/* * Copyright (C) 2015 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SYS_I2C_MXC #include #include #endif #if defined(CONFIG_MXC_EPDC) #include #include #endif #include #ifdef CONFIG_VIDEO_MXS #include #include #endif #ifdef CONFIG_FSL_FASTBOOT #include #ifdef CONFIG_ANDROID_RECOVERY #include #endif #endif /*CONFIG_FSL_FASTBOOT*/ DECLARE_GLOBAL_DATA_PTR; #define UART_PAD_CTRL (PAD_CTL_DSE_3P3V_49OHM | \ PAD_CTL_PUS_PU100KOHM | PAD_CTL_HYS) #define USDHC_PAD_CTRL (PAD_CTL_DSE_3P3V_32OHM | PAD_CTL_SRE_SLOW | \ PAD_CTL_HYS | PAD_CTL_PUE | PAD_CTL_PUS_PU47KOHM) #define ENET_PAD_CTRL (PAD_CTL_PUS_PU100KOHM | PAD_CTL_DSE_3P3V_49OHM) #define ENET_PAD_CTRL_MII (PAD_CTL_DSE_3P3V_32OHM) #define ENET_RX_PAD_CTRL (PAD_CTL_PUS_PU100KOHM | PAD_CTL_DSE_3P3V_49OHM) #define I2C_PAD_CTRL (PAD_CTL_DSE_3P3V_32OHM | PAD_CTL_SRE_SLOW | \ PAD_CTL_HYS | PAD_CTL_PUE | PAD_CTL_PUS_PU100KOHM) #define LCD_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_PUS_PU100KOHM | \ PAD_CTL_DSE_3P3V_49OHM) #define QSPI_PAD_CTRL \ (PAD_CTL_DSE_3P3V_49OHM | PAD_CTL_PUE | PAD_CTL_PUS_PU47KOHM) #define SPI_PAD_CTRL (PAD_CTL_DSE_3P3V_49OHM | PAD_CTL_SRE_SLOW | PAD_CTL_HYS) #define BUTTON_PAD_CTRL (PAD_CTL_PUS_PU5KOHM | PAD_CTL_DSE_3P3V_98OHM) #define NAND_PAD_CTRL (PAD_CTL_DSE_3P3V_49OHM | PAD_CTL_SRE_SLOW | PAD_CTL_HYS) #define NAND_PAD_READY0_CTRL (PAD_CTL_DSE_3P3V_49OHM | PAD_CTL_PUS_PU5KOHM) #define EPDC_PAD_CTRL 0x0 #ifdef CONFIG_SYS_I2C_MXC #define PC MUX_PAD_CTRL(I2C_PAD_CTRL) /* I2C1*/ struct i2c_pads_info i2c_pad_info1 = { .scl = { .i2c_mode = MX7D_PAD_UART1_RX_DATA__I2C1_SCL | PC, .gpio_mode = MX7D_PAD_UART1_RX_DATA__GPIO4_IO0 | PC, .gp = IMX_GPIO_NR(4, 0), }, .sda = { .i2c_mode = MX7D_PAD_UART1_TX_DATA__I2C1_SDA | PC, .gpio_mode = MX7D_PAD_UART1_TX_DATA__GPIO4_IO1 | PC, .gp = IMX_GPIO_NR(4, 1), }, }; /* I2C2 */ struct i2c_pads_info i2c_pad_info2 = { .scl = { .i2c_mode = MX7D_PAD_UART2_RX_DATA__I2C2_SCL | PC, .gpio_mode = MX7D_PAD_UART2_RX_DATA__GPIO4_IO2 | PC, .gp = IMX_GPIO_NR(4, 2), }, .sda = { .i2c_mode = MX7D_PAD_UART2_TX_DATA__I2C2_SDA | PC, .gpio_mode = MX7D_PAD_UART2_TX_DATA__GPIO4_IO3 | PC, .gp = IMX_GPIO_NR(4, 3), }, }; /* I2C4 for PMIC*/ struct i2c_pads_info i2c_pad_info4 = { .scl = { .i2c_mode = MX7D_PAD_SAI1_RX_SYNC__I2C4_SCL | PC, .gpio_mode = MX7D_PAD_SAI1_RX_SYNC__GPIO6_IO16 | PC, .gp = IMX_GPIO_NR(6, 16), }, .sda = { .i2c_mode = MX7D_PAD_SAI1_RX_BCLK__I2C4_SDA | PC, .gpio_mode = MX7D_PAD_SAI1_RX_BCLK__GPIO6_IO17 | PC, .gp = IMX_GPIO_NR(6, 17), }, }; #endif int dram_init(void) { gd->ram_size = ((ulong)CONFIG_DDR_MB * 1024 * 1024); return 0; } static iomux_v3_cfg_t const wdog_pads[] = { MX7D_PAD_GPIO1_IO00__WDOG1_WDOG_B | MUX_PAD_CTRL(NO_PAD_CTRL), }; static iomux_v3_cfg_t const uart5_pads[] = { MX7D_PAD_I2C4_SCL__UART5_DCE_RX | MUX_PAD_CTRL(UART_PAD_CTRL), MX7D_PAD_I2C4_SDA__UART5_DCE_TX | MUX_PAD_CTRL(UART_PAD_CTRL), }; static iomux_v3_cfg_t const usdhc1_pads[] = { MX7D_PAD_SD1_CLK__SD1_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD1_CMD__SD1_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD1_DATA0__SD1_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD1_DATA1__SD1_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD1_DATA2__SD1_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD1_DATA3__SD1_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD1_CD_B__GPIO5_IO0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD1_RESET_B__SD1_RESET_B | MUX_PAD_CTRL(USDHC_PAD_CTRL), }; /* SD */ #ifdef PICO_SD #define USDHC3_CD_GPIO IMX_GPIO_NR(6, 9) static iomux_v3_cfg_t const usdhc3_emmc_pads[] = { MX7D_PAD_SD3_CLK__SD3_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_CMD__SD3_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_DATA0__SD3_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_DATA1__SD3_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_DATA2__SD3_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_DATA3__SD3_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_DATA7__GPIO6_IO9 | MUX_PAD_CTRL(USDHC_PAD_CTRL), }; #else /* EMMC */ #define USDHC3_CD_GPIO IMX_GPIO_NR(1, 14) static iomux_v3_cfg_t const usdhc3_emmc_pads[] = { MX7D_PAD_SD3_CLK__SD3_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_CMD__SD3_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_DATA0__SD3_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_DATA1__SD3_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_DATA2__SD3_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_DATA3__SD3_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_DATA4__SD3_DATA4 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_DATA5__SD3_DATA5 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_DATA6__SD3_DATA6 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_SD3_DATA7__SD3_DATA7 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX7D_PAD_GPIO1_IO14__GPIO1_IO14 | MUX_PAD_CTRL(USDHC_PAD_CTRL), }; #endif #ifdef CONFIG_VIDEO_MXS static iomux_v3_cfg_t const lcd_pads[] = { MX7D_PAD_LCD_CLK__LCD_CLK | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_ENABLE__LCD_ENABLE | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_HSYNC__LCD_HSYNC | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_VSYNC__LCD_VSYNC | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA00__LCD_DATA0 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA01__LCD_DATA1 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA02__LCD_DATA2 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA03__LCD_DATA3 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA04__LCD_DATA4 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA05__LCD_DATA5 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA06__LCD_DATA6 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA07__LCD_DATA7 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA08__LCD_DATA8 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA09__LCD_DATA9 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA10__LCD_DATA10 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA11__LCD_DATA11 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA12__LCD_DATA12 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA13__LCD_DATA13 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA14__LCD_DATA14 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA15__LCD_DATA15 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA16__LCD_DATA16 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA17__LCD_DATA17 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA18__LCD_DATA18 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA19__LCD_DATA19 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA20__LCD_DATA20 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA21__LCD_DATA21 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA22__LCD_DATA22 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_DATA23__LCD_DATA23 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_LCD_RESET__GPIO3_IO4 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX7D_PAD_GPIO1_IO06__GPIO1_IO6 | MUX_PAD_CTRL(LCD_PAD_CTRL), /* LCD_VDD_EN */ }; static iomux_v3_cfg_t const pwm_pads[] = { /* Use GPIO for Brightness adjustment, duty cycle = period */ MX7D_PAD_GPIO1_IO11__GPIO1_IO11 | MUX_PAD_CTRL(NO_PAD_CTRL), /* LCD_BLT_CTRL */ }; struct lcd_panel_info_t { unsigned int lcdif_base_addr; int depth; void (*enable)(struct lcd_panel_info_t const *dev); struct fb_videomode mode; }; void do_enable_parallel_lcd(struct lcd_panel_info_t const *dev) { imx_iomux_v3_setup_multiple_pads(lcd_pads, ARRAY_SIZE(lcd_pads)); imx_iomux_v3_setup_multiple_pads(pwm_pads, ARRAY_SIZE(pwm_pads)); /* Reset LCD */ gpio_direction_output(IMX_GPIO_NR(3, 4) , 0); udelay(500); gpio_direction_output(IMX_GPIO_NR(3, 4) , 1); /* Set Brightness to high */ gpio_direction_output(IMX_GPIO_NR(1, 11) , 1); /* Set LCD enable to high */ gpio_direction_output(IMX_GPIO_NR(1, 6) , 1); } static struct lcd_panel_info_t const displays[] = {{ .lcdif_base_addr = ELCDIF1_IPS_BASE_ADDR, .depth = 24, .enable = do_enable_parallel_lcd, .mode = { .name = "EJ050NA", .xres = 800, .yres = 480, .pixclock = 29850, .left_margin = 89, .right_margin = 164, .upper_margin = 23, .lower_margin = 10, .hsync_len = 10, .vsync_len = 10, .sync = 0, .vmode = FB_VMODE_NONINTERLACED } } }; int board_video_skip(void) { int i; int ret; char const *panel = getenv("panel"); if (!panel) { panel = displays[0].mode.name; printf("No panel detected: default to %s\n", panel); i = 0; } else { for (i = 0; i < ARRAY_SIZE(displays); i++) { if (!strcmp(panel, displays[i].mode.name)) break; } } if (i < ARRAY_SIZE(displays)) { ret = mxs_lcd_panel_setup(displays[i].mode, displays[i].depth, displays[i].lcdif_base_addr); if (!ret) { if (displays[i].enable) displays[i].enable(displays+i); printf("Display: %s (%ux%u)\n", displays[i].mode.name, displays[i].mode.xres, displays[i].mode.yres); } else printf("LCD %s cannot be configured: %d\n", displays[i].mode.name, ret); } else { printf("unsupported panel %s\n", panel); return -EINVAL; } return 0; } #endif #ifdef CONFIG_FEC_MXC static iomux_v3_cfg_t const fec1_pads[] = { MX7D_PAD_SD2_CD_B__ENET2_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL_MII), MX7D_PAD_SD2_WP__ENET2_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL_MII), MX7D_PAD_ENET1_RGMII_TXC__ENET1_RGMII_TXC | MUX_PAD_CTRL(ENET_PAD_CTRL), MX7D_PAD_ENET1_RGMII_TD0__ENET1_RGMII_TD0 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX7D_PAD_ENET1_RGMII_TD1__ENET1_RGMII_TD1 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX7D_PAD_ENET1_RGMII_TD2__ENET1_RGMII_TD2 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX7D_PAD_ENET1_RGMII_TD3__ENET1_RGMII_TD3 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX7D_PAD_ENET1_RGMII_TX_CTL__ENET1_RGMII_TX_CTL | MUX_PAD_CTRL(ENET_PAD_CTRL), MX7D_PAD_ENET1_RGMII_RXC__ENET1_RGMII_RXC | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX7D_PAD_ENET1_RGMII_RD0__ENET1_RGMII_RD0 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX7D_PAD_ENET1_RGMII_RD1__ENET1_RGMII_RD1 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX7D_PAD_ENET1_RGMII_RD2__ENET1_RGMII_RD2 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX7D_PAD_ENET1_RGMII_RD3__ENET1_RGMII_RD3 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX7D_PAD_ENET1_RGMII_RX_CTL__ENET1_RGMII_RX_CTL | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX7D_PAD_SD3_STROBE__GPIO6_IO10 | MUX_PAD_CTRL(NO_PAD_CTRL), // Interrupt MX7D_PAD_SD3_RESET_B__GPIO6_IO11 | MUX_PAD_CTRL(NO_PAD_CTRL), // Reset pin }; #define FEC1_RST_GPIO IMX_GPIO_NR(6, 11) static void setup_iomux_fec(void) { imx_iomux_v3_setup_multiple_pads(fec1_pads, ARRAY_SIZE(fec1_pads)); } #endif static iomux_v3_cfg_t const bcm4339_pads[] = { MX7D_PAD_ECSPI1_SCLK__GPIO4_IO16 | MUX_PAD_CTRL(NO_PAD_CTRL), //wifi reset MX7D_PAD_ECSPI1_MISO__GPIO4_IO18 | MUX_PAD_CTRL(NO_PAD_CTRL), //bt reset }; static iomux_v3_cfg_t const ccm_clko_pads[] = { MX7D_PAD_GPIO1_IO03__CCM_CLKO2 | MUX_PAD_CTRL(NO_PAD_CTRL), MX7D_PAD_GPIO1_IO02__CCM_CLKO1 | MUX_PAD_CTRL(NO_PAD_CTRL), }; static void setup_iomux_uart(void) { imx_iomux_v3_setup_multiple_pads(uart5_pads, ARRAY_SIZE(uart5_pads)); } #ifdef CONFIG_FSL_ESDHC #define USDHC1_CD_GPIO IMX_GPIO_NR(5, 0) static struct fsl_esdhc_cfg usdhc_cfg[3] = { {USDHC1_BASE_ADDR, 0, 4}, {USDHC3_BASE_ADDR}, }; int mmc_get_env_devno(void) { struct bootrom_sw_info **p = (struct bootrom_sw_info **)ROM_SW_INFO_ADDR; u8 boot_type = (*p)->boot_dev_type; u8 dev_no = (*p)->boot_dev_instance; /* If not boot from sd/mmc, use default value */ if ((boot_type != BOOT_TYPE_SD) && (boot_type != BOOT_TYPE_MMC)) return CONFIG_SYS_MMC_ENV_DEV; if (2 == dev_no) dev_no--; return dev_no; } int mmc_map_to_kernel_blk(int dev_no) { if (1 == dev_no) dev_no++; return dev_no; } int board_mmc_getcd(struct mmc *mmc) { struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv; int ret = 0; switch (cfg->esdhc_base) { case USDHC1_BASE_ADDR: ret = !gpio_get_value(USDHC1_CD_GPIO); /* Assume uSDHC1 sd is always present */ break; case USDHC3_BASE_ADDR: ret = !gpio_get_value(USDHC3_CD_GPIO); /* Assume uSDHC3 emmc is always present */ break; } return ret; } int board_mmc_init(bd_t *bis) { int i, ret; /* * According to the board_mmc_init() the following map is done: * (U-boot device node) (Physical Port) * mmc0 USDHC1 * mmc2 USDHC3 (eMMC) */ for (i = 0; i < CONFIG_SYS_FSL_USDHC_NUM; i++) { switch (i) { case 0: imx_iomux_v3_setup_multiple_pads( usdhc1_pads, ARRAY_SIZE(usdhc1_pads)); usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK); break; case 1: imx_iomux_v3_setup_multiple_pads( usdhc3_emmc_pads, ARRAY_SIZE(usdhc3_emmc_pads)); gpio_request(USDHC3_CD_GPIO, "usdhc3_cd"); gpio_direction_input(USDHC3_CD_GPIO); usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK); break; default: printf("Warning: you configured more USDHC controllers" "(%d) than supported by the board\n", i + 1); return 0; } ret = fsl_esdhc_initialize(bis, &usdhc_cfg[i]); if (ret) return ret; } return 0; } int check_mmc_autodetect(void) { char *autodetect_str = getenv("mmcautodetect"); if ((autodetect_str != NULL) && (strcmp(autodetect_str, "yes") == 0)) { return 1; } return 0; } void board_late_mmc_init(void) { char cmd[32]; char mmcblk[32]; u32 dev_no = mmc_get_env_devno(); if (!check_mmc_autodetect()) return; setenv_ulong("mmcdev", dev_no); /* Set mmcblk env */ sprintf(mmcblk, "/dev/mmcblk%dp2 rootwait rw", mmc_map_to_kernel_blk(dev_no)); setenv("mmcroot", mmcblk); sprintf(cmd, "mmc dev %d", dev_no); run_command(cmd, 0); } #endif #ifdef CONFIG_FEC_MXC int board_eth_init(bd_t *bis) { int ret; setup_iomux_fec(); ret = fecmxc_initialize_multi(bis, 0, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE); if (ret) printf("FEC1 MXC: %s:failed\n", __func__); gpio_direction_output(FEC1_RST_GPIO, 0); udelay(500); gpio_set_value(FEC1_RST_GPIO, 1); return ret; } static int setup_fec(void) { struct iomuxc_gpr_base_regs *const iomuxc_gpr_regs = (struct iomuxc_gpr_base_regs *) IOMUXC_GPR_BASE_ADDR; int ret; /* Use 125M anatop REF_CLK1 for ENET1, clear gpr1[13], gpr1[17]*/ clrsetbits_le32(&iomuxc_gpr_regs->gpr[1], (IOMUXC_GPR_GPR1_GPR_ENET1_TX_CLK_SEL_MASK | IOMUXC_GPR_GPR1_GPR_ENET1_CLK_DIR_MASK), 0); ret = set_clk_enet(ENET_125MHz); if (ret) return ret; return 0; } int board_phy_config(struct phy_device *phydev) { /* enable rgmii rxc skew and phy mode select to RGMII copper */ /*phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, 0x21); phy_write(phydev, MDIO_DEVAD_NONE, 0x1f, 0x7ea8); phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, 0x2f); phy_write(phydev, MDIO_DEVAD_NONE, 0x1f, 0x71b7);*/ unsigned short val; /* To enable AR8035 ouput a 125MHz clk from CLK_25M */ /* phy_write(phydev, MDIO_DEVAD_NONE, 0xd, 0x7); phy_write(phydev, MDIO_DEVAD_NONE, 0xe, 0x8016); phy_write(phydev, MDIO_DEVAD_NONE, 0xd, 0x4007); val = phy_read(phydev, MDIO_DEVAD_NONE, 0xe); val &= 0xffe7; val |= 0x18; phy_write(phydev, MDIO_DEVAD_NONE, 0xe, val); */ /* introduce tx clock delay */ phy_write(phydev, MDIO_DEVAD_NONE, 0x1d, 0x5); val = phy_read(phydev, MDIO_DEVAD_NONE, 0x1e); val |= 0x0100; phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, val); if (phydev->drv->config) phydev->drv->config(phydev); return 0; } #endif int board_early_init_f(void) { setup_iomux_uart(); #ifdef CONFIG_SYS_I2C_MXC setup_i2c(0, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info1); setup_i2c(1, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info2); setup_i2c(3, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info4); #endif return 0; } #define BT_RST_GPIO IMX_GPIO_NR(6, 16) #define WIFI_RST_GPIO IMX_GPIO_NR(6, 17) int board_init(void) { /* address of boot parameters */ gd->bd->bi_boot_params = PHYS_SDRAM + 0x100; #ifdef CONFIG_FEC_MXC setup_fec(); #endif //pico-imx7 custom initialize imx_iomux_v3_setup_multiple_pads(bcm4339_pads, ARRAY_SIZE(bcm4339_pads)); imx_iomux_v3_setup_multiple_pads(ccm_clko_pads, ARRAY_SIZE(ccm_clko_pads)); gpio_direction_output(BT_RST_GPIO, 1); udelay(500); gpio_direction_output(WIFI_RST_GPIO, 1); udelay(500); clock_set_src(IPP_DO_CLKO2,OSC_32K_CLK); udelay(500); clock_set_src(IPP_DO_CLKO1,OSC_24M_CLK); return 0; } #ifdef CONFIG_CMD_BMODE static const struct boot_mode board_boot_modes[] = { /* 4 bit bus width */ {"sd1", MAKE_CFGVAL(0x10, 0x10, 0x00, 0x00)}, {"emmc", MAKE_CFGVAL(0x10, 0x2a, 0x00, 0x00)}, /* TODO: Nand */ /*{"qspi", MAKE_CFGVAL(0x00, 0x40, 0x00, 0x00)},*/ {NULL, 0}, }; #endif #ifdef CONFIG_POWER #define I2C_PMIC 3 int power_init_board(void) { struct pmic *p; int ret; unsigned int reg, rev_id; ret = power_pfuze300_init(I2C_PMIC); if (ret) return ret; p = pmic_get("PFUZE300"); ret = pmic_probe(p); if (ret) return ret; pmic_reg_read(p, PFUZE300_DEVICEID, ®); pmic_reg_read(p, PFUZE300_REVID, &rev_id); printf("PMIC: PFUZE300 DEV_ID=0x%x REV_ID=0x%x\n", reg, rev_id); /* disable Low Power Mode during standby mode */ pmic_reg_read(p, PFUZE300_LDOGCTL, ®); reg |= 0x1; pmic_reg_write(p, PFUZE300_LDOGCTL, reg); /* SW1A/1B mode set to APS/APS */ reg = 0x8; pmic_reg_write(p, PFUZE300_SW1AMODE, reg); pmic_reg_write(p, PFUZE300_SW1BMODE, reg); /* SW1A/1B standby voltage set to 1.025V */ reg = 0xd; pmic_reg_write(p, PFUZE300_SW1ASTBY, reg); pmic_reg_write(p, PFUZE300_SW1BSTBY, reg); /* decrease SW1B normal voltage to 0.975V */ pmic_reg_read(p, PFUZE300_SW1BVOLT, ®); reg &= ~0x1f; reg |= PFUZE300_SW1AB_SETP(975); pmic_reg_write(p, PFUZE300_SW1BVOLT, reg); return 0; } #endif int board_late_init(void) { #ifdef CONFIG_CMD_BMODE add_board_boot_modes(board_boot_modes); #endif #ifdef CONFIG_ENV_IS_IN_MMC board_late_mmc_init(); #endif imx_iomux_v3_setup_multiple_pads(wdog_pads, ARRAY_SIZE(wdog_pads)); set_wdog_reset((struct wdog_regs *)WDOG1_BASE_ADDR); return 0; } u32 get_board_rev(void) { return get_cpu_rev(); } int checkboard(void) { puts("Board: i.MX7D PICOSOM\n"); return 0; } #ifdef CONFIG_USB_EHCI_MX7 iomux_v3_cfg_t const usb_otg1_pads[] = { MX7D_PAD_UART3_TX_DATA__USB_OTG1_PWR | MUX_PAD_CTRL(NO_PAD_CTRL), }; int board_ehci_hcd_init(int port) { switch (port) { case 0: imx_iomux_v3_setup_multiple_pads(usb_otg1_pads, ARRAY_SIZE(usb_otg1_pads)); break; default: printf("MXC USB port %d not yet supported\n", port); return 1; } return 0; } #endif #ifdef CONFIG_FSL_FASTBOOT void board_fastboot_setup(void) { #if defined(CONFIG_FASTBOOT_STORAGE_MMC) static char boot_dev_part[32]; u32 dev_no; #endif switch (get_boot_device()) { #if defined(CONFIG_FASTBOOT_STORAGE_MMC) case SD1_BOOT: case SD2_BOOT: case SD3_BOOT: case SD4_BOOT: case MMC1_BOOT: case MMC2_BOOT: case MMC3_BOOT: case MMC4_BOOT: dev_no = mmc_get_env_devno(); sprintf(boot_dev_part,"mmc%d",dev_no); if (!getenv("fastboot_dev")) setenv("fastboot_dev", boot_dev_part); sprintf(boot_dev_part, "boota mmc%d", dev_no); if (!getenv("bootcmd")) setenv("bootcmd", boot_dev_part); break; #endif /*CONFIG_FASTBOOT_STORAGE_MMC*/ #if defined(CONFIG_FASTBOOT_STORAGE_NAND) case NAND_BOOT: if (!getenv("fastboot_dev")) setenv("fastboot_dev", "nand"); if (!getenv("fbparts")) setenv("fbparts", ANDROID_FASTBOOT_NAND_PARTS); if (!getenv("bootcmd")) setenv("bootcmd", "nand read ${loadaddr} ${boot_nand_offset} " "${boot_nand_size};boota ${loadaddr}"); break; #endif /*CONFIG_FASTBOOT_STORAGE_NAND*/ default: printf("unsupported boot devices\n"); break; } } #ifdef CONFIG_ANDROID_RECOVERY int is_recovery_key_pressing(void) { /* No key defined for this board */ return 0; } void board_recovery_setup(void) { #if defined(CONFIG_FASTBOOT_STORAGE_MMC) static char boot_dev_part[32]; u32 dev_no; #endif int bootdev = get_boot_device(); switch (bootdev) { #if defined(CONFIG_FASTBOOT_STORAGE_MMC) case SD1_BOOT: case SD2_BOOT: case SD3_BOOT: case SD4_BOOT: case MMC1_BOOT: case MMC2_BOOT: case MMC3_BOOT: case MMC4_BOOT: dev_no = mmc_get_env_devno(); sprintf(boot_dev_part,"boota mmc%d recovery",dev_no); if (!getenv("bootcmd_android_recovery")) setenv("bootcmd_android_recovery", boot_dev_part); break; #endif /*CONFIG_FASTBOOT_STORAGE_MMC*/ #if defined(CONFIG_FASTBOOT_STORAGE_NAND) case NAND_BOOT: if (!getenv("bootcmd_android_recovery")) setenv("bootcmd_android_recovery", "nand read ${loadaddr} ${recovery_nand_offset} " "${recovery_nand_size};boota ${loadaddr}"); break; #endif /*CONFIG_FASTBOOT_STORAGE_NAND*/ default: printf("Unsupported bootup device for recovery: dev: %d\n", bootdev); return; } printf("setup env for recovery..\n"); setenv("bootcmd", "run bootcmd_android_recovery"); } #endif /*CONFIG_ANDROID_RECOVERY*/ #endif /*CONFIG_FSL_FASTBOOT*/