[1], "dac") == 0) { return (do_dac (argv)); } if (strcmp (argv[1], "motor") == 0) { return (do_motor (argv)); } if (strcmp (argv[1], "pwm") == 0) { return (do_pwm (argv)); } if (strcmp (argv[1], "thermo") == 0) { return (do_thermo (argv)); } if (strcmp (argv[1], "touch") == 0) { return (do_touch (argv)); } if (strcmp (argv[1], "serial_number") == 0) { return (do_serial_number (argv)); } if (strcmp (argv[1], "buzzer") == 0) { return (do_buzzer (argv)); } if (strcmp (argv[1], "gain") == 0) { return (do_gain (argv)); } break; case 4: if (strcmp (argv[1], "led") == 0) { return (do_led (argv)); } if (strcmp (argv[1], "rs485") == 0) { return (do_rs485 (argv)); } if (strcmp (argv[1], "serial_number") == 0) { return (do_serial_number (argv)); } break; case 5: if (strcmp (argv[1], "eeprom") == 0) { return (do_eeprom (argv)); } break; case 6: if (strcmp (argv[1], "eeprom") == 0) { return (do_eeprom (argv)); } break; default: break; } printf ("Usage:\n<command> <parameter1> <parameter2> ...\n"); return 1; } void hang (void) { puts ("### ERROR ### Please RESET the board ###\n"); for (;;); } int do_info (void) { printf ("Stand-alone application for TRAB board function test\n"); printf ("Built: %s at %s\n", U_BOOT_DATE, U_BOOT_TIME); return 0; } int do_dip (void) { unsigned int result = 0; int adc_val; int i; /*********************************************************** DIP switch connection (according to wa4-cpu.sp.301.pdf, page 3): SW1 - AIN4 SW2 - AIN5 SW3 - AIN6 SW4 - AIN7 "On" DIP switch position short-circuits the voltage from the input channel (i.e. '0' conversion result means "on"). *************************************************************/ for (i = 7; i > 3; i--) { if ((adc_val = adc_read (i)) == -1) { printf ("Channel %d could not be read\n", i); return 1; } /* * Input voltage (switch open) is 1.8 V. * (Vin_High/VRef)*adc_res = (1,8V/2,5V)*1023) = 736 * Set trigger at halve that value. */ if (adc_val < 368) result |= (1 << (i-4)); } /* print result to console */ print_identifier (); for (i = 0; i < 4; i++) { if ((result & (1 << i)) == 0) printf("0"); else printf("1"); } printf("\n"); return 0; } int do_vcc5v (void) { int result; /* VCC5V is connected to channel 2 */ if ((result = adc_read (VCC5V)) == -1) { printf ("VCC5V could not be read\n"); return 1; } /* * Calculate voltage value. Split in two parts because there is no * floating point support. VCC5V is connected over an resistor divider: * VCC5V=ADCval*2,5V/1023*(10K+30K)/10K. */ print_identifier (); printf ("%d", (result & 0x3FF)* 10 / 1023); printf (".%d", ((result & 0x3FF)* 10 % 1023)* 10 / 1023); printf ("%d V\n", (((result & 0x3FF) * 10 % 1023 ) * 10 % 1023) * 10 / 1024); return 0; } int do_vcc12v (void) { int result; if ((result = adc_read (VCC12V)) == -1) { printf ("VCC12V could not be read\n"); return 1; } /* * Calculate voltage value. Split in two parts because there is no * floating point support. VCC5V is connected over an resistor divider: * VCC12V=ADCval*2,5V/1023*(30K+270K)/30K. */ print_identifier (); printf ("%d", (result & 0x3FF)* 25 / 1023); printf (".%d V\n", ((result & 0x3FF)* 25 % 1023) * 10 / 1023); return 0; } static int adc_read (unsigned int channel) { int j = 1000; /* timeout value for wait loop in us */ int result; S3C2400_ADC *padc; padc = S3C2400_GetBase_ADC(); channel &= 0x7; padc->ADCCON &= ~ADC_STDBM; /* select normal mode */ padc->ADCCON &= ~(0x7 << 3); /* clear the channel bits */ padc->ADCCON |= ((channel << 3) | ADC_ENABLE_START); while (j--) { if ((padc->ADCCON & ADC_ENABLE_START) == 0) break; udelay (1); } if (j == 0) { printf("%s: ADC timeout\n", __FUNCTION__); padc->ADCCON |= ADC_STDBM; /* select standby mode */ return -1; } result = padc->ADCDAT & 0x3FF; padc->ADCCON |= ADC_STDBM; /* select standby mode */ debug ("%s: channel %d, result[DIGIT]=%d\n", __FUNCTION__, (padc->ADCCON >> 3) & 0x7, result); /* * Wait for ADC to be ready for next conversion. This delay value was * estimated, because the datasheet does not specify a value. */ udelay (1000); return (result); } static void adc_init (void) { S3C2400_ADC *padc; padc = S3C2400_GetBase_ADC(); padc->ADCCON &= ~(0xff << 6); /* clear prescaler bits */ padc->ADCCON |= ((65 << 6) | ADC_PRSCEN); /* set prescaler */ /* * Wait some time to avoid problem with very first call of * adc_read(). Without * this delay, sometimes the first read adc * value is 0. Perhaps because the * adjustment of prescaler takes * some clock cycles? */ udelay (1000); return; } int do_buttons (void) { int result; int i; result = *CPLD_BUTTONS; /* read CPLD */ debug ("%s: cpld_taster (32 bit) %#x\n", __FUNCTION__, result); /* print result to console */ print_identifier (); for (i = 16; i <= 19; i++) { if ((result & (1 << i)) == 0) printf("0"); else printf("1"); } printf("\n"); return 0; } int do_power_switch (void) { int result; S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); /* configure GPE7 as input */ gpio->PECON &= ~(0x3 << (2 * 7)); /* signal GPE7 from power switch is low active: 0=on , 1=off */ result = ((gpio->PEDAT & (1 << 7)) == (1 << 7)) ? 0 : 1; print_identifier (); printf("%d\n", result); return 0; } int do_fill_level (void) { int result; result = *CPLD_FILL_LEVEL; /* read CPLD */ debug ("%s: cpld_fuellstand (32 bit) %#x\n", __FUNCTION__, result); /* print result to console */ print_identifier (); if ((result & (1 << 16)) == 0) printf("0\n"); else printf("1\n"); return 0; } int do_rotary_switch (void) { int result; /* * Please note, that the default values of the direction bits are * undefined after reset. So it is a good idea, to make first a dummy * call to this function, to clear the direction bits and set so to * proper values. */ result = *CPLD_ROTARY_SWITCH; /* read CPLD */ debug ("%s: cpld_inc (32 bit) %#x\n", __FUNCTION__, result); *CPLD_ROTARY_SWITCH |= (3 << 16); /* clear direction bits in CPLD */ /* print result to console */ print_identifier (); if ((result & (1 << 16)) == (1 << 16)) printf("R"); if ((result & (1 << 17)) == (1 << 17)) printf("L"); if (((result & (1 << 16)) == 0) && ((result & (1 << 17)) == 0)) printf("0"); if ((result & (1 << 18)) == 0) printf("0\n"); else printf("1\n"); return 0; } int do_vfd_id (void) { int i; long int pcup_old, pccon_old; int vfd_board_id; S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); /* try to red vfd board id from the value defined by pull-ups */ pcup_old = gpio->PCUP; pccon_old = gpio->PCCON; gpio->PCUP = (gpio->PCUP & 0xFFF0); /* activate GPC0...GPC3 pull-ups */ gpio->PCCON = (gpio->PCCON & 0xFFFFFF00); /* configure GPC0...GPC3 as * inputs */ udelay (10); /* allow signals to settle */ vfd_board_id = (~gpio->PCDAT) & 0x000F; /* read GPC0...GPC3 port pins */ gpio->PCCON = pccon_old; gpio->PCUP = pcup_old; /* print vfd_board_id to console */ print_identifier (); for (i = 0; i < 4; i++) { if ((vfd_board_id & (1 << i)) == 0) printf("0"); else printf("1"); } printf("\n"); return 0; } int do_buzzer (char **argv) { int counter; S3C24X0_TIMERS * const timers = S3C24X0_GetBase_TIMERS(); S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); /* set prescaler for timer 2, 3 and 4 */ timers->TCFG0 &= ~0xFF00; timers->TCFG0 |= 0x0F00; /* set divider for timer 2 */ timers->TCFG1 &= ~0xF00; timers->TCFG1 |= 0x300; /* set frequency */ counter = (PCLK / BUZZER_FREQ) >> 9; timers->ch[2].TCNTB = counter; timers->ch[2].TCMPB = counter / 2; if (strcmp (argv[2], "on") == 0) { debug ("%s: frequency: %d\n", __FUNCTION__, BUZZER_FREQ); /* configure pin GPD7 as TOUT2 */ gpio->PDCON &= ~0xC000; gpio->PDCON |= 0x8000; /* start */ timers->TCON = (timers->TCON | UPDATE2 | RELOAD2) & ~INVERT2; timers->TCON = (timers->TCON | START2) & ~UPDATE2; return (0); } else if (strcmp (argv[2], "off") == 0) { /* stop */ timers->TCON &= ~(START2 | RELOAD2); /* configure GPD7 as output and set to low */ gpio->PDCON &= ~0xC000; gpio->PDCON |= 0x4000; gpio->PDDAT &= ~0x80; return (0); } printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); return 1; } int do_led (char **argv) { S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); /* configure PC14 and PC15 as output */ gpio->PCCON &= ~(0xF << 28); gpio->PCCON |= (0x5 << 28); /* configure PD0 and PD4 as output */ gpio->PDCON &= ~((0x3 << 8) | 0x3); gpio->PDCON |= ((0x1 << 8) | 0x1); switch (simple_strtoul(argv[2], NULL, 10)) { case 0: case 1: break; case 2: if (strcmp (argv[3], "on") == 0) gpio->PCDAT |= (1 << 14); else gpio->PCDAT &= ~(1 << 14); return 0; case 3: if (strcmp (argv[3], "on") == 0) gpio->PCDAT |= (1 << 15); else gpio->PCDAT &= ~(1 << 15); return 0; case 4: if (strcmp (argv[3], "on") == 0) gpio->PDDAT |= (1 << 0); else gpio->PDDAT &= ~(1 << 0); return 0; case 5: if (strcmp (argv[3], "on") == 0) gpio->PDDAT |= (1 << 4); else gpio->PDDAT &= ~(1 << 4); return 0; default: break; } printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); return 1; } int do_full_bridge (char **argv) { S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); /* configure PD5 and PD6 as output */ gpio->PDCON &= ~((0x3 << 5*2) | (0x3 << 6*2)); gpio->PDCON |= ((0x1 << 5*2) | (0x1 << 6*2)); if (strcmp (argv[2], "+") == 0) { gpio->PDDAT |= (1 << 5); gpio->PDDAT |= (1 << 6); return 0; } else if (strcmp (argv[2], "-") == 0) { gpio->PDDAT &= ~(1 << 5); gpio->PDDAT |= (1 << 6); return 0; } else if (strcmp (argv[2], "off") == 0) { gpio->PDDAT &= ~(1 << 5); gpio->PDDAT &= ~(1 << 6); return 0; } printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); return 1; } /* val must be in [0, 4095] */ static inline unsigned long tsc2000_to_uv (u16 val) { return ((250000 * val) / 4096) * 10; } int do_dac (char **argv) { int brightness; /* initialize SPI */ spi_init (); if (((brightness = simple_strtoul (argv[2], NULL, 10)) < 0) || (brightness > 255)) { printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); return 1; } tsc2000_write(TSC2000_REG_DACCTL, 0x0); /* Power up DAC */ tsc2000_write(TSC2000_REG_DAC, brightness & 0xff); return 0; } int do_v_bat (void) { unsigned long ret, res; /* initialize SPI */ spi_init (); tsc2000_write(TSC2000_REG_ADC, 0x1836); /* now wait for data available */ adc_wait_conversion_done(); ret = tsc2000_read(TSC2000_REG_BAT1); res = (tsc2000_to_uv(ret) + 1250) / 2500; res += (ERROR_BATTERY * res) / 1000; print_identifier (); printf ("%ld", (res / 100)); printf (".%ld", ((res % 100) / 10)); printf ("%ld V\n", (res % 10)); return 0; } int do_pressure (void) { /* initialize SPI */ spi_init (); tsc2000_write(TSC2000_REG_ADC, 0x2436); /* now wait for data available */ adc_wait_conversion_done(); print_identifier (); printf ("%d\n", tsc2000_read(TSC2000_REG_AUX2)); return 0; } int do_motor_contact (void) { int result; result = *CPLD_FILL_LEVEL; /* read CPLD */ debug ("%s: cpld_fuellstand (32 bit) %#x\n", __FUNCTION__, result); /* print result to console */ print_identifier (); if ((result & (1 << 17)) == 0) printf("0\n"); else printf("1\n"); return 0; } int do_motor (char **argv) { S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); /* Configure I/O port */ gpio->PGCON &= ~(0x3 << 0); gpio->PGCON |= (0x1 << 0); if (strcmp (argv[2], "on") == 0) { gpio->PGDAT &= ~(1 << 0); return 0; } if (strcmp (argv[2], "off") == 0) { gpio->PGDAT |= (1 << 0); return 0; } printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); return 1; } static void print_identifier (void) { printf ("## FKT: "); } int do_pwm (char **argv) { int counter; S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); S3C24X0_TIMERS * const timers = S3C24X0_GetBase_TIMERS(); if (strcmp (argv[2], "on") == 0) { /* configure pin GPD8 as TOUT3 */ gpio->PDCON &= ~(0x3 << 8*2); gpio->PDCON |= (0x2 << 8*2); /* set prescaler for timer 2, 3 and 4 */ timers->TCFG0 &= ~0xFF00; timers->TCFG0 |= 0x0F00; /* set divider for timer 3 */ timers->TCFG1 &= ~(0xf << 12); timers->TCFG1 |= (0x3 << 12); /* set frequency */ counter = (PCLK / PWM_FREQ) >> 9; timers->ch[3].TCNTB = counter; timers->ch[3].TCMPB = counter / 2; /* start timer */ timers->TCON = (timers->TCON | UPDATE3 | RELOAD3) & ~INVERT3; timers->TCON = (timers->TCON | START3) & ~UPDATE3; return 0; } if (strcmp (argv[2], "off") == 0) { /* stop timer */ timers->TCON &= ~(START2 | RELOAD2); /* configure pin GPD8 as output and set to 0 */ gpio->PDCON &= ~(0x3 << 8*2); gpio->PDCON |= (0x1 << 8*2); gpio->PDDAT &= ~(1 << 8); return 0; } printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); return 1; } int do_thermo (char **argv) { int channel, res; tsc2000_reg_init (); if (strcmp (argv[2], "all") == 0) { int i; for (i=0; i <= 15; i++) { res = tsc2000_read_channel(i); print_identifier (); printf ("c%d: %d\n", i, res); } return 0; } channel = simple_strtoul (argv[2], NULL, 10); res = tsc2000_read_channel(channel); print_identifier (); printf ("%d\n", res); return 0; /* return OK */ } int do_touch (char **argv) { int x, y; if (strcmp (argv[2], "tl") == 0) { #ifdef CONFIG_TOUCH_WAIT_PRESSED touch_wait_pressed(); #else { int i; for (i = 0; i < (TOUCH_TIMEOUT * 1000); i++) { if (touch_check_pressed ()) { break; } udelay (1000); /* pause 1 ms */ } } if (!touch_check_pressed()) { print_identifier (); printf ("error: touch not pressed\n"); return 1; } #endif /* CONFIG_TOUCH_WAIT_PRESSED */ touch_read_x_y (&x, &y); print_identifier (); printf ("x=%d y=%d\n", x, y); return touch_write_clibration_values (CALIB_TL, x, y); } else if (strcmp (argv[2], "dr") == 0) { #ifdef CONFIG_TOUCH_WAIT_PRESSED touch_wait_pressed(); #else { int i; for (i = 0; i < (TOUCH_TIMEOUT * 1000); i++) { if (touch_check_pressed ()) { break; } udelay (1000); /* pause 1 ms */ } } if (!touch_check_pressed()) { print_identifier (); printf ("error: touch not pressed\n"); return 1; } #endif /* CONFIG_TOUCH_WAIT_PRESSED */ touch_read_x_y (&x, &y); print_identifier (); printf ("x=%d y=%d\n", x, y); return touch_write_clibration_values (CALIB_DR, x, y); } return 1; /* not "tl", nor "dr", so return error */ } #ifdef CONFIG_TOUCH_WAIT_PRESSED static void touch_wait_pressed (void) { while (!(tsc2000_read(TSC2000_REG_ADC) & TC_PSM)); } #else static int touch_check_pressed (void) { return (tsc2000_read(TSC2000_REG_ADC) & TC_PSM); } #endif /* CONFIG_TOUCH_WAIT_PRESSED */ static int touch_write_clibration_values (int calib_point, int x, int y) { #if defined(CONFIG_CMD_I2C) int x_verify = 0; int y_verify = 0; tsc2000_reg_init (); if (calib_point == CALIB_TL) { if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_X0, 1, (unsigned char *)&x, 2)) { return 1; } if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_Y0, 1, (unsigned char *)&y, 2)) { return 1; } /* verify written values */ if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_X0, 1, (unsigned char *)&x_verify, 2)) { return 1; } if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_Y0, 1, (unsigned char *)&y_verify, 2)) { return 1; } if ((y != y_verify) || (x != x_verify)) { print_identifier (); printf ("error: verify error\n"); return 1; } return 0; /* no error */ } else if (calib_point == CALIB_DR) { if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_X1, 1, (unsigned char *)&x, 2)) { return 1; } if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_Y1, 1, (unsigned char *)&y, 2)) { return 1; } /* verify written values */ if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_X1, 1, (unsigned char *)&x_verify, 2)) { return 1; } if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, TOUCH_Y1, 1, (unsigned char *)&y_verify, 2)) { return 1; } if ((y != y_verify) || (x != x_verify)) { print_identifier (); printf ("error: verify error\n"); return 1; } return 0; } return 1; #else printf ("No I2C support enabled (CONFIG_CMD_I2C), could not write " "to EEPROM\n"); return (1); #endif } static void touch_read_x_y (int *px, int *py) { tsc2000_write(TSC2000_REG_ADC, DEFAULT_ADC | TC_AD0 | TC_AD1); adc_wait_conversion_done(); *px = tsc2000_read(TSC2000_REG_X); tsc2000_write(TSC2000_REG_ADC, DEFAULT_ADC | TC_AD2); adc_wait_conversion_done(); *py = tsc2000_read(TSC2000_REG_Y); } int do_rs485 (char **argv) { int timeout; char data[RS485_MAX_RECEIVE_BUF_LEN]; if (strcmp (argv[2], "send") == 0) { return (rs485_send_line (argv[3])); } else if (strcmp (argv[2], "receive") == 0) { timeout = simple_strtoul(argv[3], NULL, 10); if (rs485_receive_chars (data, timeout) != 0) { print_identifier (); printf ("## nothing received\n"); return (1); } else { print_identifier (); printf ("%s\n", data); return (0); } } printf ("%s: unknown command %s\n", __FUNCTION__, argv[2]); return (1); /* unknown command, return error */ } static int rs485_send_line (const char *data) { rs485_init (); trab_rs485_enable_tx (); rs485_puts (data); rs485_putc ('\n'); return (0); } static int rs485_receive_chars (char *data, int timeout) { int i; int receive_count = 0; rs485_init (); trab_rs485_enable_rx (); /* test every 1 ms for received characters to avoid a receive FIFO * overrun (@ 38.400 Baud) */ for (i = 0; i < (timeout * 1000); i++) { while (rs485_tstc ()) { if (receive_count >= RS485_MAX_RECEIVE_BUF_LEN-1) break; *data++ = rs485_getc (); receive_count++; } udelay (1000); /* pause 1 ms */ } *data = '\0'; /* terminate string */ if (receive_count == 0) return (1); else return (0); } int do_serial_number (char **argv) { #if defined(CONFIG_CMD_I2C) unsigned int serial_number; if (strcmp (argv[2], "read") == 0) { if (i2c_read (I2C_EEPROM_DEV_ADDR, SERIAL_NUMBER, 1, (unsigned char *)&serial_number, 4)) { printf ("could not read from eeprom\n"); return (1); } print_identifier (); printf ("%08d\n", serial_number); return (0); } else if (strcmp (argv[2], "write") == 0) { serial_number = simple_strtoul(argv[3], NULL, 10); if (i2c_write (I2C_EEPROM_DEV_ADDR, SERIAL_NUMBER, 1, (unsigned char *)&serial_number, 4)) { printf ("could not write to eeprom\n"); return (1); } return (0); } printf ("%s: unknown command %s\n", __FUNCTION__, argv[2]); return (1); /* unknown command, return error */ #else printf ("No I2C support enabled (CONFIG_CMD_I2C), could not write " "to EEPROM\n"); return (1); #endif } int do_crc16 (void) { #if defined(CONFIG_CMD_I2C) int crc; unsigned char buf[EEPROM_MAX_CRC_BUF]; if (i2c_read (I2C_EEPROM_DEV_ADDR, 0, 1, buf, 60)) { printf ("could not read from eeprom\n"); return (1); } crc = 0; /* start value of crc calculation */ crc = updcrc (crc, buf, 60); print_identifier (); printf ("crc16=%#04x\n", crc); if (i2c_write (I2C_EEPROM_DEV_ADDR, CRC16, 1, (unsigned char *)&crc, sizeof (crc))) { printf ("could not read from eeprom\n"); return (1); } return (0); #else printf ("No I2C support enabled (CONFIG_CMD_I2C), could not write " "to EEPROM\n"); return (1); #endif } /* * Calculate, intelligently, the CRC of a dataset incrementally given a * buffer full at a time. * Initialize crc to 0 for XMODEM, -1 for CCITT. * * Usage: * newcrc = updcrc( oldcrc, bufadr, buflen ) * unsigned int oldcrc, buflen; * char *bufadr; * * Compile with -DTEST to generate program that prints CRC of stdin to stdout. * Compile with -DMAKETAB to print values for crctab to stdout */ /* the CRC polynomial. This is used by XMODEM (almost CCITT). * If you change P, you must change crctab[]'s initial value to what is * printed by initcrctab() */ #define P 0x1021 /* number of bits in CRC: don't change it. */ #define W 16 /* this the number of bits per char: don't change it. */ #define B 8 static unsigned short crctab[1<<B] = { /* as calculated by initcrctab() */ 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4, 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823, 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b, 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a, 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41, 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70, 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78, 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e, 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d, 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab, 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92, 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8, 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0 }; static unsigned short updcrc(unsigned short icrc, unsigned char *icp, unsigned int icnt ) { register unsigned short crc = icrc; register unsigned char *cp = icp; register unsigned int cnt = icnt; while (cnt--) crc = (crc<<B) ^ crctab[(crc>>(W-B)) ^ *cp++]; return (crc); } int do_gain (char **argv) { int range; range = simple_strtoul (argv[2], NULL, 10); if ((range < 1) || (range > 3)) { printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); return 1; } tsc2000_set_range (range); return (0); } int do_eeprom (char **argv) { #if defined(CONFIG_CMD_I2C) if (strcmp (argv[2], "read") == 0) { return (trab_eeprom_read (argv)); } else if (strcmp (argv[2], "write") == 0) { return (trab_eeprom_write (argv)); } printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[2]); return (1); #else printf ("No I2C support enabled (CONFIG_CMD_I2C), could not write " "to EEPROM\n"); return (1); #endif } #if defined(CONFIG_CMD_I2C) static int trab_eeprom_read (char **argv) { int i; int len; unsigned int addr; long int value = 0; uchar *buffer; buffer = (uchar *) &value; addr = simple_strtoul (argv[3], NULL, 10); addr &= 0xfff; len = simple_strtoul (argv[4], NULL, 10); if ((len < 1) || (len > 4)) { printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[4]); return (1); } for (i = 0; i < len; i++) { if (i2c_read (I2C_EEPROM_DEV_ADDR, addr+i, 1, buffer+i, 1)) { printf ("%s: could not read from i2c device %#x" ", addr %d\n", __FUNCTION__, I2C_EEPROM_DEV_ADDR, addr); return (1); } } print_identifier (); if (strcmp (argv[5], "-") == 0) { if (len == 1) printf ("%d\n", (signed char) value); else if (len == 2) printf ("%d\n", (signed short int) value); else printf ("%ld\n", value); } else { if (len == 1) printf ("%d\n", (unsigned char) value); else if (len == 2) printf ("%d\n", (unsigned short int) value); else printf ("%ld\n", (unsigned long int) value); } return (0); } static int trab_eeprom_write (char **argv) { int i; int len; unsigned int addr; long int value = 0; uchar *buffer; buffer = (uchar *) &value; addr = simple_strtoul (argv[3], NULL, 10); addr &= 0xfff; len = simple_strtoul (argv[4], NULL, 10); if ((len < 1) || (len > 4)) { printf ("%s: invalid parameter %s\n", __FUNCTION__, argv[4]); return (1); } value = simple_strtol (argv[5], NULL, 10); debug ("value=%ld\n", value); for (i = 0; i < len; i++) { if (i2c_write (I2C_EEPROM_DEV_ADDR, addr+i, 1, buffer+i, 1)) { printf ("%s: could not write to i2c device %d" ", addr %d\n", __FUNCTION__, I2C_EEPROM_DEV_ADDR, addr); return (1); } #if 0 printf ("chip=%#x, addr+i=%#x+%d=%p, alen=%d, *buffer+i=" "%#x+%d=%p=%#x \n",I2C_EEPROM_DEV_ADDR_DEV_ADDR , addr, i, addr+i, 1, buffer, i, buffer+i, *(buffer+i)); #endif udelay (30000); /* wait for EEPROM ready */ } return (0); } int i2c_write_multiple (uchar chip, uint addr, int alen, uchar *buffer, int len) { int i; if (alen != 1) { printf ("%s: addr len other than 1 not supported\n", __FUNCTION__); return (1); } for (i = 0; i < len; i++) { if (i2c_write (chip, addr+i, alen, buffer+i, 1)) { printf ("%s: could not write to i2c device %d" ", addr %d\n", __FUNCTION__, chip, addr); return (1); } #if 0 printf ("chip=%#x, addr+i=%#x+%d=%p, alen=%d, *buffer+i=" "%#x+%d=%p=\"%.1s\"\n", chip, addr, i, addr+i, alen, buffer, i, buffer+i, buffer+i); #endif udelay (30000); } return (0); } int i2c_read_multiple ( uchar chip, uint addr, int alen, uchar *buffer, int len) { int i; if (alen != 1) { printf ("%s: addr len other than 1 not supported\n", __FUNCTION__); return (1); } for (i = 0; i < len; i++) { if (i2c_read (chip, addr+i, alen, buffer+i, 1)) { printf ("%s: could not read from i2c device %#x" ", addr %d\n", __FUNCTION__, chip, addr); return (1); } } return (0); } #endif