/* * (C) Copyright 2002 * Daniel Engstr�m, Omicron Ceti AB, daniel@omicron.se * * (C) Copyright 2002 * Sysgo Real-Time Solutions, GmbH <www.elinos.com> * Alex Zuepke <azu@sysgo.de> * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #include <asm/io.h> ulong myflush(void); #define SC520_MAX_FLASH_BANKS 3 #define SC520_FLASH_BANK0_BASE 0x38000000 /* BOOTCS */ #define SC520_FLASH_BANK1_BASE 0x30000000 /* ROMCS0 */ #define SC520_FLASH_BANK2_BASE 0x28000000 /* ROMCS1 */ #define SC520_FLASH_BANKSIZE 0x8000000 #define AMD29LV016_SIZE 0x200000 #define AMD29LV016_SECTORS 32 flash_info_t flash_info[SC520_MAX_FLASH_BANKS]; #define CMD_READ_ARRAY 0x00F000F0 #define CMD_UNLOCK1 0x00AA00AA #define CMD_UNLOCK2 0x00550055 #define CMD_ERASE_SETUP 0x00800080 #define CMD_ERASE_CONFIRM 0x00300030 #define CMD_PROGRAM 0x00A000A0 #define CMD_UNLOCK_BYPASS 0x00200020 #define BIT_ERASE_DONE 0x00800080 #define BIT_RDY_MASK 0x00800080 #define BIT_PROGRAM_ERROR 0x00200020 #define BIT_TIMEOUT 0x80000000 /* our flag */ #define READY 1 #define ERR 2 #define TMO 4 /*----------------------------------------------------------------------- */ ulong flash_init(void) { int i, j; ulong size = 0; for (i = 0; i < SC520_MAX_FLASH_BANKS; i++) { ulong flashbase = 0; int sectsize = 0; if (i==0 || i==2) { /* FixMe: this assumes that bank 0 and 2 * are mapped to the two 8Mb banks */ flash_info[i].flash_id = (AMD_MANUFACT & FLASH_VENDMASK) | (AMD_ID_LV016B & FLASH_TYPEMASK); flash_info[i].size = AMD29LV016_SIZE*4; flash_info[i].sector_count = AMD29LV016_SECTORS; sectsize = (AMD29LV016_SIZE*4)/AMD29LV016_SECTORS; } else { /* FixMe: this assumes that bank1 is unmapped * (or mapped to the same flash bank as BOOTCS) */ flash_info[i].flash_id = 0; flash_info[i].size = 0; flash_info[i].sector_count = 0; sectsize=0; } memset(flash_info[i].protect, 0, CFG_MAX_FLASH_SECT); switch (i) { case 0: flashbase = SC520_FLASH_BANK0_BASE; break; case 1: flashbase = SC520_FLASH_BANK1_BASE; break; case 2: flashbase = SC520_FLASH_BANK0_BASE; break; default: panic("configured too many flash banks!\n"); } for (j = 0; j < flash_info[i].sector_count; j++) { flash_info[i].start[j] = sectsize; flash_info[i].start[j] = flashbase + j * sectsize; } size += flash_info[i].size; } /* * Protect monitor and environment sectors */ flash_protect(FLAG_PROTECT_SET, i386boot_start-SC520_FLASH_BANK0_BASE, i386boot_end-SC520_FLASH_BANK0_BASE, &flash_info[0]); #ifdef CFG_ENV_ADDR flash_protect(FLAG_PROTECT_SET, CFG_ENV_ADDR, CFG_ENV_ADDR + CFG_ENV_SIZE - 1, &flash_info[0]); #endif return size; } /*----------------------------------------------------------------------- */ void flash_print_info(flash_info_t *info) { int i; switch (info->flash_id & FLASH_VENDMASK) { case (AMD_MANUFACT & FLASH_VENDMASK): printf("AMD: "); break; default: printf("Unknown Vendor "); break; } switch (info->flash_id & FLASH_TYPEMASK) { case (AMD_ID_LV016B & FLASH_TYPEMASK): printf("4x Amd29LV016B (16Mbit)\n"); break; default: printf("Unknown Chip Type\n"); goto done; break; } printf(" Size: %ld MB in %d Sectors\n", info->size >> 20, info->sector_count); printf(" Sector Start Addresses:"); for (i = 0; i < info->sector_count; i++) { if ((i % 5) == 0) { printf ("\n "); } printf (" %08lX%s", info->start[i], info->protect[i] ? " (RO)" : " "); } printf ("\n"); done: } /*----------------------------------------------------------------------- */ int flash_erase(flash_info_t *info, int s_first, int s_last) { ulong result; int iflag, prot, sect; int rc = ERR_OK; int chip1, chip2; /* first look for protection bits */ if (info->flash_id == FLASH_UNKNOWN) { return ERR_UNKNOWN_FLASH_TYPE; } if ((s_first < 0) || (s_first > s_last)) { return ERR_INVAL; } if ((info->flash_id & FLASH_VENDMASK) != (AMD_MANUFACT & FLASH_VENDMASK)) { return ERR_UNKNOWN_FLASH_VENDOR; } prot = 0; for (sect=s_first; sect<=s_last; ++sect) { if (info->protect[sect]) { prot++; } } if (prot) { return ERR_PROTECTED; } /* * Disable interrupts which might cause a timeout * here. Remember that our exception vectors are * at address 0 in the flash, and we don't want a * (ticker) exception to happen while the flash * chip is in programming mode. */ iflag = disable_interrupts(); /* Start erase on unprotected sectors */ for (sect = s_first; sect<=s_last && !ctrlc(); sect++) { printf("Erasing sector %2d ... ", sect); /* arm simple, non interrupt dependent timer */ reset_timer(); if (info->protect[sect] == 0) { /* not protected */ ulong addr = info->start[sect]; writel(CMD_UNLOCK1, addr + 1); writel(CMD_UNLOCK2, addr + 2); writel(CMD_ERASE_SETUP, addr + 1); writel(CMD_UNLOCK1, addr + 1); writel(CMD_UNLOCK2, addr + 2); writel(CMD_ERASE_CONFIRM, addr); /* wait until flash is ready */ chip1 = chip2 = 0; do { result = readl(addr); /* check timeout */ if (get_timer(0) > CFG_FLASH_ERASE_TOUT) { writel(CMD_READ_ARRAY, addr + 1); chip1 = TMO; break; } if (!chip1 && (result & 0xFFFF) & BIT_ERASE_DONE) { chip1 = READY; } if (!chip1 && (result & 0xFFFF) & BIT_PROGRAM_ERROR) { chip1 = ERR; } if (!chip2 && (result >> 16) & BIT_ERASE_DONE) { chip2 = READY; } if (!chip2 && (result >> 16) & BIT_PROGRAM_ERROR) { chip2 = ERR; } } while (!chip1 || !chip2); writel(CMD_READ_ARRAY, addr + 1); if (chip1 == ERR || chip2 == ERR) { rc = ERR_PROG_ERROR; goto outahere; } if (chip1 == TMO) { rc = ERR_TIMOUT; goto outahere; } printf("ok.\n"); } else { /* it was protected */ printf("protected!\n"); } } if (ctrlc()) { printf("User Interrupt!\n"); } outahere: /* allow flash to settle - wait 10 ms */ udelay(10000); if (iflag) { enable_interrupts(); } return rc; } /*----------------------------------------------------------------------- * Copy memory to flash */ volatile static int write_word(flash_info_t *info, ulong dest, ulong data) { ulong addr = dest; ulong result; int rc = ERR_OK; int iflag; int chip1, chip2; /* * Check if Flash is (sufficiently) erased */ result = readl(addr); if ((result & data) != data) { return ERR_NOT_ERASED; } /* * Disable interrupts which might cause a timeout * here. Remember that our exception vectors are * at address 0 in the flash, and we don't want a * (ticker) exception to happen while the flash * chip is in programming mode. */ iflag = disable_interrupts(); writel(CMD_UNLOCK1, addr + 1); writel(CMD_UNLOCK2, addr + 2); writel(CMD_UNLOCK_BYPASS, addr + 1); writel(addr, CMD_PROGRAM); writel(addr, data); /* arm simple, non interrupt dependent timer */ reset_timer(); /* wait until flash is ready */ chip1 = chip2 = 0; do { result = readl(addr); /* check timeout */ if (get_timer(0) > CFG_FLASH_ERASE_TOUT) { chip1 = ERR | TMO; break; } if (!chip1 && ((result & 0x80) == (data & 0x80))) { chip1 = READY; } if (!chip1 && ((result & 0xFFFF) & BIT_PROGRAM_ERROR)) { result = readl(addr); if ((result & 0x80) == (data & 0x80)) { chip1 = READY; } else { chip1 = ERR; } } if (!chip2 && ((result & (0x80 << 16)) == (data & (0x80 << 16)))) { chip2 = READY; } if (!chip2 && ((result >> 16) & BIT_PROGRAM_ERROR)) { result = readl(addr); if ((result & (0x80 << 16)) == (data & (0x80 << 16))) { chip2 = READY; } else { chip2 = ERR; } } } while (!chip1 || !chip2); writel(CMD_READ_ARRAY, addr); if (chip1 == ERR || chip2 == ERR || readl(addr) != data) { rc = ERR_PROG_ERROR; } if (iflag) { enable_interrupts(); } return rc; } /*----------------------------------------------------------------------- * Copy memory to flash. */ int write_buff(flash_info_t *info, uchar *src, ulong addr, ulong cnt) { ulong cp, wp, data; int l; int i, rc; wp = (addr & ~3); /* get lower word aligned address */ /* * handle unaligned start bytes */ if ((l = addr - wp) != 0) { data = 0; for (i=0, cp=wp; i<l; ++i, ++cp) { data = (data >> 8) | (*(uchar *)cp << 24); } for (; i<4 && cnt>0; ++i) { data = (data >> 8) | (*src++ << 24); --cnt; ++cp; } for (; cnt==0 && i<4; ++i, ++cp) { data = (data >> 8) | (*(uchar *)cp << 24); } if ((rc = write_word(info, wp, data)) != 0) { return rc; } wp += 4; } /* * handle word aligned part */ while (cnt >= 4) { data = *((vu_long*)src); if ((rc = write_word(info, wp, data)) != 0) { return rc; } src += 4; wp += 4; cnt -= 4; } if (cnt == 0) { return ERR_OK; } /* * handle unaligned tail bytes */ data = 0; for (i=0, cp=wp; i<4 && cnt>0; ++i, ++cp) { data = (data >> 8) | (*src++ << 24); --cnt; } for (; i<4; ++i, ++cp) { data = (data >> 8) | (*(uchar *)cp << 24); } return write_word(info, wp, data); }