/* * board.c * * Board functions for TI AM335X based boards * * Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR /PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "board.h" DECLARE_GLOBAL_DATA_PTR; static struct wd_timer *wdtimer = (struct wd_timer *)WDT_BASE; #ifdef CONFIG_SPL_BUILD static struct uart_sys *uart_base = (struct uart_sys *)DEFAULT_UART_BASE; #endif /* MII mode defines */ #define MII_MODE_ENABLE 0x0 #define RGMII_MODE_ENABLE 0x3A /* GPIO that controls power to DDR on EVM-SK */ #define GPIO_DDR_VTT_EN 7 static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE; static struct am335x_baseboard_id __attribute__((section (".data"))) header; static inline int board_is_bone(void) { return !strncmp(header.name, "A335BONE", HDR_NAME_LEN); } static inline int board_is_bone_lt(void) { return !strncmp(header.name, "A335BNLT", HDR_NAME_LEN); } static inline int board_is_evm_sk(void) { return !strncmp("A335X_SK", header.name, HDR_NAME_LEN); } static inline int board_is_idk(void) { return !strncmp(header.config, "SKU#02", 6); } static int __maybe_unused board_is_gp_evm(void) { return !strncmp("A33515BB", header.name, 8); } int board_is_evm_15_or_later(void) { return (!strncmp("A33515BB", header.name, 8) && strncmp("1.5", header.version, 3) <= 0); } /* * Read header information from EEPROM into global structure. */ static int read_eeprom(void) { /* Check if baseboard eeprom is available */ if (i2c_probe(CONFIG_SYS_I2C_EEPROM_ADDR)) { puts("Could not probe the EEPROM; something fundamentally " "wrong on the I2C bus.\n"); return -ENODEV; } /* read the eeprom using i2c */ if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 2, (uchar *)&header, sizeof(header))) { puts("Could not read the EEPROM; something fundamentally" " wrong on the I2C bus.\n"); return -EIO; } if (header.magic != 0xEE3355AA) { /* * read the eeprom using i2c again, * but use only a 1 byte address */ if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 1, (uchar *)&header, sizeof(header))) { puts("Could not read the EEPROM; something " "fundamentally wrong on the I2C bus.\n"); return -EIO; } if (header.magic != 0xEE3355AA) { printf("Incorrect magic number (0x%x) in EEPROM\n", header.magic); return -EINVAL; } } return 0; } /* UART Defines */ #ifdef CONFIG_SPL_BUILD #define UART_RESET (0x1 << 1) #define UART_CLK_RUNNING_MASK 0x1 #define UART_SMART_IDLE_EN (0x1 << 0x3) static void rtc32k_enable(void) { struct rtc_regs *rtc = (struct rtc_regs *)RTC_BASE; /* * Unlock the RTC's registers. For more details please see the * RTC_SS section of the TRM. In order to unlock we need to * write these specific values (keys) in this order. */ writel(0x83e70b13, &rtc->kick0r); writel(0x95a4f1e0, &rtc->kick1r); /* Enable the RTC 32K OSC by setting bits 3 and 6. */ writel((1 << 3) | (1 << 6), &rtc->osc); } static const struct ddr_data ddr2_data = { .datardsratio0 = ((MT47H128M16RT25E_RD_DQS<<30) | (MT47H128M16RT25E_RD_DQS<<20) | (MT47H128M16RT25E_RD_DQS<<10) | (MT47H128M16RT25E_RD_DQS<<0)), .datawdsratio0 = ((MT47H128M16RT25E_WR_DQS<<30) | (MT47H128M16RT25E_WR_DQS<<20) | (MT47H128M16RT25E_WR_DQS<<10) | (MT47H128M16RT25E_WR_DQS<<0)), .datawiratio0 = ((MT47H128M16RT25E_PHY_WRLVL<<30) | (MT47H128M16RT25E_PHY_WRLVL<<20) | (MT47H128M16RT25E_PHY_WRLVL<<10) | (MT47H128M16RT25E_PHY_WRLVL<<0)), .datagiratio0 = ((MT47H128M16RT25E_PHY_GATELVL<<30) | (MT47H128M16RT25E_PHY_GATELVL<<20) | (MT47H128M16RT25E_PHY_GATELVL<<10) | (MT47H128M16RT25E_PHY_GATELVL<<0)), .datafwsratio0 = ((MT47H128M16RT25E_PHY_FIFO_WE<<30) | (MT47H128M16RT25E_PHY_FIFO_WE<<20) | (MT47H128M16RT25E_PHY_FIFO_WE<<10) | (MT47H128M16RT25E_PHY_FIFO_WE<<0)), .datawrsratio0 = ((MT47H128M16RT25E_PHY_WR_DATA<<30) | (MT47H128M16RT25E_PHY_WR_DATA<<20) | (MT47H128M16RT25E_PHY_WR_DATA<<10) | (MT47H128M16RT25E_PHY_WR_DATA<<0)), .datauserank0delay = MT47H128M16RT25E_PHY_RANK0_DELAY, .datadldiff0 = PHY_DLL_LOCK_DIFF, }; static const struct cmd_control ddr2_cmd_ctrl_data = { .cmd0csratio = MT47H128M16RT25E_RATIO, .cmd0dldiff = MT47H128M16RT25E_DLL_LOCK_DIFF, .cmd0iclkout = MT47H128M16RT25E_INVERT_CLKOUT, .cmd1csratio = MT47H128M16RT25E_RATIO, .cmd1dldiff = MT47H128M16RT25E_DLL_LOCK_DIFF, .cmd1iclkout = MT47H128M16RT25E_INVERT_CLKOUT, .cmd2csratio = MT47H128M16RT25E_RATIO, .cmd2dldiff = MT47H128M16RT25E_DLL_LOCK_DIFF, .cmd2iclkout = MT47H128M16RT25E_INVERT_CLKOUT, }; static const struct emif_regs ddr2_emif_reg_data = { .sdram_config = MT47H128M16RT25E_EMIF_SDCFG, .ref_ctrl = MT47H128M16RT25E_EMIF_SDREF, .sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1, .sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2, .sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3, .emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY, }; static const struct ddr_data ddr3_data = { .datardsratio0 = MT41J128MJT125_RD_DQS, .datawdsratio0 = MT41J128MJT125_WR_DQS, .datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE, .datawrsratio0 = MT41J128MJT125_PHY_WR_DATA, .datadldiff0 = PHY_DLL_LOCK_DIFF, }; static const struct ddr_data ddr3_beagleblack_data = { .datardsratio0 = MT41K256M16HA125E_RD_DQS, .datawdsratio0 = MT41K256M16HA125E_WR_DQS, .datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE, .datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA, .datadldiff0 = PHY_DLL_LOCK_DIFF, }; static const struct ddr_data ddr3_evm_data = { .datardsratio0 = MT41J512M8RH125_RD_DQS, .datawdsratio0 = MT41J512M8RH125_WR_DQS, .datafwsratio0 = MT41J512M8RH125_PHY_FIFO_WE, .datawrsratio0 = MT41J512M8RH125_PHY_WR_DATA, .datadldiff0 = PHY_DLL_LOCK_DIFF, }; static const struct cmd_control ddr3_cmd_ctrl_data = { .cmd0csratio = MT41J128MJT125_RATIO, .cmd0dldiff = MT41J128MJT125_DLL_LOCK_DIFF, .cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT, .cmd1csratio = MT41J128MJT125_RATIO, .cmd1dldiff = MT41J128MJT125_DLL_LOCK_DIFF, .cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT, .cmd2csratio = MT41J128MJT125_RATIO, .cmd2dldiff = MT41J128MJT125_DLL_LOCK_DIFF, .cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT, }; static const struct cmd_control ddr3_beagleblack_cmd_ctrl_data = { .cmd0csratio = MT41K256M16HA125E_RATIO, .cmd0dldiff = MT41K256M16HA125E_DLL_LOCK_DIFF, .cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT, .cmd1csratio = MT41K256M16HA125E_RATIO, .cmd1dldiff = MT41K256M16HA125E_DLL_LOCK_DIFF, .cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT, .cmd2csratio = MT41K256M16HA125E_RATIO, .cmd2dldiff = MT41K256M16HA125E_DLL_LOCK_DIFF, .cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT, }; static const struct cmd_control ddr3_evm_cmd_ctrl_data = { .cmd0csratio = MT41J512M8RH125_RATIO, .cmd0dldiff = MT41J512M8RH125_DLL_LOCK_DIFF, .cmd0iclkout = MT41J512M8RH125_INVERT_CLKOUT, .cmd1csratio = MT41J512M8RH125_RATIO, .cmd1dldiff = MT41J512M8RH125_DLL_LOCK_DIFF, .cmd1iclkout = MT41J512M8RH125_INVERT_CLKOUT, .cmd2csratio = MT41J512M8RH125_RATIO, .cmd2dldiff = MT41J512M8RH125_DLL_LOCK_DIFF, .cmd2iclkout = MT41J512M8RH125_INVERT_CLKOUT, }; static struct emif_regs ddr3_emif_reg_data = { .sdram_config = MT41J128MJT125_EMIF_SDCFG, .ref_ctrl = MT41J128MJT125_EMIF_SDREF, .sdram_tim1 = MT41J128MJT125_EMIF_TIM1, .sdram_tim2 = MT41J128MJT125_EMIF_TIM2, .sdram_tim3 = MT41J128MJT125_EMIF_TIM3, .zq_config = MT41J128MJT125_ZQ_CFG, .emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY | PHY_EN_DYN_PWRDN, }; static struct emif_regs ddr3_beagleblack_emif_reg_data = { .sdram_config = MT41K256M16HA125E_EMIF_SDCFG, .ref_ctrl = MT41K256M16HA125E_EMIF_SDREF, .sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1, .sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2, .sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3, .zq_config = MT41K256M16HA125E_ZQ_CFG, .emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY, }; static struct emif_regs ddr3_evm_emif_reg_data = { .sdram_config = MT41J512M8RH125_EMIF_SDCFG, .ref_ctrl = MT41J512M8RH125_EMIF_SDREF, .sdram_tim1 = MT41J512M8RH125_EMIF_TIM1, .sdram_tim2 = MT41J512M8RH125_EMIF_TIM2, .sdram_tim3 = MT41J512M8RH125_EMIF_TIM3, .zq_config = MT41J512M8RH125_ZQ_CFG, .emif_ddr_phy_ctlr_1 = MT41J512M8RH125_EMIF_READ_LATENCY | PHY_EN_DYN_PWRDN, }; #ifdef CONFIG_SPL_OS_BOOT int spl_start_uboot(void) { /* break into full u-boot on 'c' */ return (serial_tstc() && serial_getc() == 'c'); } #endif #endif /* * early system init of muxing and clocks. */ void s_init(void) { /* * Save the boot parameters passed from romcode. * We cannot delay the saving further than this, * to prevent overwrites. */ #ifdef CONFIG_SPL_BUILD save_omap_boot_params(); #endif /* WDT1 is already running when the bootloader gets control * Disable it to avoid "random" resets */ writel(0xAAAA, &wdtimer->wdtwspr); while (readl(&wdtimer->wdtwwps) != 0x0) ; writel(0x5555, &wdtimer->wdtwspr); while (readl(&wdtimer->wdtwwps) != 0x0) ; #ifdef CONFIG_SPL_BUILD /* Setup the PLLs and the clocks for the peripherals */ pll_init(); /* Enable RTC32K clock */ rtc32k_enable(); /* UART softreset */ u32 regVal; #ifdef CONFIG_SERIAL1 enable_uart0_pin_mux(); #endif /* CONFIG_SERIAL1 */ #ifdef CONFIG_SERIAL2 enable_uart1_pin_mux(); #endif /* CONFIG_SERIAL2 */ #ifdef CONFIG_SERIAL3 enable_uart2_pin_mux(); #endif /* CONFIG_SERIAL3 */ #ifdef CONFIG_SERIAL4 enable_uart3_pin_mux(); #endif /* CONFIG_SERIAL4 */ #ifdef CONFIG_SERIAL5 enable_uart4_pin_mux(); #endif /* CONFIG_SERIAL5 */ #ifdef CONFIG_SERIAL6 enable_uart5_pin_mux(); #endif /* CONFIG_SERIAL6 */ regVal = readl(&uart_base->uartsyscfg); regVal |= UART_RESET; writel(regVal, &uart_base->uartsyscfg); while ((readl(&uart_base->uartsyssts) & UART_CLK_RUNNING_MASK) != UART_CLK_RUNNING_MASK) ; /* Disable smart idle */ regVal = readl(&uart_base->uartsyscfg); regVal |= UART_SMART_IDLE_EN; writel(regVal, &uart_base->uartsyscfg); gd = &gdata; preloader_console_init(); /* Initalize the board header */ enable_i2c0_pin_mux(); i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE); if (read_eeprom() < 0) puts("Could not get board ID.\n"); enable_board_pin_mux(&header); if (board_is_evm_sk()) { /* * EVM SK 1.2A and later use gpio0_7 to enable DDR3. * This is safe enough to do on older revs. */ gpio_request(GPIO_DDR_VTT_EN, "ddr_vtt_en"); gpio_direction_output(GPIO_DDR_VTT_EN, 1); } if (board_is_evm_sk()) config_ddr(303, MT41J128MJT125_IOCTRL_VALUE, &ddr3_data, &ddr3_cmd_ctrl_data, &ddr3_emif_reg_data, 0); else if (board_is_bone_lt()) config_ddr(400, MT41K256M16HA125E_IOCTRL_VALUE, &ddr3_beagleblack_data, &ddr3_beagleblack_cmd_ctrl_data, &ddr3_beagleblack_emif_reg_data, 0); else if (board_is_evm_15_or_later()) config_ddr(303, MT41J512M8RH125_IOCTRL_VALUE, &ddr3_evm_data, &ddr3_evm_cmd_ctrl_data, &ddr3_evm_emif_reg_data, 0); else config_ddr(266, MT47H128M16RT25E_IOCTRL_VALUE, &ddr2_data, &ddr2_cmd_ctrl_data, &ddr2_emif_reg_data, 0); #endif } /* * Basic board specific setup. Pinmux has been handled already. */ int board_init(void) { i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE); if (read_eeprom() < 0) puts("Could not get board ID.\n"); gd->bd->bi_boot_params = PHYS_DRAM_1 + 0x100; gpmc_init(); return 0; } #ifdef CONFIG_BOARD_LATE_INIT int board_late_init(void) { #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG char safe_string[HDR_NAME_LEN + 1]; /* Now set variables based on the header. */ strncpy(safe_string, (char *)header.name, sizeof(header.name)); safe_string[sizeof(header.name)] = 0; setenv("board_name", safe_string); strncpy(safe_string, (char *)header.version, sizeof(header.version)); safe_string[sizeof(header.version)] = 0; setenv("board_rev", safe_string); #endif return 0; } #endif #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \ (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD)) static void cpsw_control(int enabled) { /* VTP can be added here */ return; } static struct cpsw_slave_data cpsw_slaves[] = { { .slave_reg_ofs = 0x208, .sliver_reg_ofs = 0xd80, .phy_id = 0, }, { .slave_reg_ofs = 0x308, .sliver_reg_ofs = 0xdc0, .phy_id = 1, }, }; static struct cpsw_platform_data cpsw_data = { .mdio_base = CPSW_MDIO_BASE, .cpsw_base = CPSW_BASE, .mdio_div = 0xff, .channels = 8, .cpdma_reg_ofs = 0x800, .slaves = 1, .slave_data = cpsw_slaves, .ale_reg_ofs = 0xd00, .ale_entries = 1024, .host_port_reg_ofs = 0x108, .hw_stats_reg_ofs = 0x900, .mac_control = (1 << 5), .control = cpsw_control, .host_port_num = 0, .version = CPSW_CTRL_VERSION_2, }; #endif #if defined(CONFIG_DRIVER_TI_CPSW) || \ (defined(CONFIG_USB_ETHER) && defined(CONFIG_MUSB_GADGET)) int board_eth_init(bd_t *bis) { int rv, n = 0; uint8_t mac_addr[6]; uint32_t mac_hi, mac_lo; /* try reading mac address from efuse */ mac_lo = readl(&cdev->macid0l); mac_hi = readl(&cdev->macid0h); mac_addr[0] = mac_hi & 0xFF; mac_addr[1] = (mac_hi & 0xFF00) >> 8; mac_addr[2] = (mac_hi & 0xFF0000) >> 16; mac_addr[3] = (mac_hi & 0xFF000000) >> 24; mac_addr[4] = mac_lo & 0xFF; mac_addr[5] = (mac_lo & 0xFF00) >> 8; #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \ (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD)) if (!getenv("ethaddr")) { printf(" not set. Validating first E-fuse MAC\n"); if (is_valid_ether_addr(mac_addr)) eth_setenv_enetaddr("ethaddr", mac_addr); } if (board_is_bone() || board_is_bone_lt() || board_is_idk()) { writel(MII_MODE_ENABLE, &cdev->miisel); cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_MII; } else { writel(RGMII_MODE_ENABLE, &cdev->miisel); cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_RGMII; } rv = cpsw_register(&cpsw_data); if (rv < 0) printf("Error %d registering CPSW switch\n", rv); else n += rv; /* * * CPSW RGMII Internal Delay Mode is not supported in all PVT * operating points. So we must set the TX clock delay feature * in the AR8051 PHY. Since we only support a single ethernet * device in U-Boot, we only do this for the first instance. */ #define AR8051_PHY_DEBUG_ADDR_REG 0x1d #define AR8051_PHY_DEBUG_DATA_REG 0x1e #define AR8051_DEBUG_RGMII_CLK_DLY_REG 0x5 #define AR8051_RGMII_TX_CLK_DLY 0x100 if (board_is_evm_sk() || board_is_gp_evm()) { const char *devname; devname = miiphy_get_current_dev(); miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_ADDR_REG, AR8051_DEBUG_RGMII_CLK_DLY_REG); miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_DATA_REG, AR8051_RGMII_TX_CLK_DLY); } #endif #if defined(CONFIG_USB_ETHER) && \ (!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USBETH_SUPPORT)) if (is_valid_ether_addr(mac_addr)) eth_setenv_enetaddr("usbnet_devaddr", mac_addr); rv = usb_eth_initialize(bis); if (rv < 0) printf("Error %d registering USB_ETHER\n", rv); else n += rv; #endif return n; } #endif