/*
 * (C) Copyright 2002
 * Custom IDEAS, Inc. <www.cideas.com>
 * Gerald Van Baren <vanbaren@cideas.com>
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>
#include <asm/u-boot.h>
#include <ioports.h>
#include <mpc8260.h>
#include <i2c.h>
#include <spi.h>
#include <command.h>

#ifdef CONFIG_SHOW_BOOT_PROGRESS
#include <status_led.h>
#endif

#ifdef CONFIG_ETHER_LOOPBACK_TEST
extern void eth_loopback_test(void);
#endif /* CONFIG_ETHER_LOOPBACK_TEST */

#include "clkinit.h"
#include "ioconfig.h"		/* I/O configuration table */

/*
 * PBI Page Based Interleaving
 *   PSDMR_PBI page based interleaving
 *   0         bank based interleaving
 * External Address Multiplexing (EAMUX) adds a clock to address cycles
 *   (this can help with marginal board layouts)
 *   PSDMR_EAMUX  adds a clock
 *   0            no extra clock
 * Buffer Command (BUFCMD) adds a clock to command cycles.
 *   PSDMR_BUFCMD adds a clock
 *   0            no extra clock
 */
#define CONFIG_PBI		PSDMR_PBI
#define PESSIMISTIC_SDRAM	0
#define EAMUX			0	/* EST requires EAMUX */
#define BUFCMD			0

/*
 * ADC/DAC Defines:
 */
#define INITIAL_SAMPLE_RATE 10016	/* Initial Daq sample rate */
#define INITIAL_RIGHT_JUST  0	/* Initial DAC right justification */
#define INITIAL_MCLK_DIVIDE 0	/* Initial MCLK Divide */
#define INITIAL_SAMPLE_64X  1	/* Initial  64x clocking mode */
#define INITIAL_SAMPLE_128X 0	/* Initial 128x clocking mode */

/*
 * ADC Defines:
 */
#define I2C_ADC_1_ADDR 0x0E	/* I2C Address of the ADC #1 */
#define I2C_ADC_2_ADDR 0x0F	/* I2C Address of the ADC #2 */

#define ADC_SDATA1_MASK 0x00020000	/* PA14 - CH12SDATA_PU   */
#define ADC_SDATA2_MASK 0x00010000	/* PA15 - CH34SDATA_PU   */

#define ADC_VREF_CAP		100	/* VREF capacitor in uF */
#define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP)	/* 10 usec per uF, in usec */
#define ADC_SDATA_DELAY		100	/* ADC SDATA release delay in usec */
#define ADC_CAL_DELAY (1000000 / INITIAL_SAMPLE_RATE * 4500)
					/* Wait at least 4100 LRCLK's */

#define ADC_REG1_FRAME_START    0x80	/* Frame start */
#define ADC_REG1_GROUND_CAL     0x40	/* Ground calibration enable */
#define ADC_REG1_ANA_MOD_PDOWN  0x20	/* Analog modulator section in power down */
#define ADC_REG1_DIG_MOD_PDOWN  0x10	/* Digital modulator section in power down */

#define ADC_REG2_128x           0x80	/* Oversample at 128x */
#define ADC_REG2_CAL            0x40	/* System calibration enable */
#define ADC_REG2_CHANGE_SIGN    0x20	/* Change sign enable */
#define ADC_REG2_LR_DISABLE     0x10	/* Left/Right output disable */
#define ADC_REG2_HIGH_PASS_DIS  0x08	/* High pass filter disable */
#define ADC_REG2_SLAVE_MODE     0x04	/* Slave mode */
#define ADC_REG2_DFS            0x02	/* Digital format select */
#define ADC_REG2_MUTE           0x01	/* Mute */

#define ADC_REG7_ADDR_ENABLE    0x80	/* Address enable */
#define ADC_REG7_PEAK_ENABLE    0x40	/* Peak enable */
#define ADC_REG7_PEAK_UPDATE    0x20	/* Peak update */
#define ADC_REG7_PEAK_FORMAT    0x10	/* Peak display format */
#define ADC_REG7_DIG_FILT_PDOWN 0x04	/* Digital filter power down enable */
#define ADC_REG7_FIR2_IN_EN     0x02	/* External FIR2 input enable */
#define ADC_REG7_PSYCHO_EN      0x01	/* External pyscho filter input enable */

/*
 * DAC Defines:
 */

#define I2C_DAC_ADDR 0x11	/* I2C Address of the DAC */

#define DAC_RST_MASK 0x00008000	/* PA16 - DAC_RST*  */
#define DAC_RESET_DELAY    100	/* DAC reset delay in usec */
#define DAC_INITIAL_DELAY 5000	/* DAC initialization delay in usec */

#define DAC_REG1_AMUTE		0x80	/* Auto-mute */

#define DAC_REG1_LEFT_JUST_24_BIT (0 << 4)	/* Fmt 0: Left justified 24 bit  */
#define DAC_REG1_I2S_24_BIT       (1 << 4)	/* Fmt 1: I2S up to 24 bit       */
#define DAC_REG1_RIGHT_JUST_16BIT (2 << 4)	/* Fmt 2: Right justified 16 bit */
#define DAC_REG1_RIGHT_JUST_24BIT (3 << 4)	/* Fmt 3: Right justified 24 bit */
#define DAC_REG1_RIGHT_JUST_20BIT (4 << 4)	/* Fmt 4: Right justified 20 bit */
#define DAC_REG1_RIGHT_JUST_18BIT (5 << 4)	/* Fmt 5: Right justified 18 bit */

#define DAC_REG1_DEM_NO           (0 << 2)	/* No      De-emphasis  */
#define DAC_REG1_DEM_44KHZ        (1 << 2)	/* 44.1KHz De-emphasis  */
#define DAC_REG1_DEM_48KHZ        (2 << 2)	/* 48KHz   De-emphasis  */
#define DAC_REG1_DEM_32KHZ        (3 << 2)	/* 32KHz   De-emphasis  */

#define DAC_REG1_SINGLE 0	/*   4- 50KHz sample rate  */
#define DAC_REG1_DOUBLE 1	/*  50-100KHz sample rate  */
#define DAC_REG1_QUAD   2	/* 100-200KHz sample rate  */
#define DAC_REG1_DSD    3	/* Direct Stream Data, DSD */

#define DAC_REG5_INVERT_A   0x80	/* Invert channel A */
#define DAC_REG5_INVERT_B   0x40	/* Invert channel B */
#define DAC_REG5_I2C_MODE   0x20	/* Control port (I2C) mode */
#define DAC_REG5_POWER_DOWN 0x10	/* Power down mode */
#define DAC_REG5_MUTEC_A_B  0x08	/* Mutec A=B */
#define DAC_REG5_FREEZE     0x04	/* Freeze */
#define DAC_REG5_MCLK_DIV   0x02	/* MCLK divide by 2 */
#define DAC_REG5_RESERVED   0x01	/* Reserved */

/*
 * Check Board Identity:
 */

int checkboard(void)
{
	printf("SACSng\n");

	return 0;
}

phys_size_t initdram(int board_type)
{
	volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
	volatile memctl8260_t *memctl = &immap->im_memctl;
	volatile uchar c = 0;
	volatile uchar *ramaddr = (uchar *)(CONFIG_SYS_SDRAM_BASE + 0x8);
	uint psdmr = CONFIG_SYS_PSDMR;
	int i;
	uint psrt = 14;		/* for no SPD */
	uint chipselects = 1;	/* for no SPD */
	uint sdram_size = CONFIG_SYS_SDRAM0_SIZE * 1024 * 1024;	/* for no SPD */
	uint or = CONFIG_SYS_OR2_PRELIM;	/* for no SPD */

#ifdef SDRAM_SPD_ADDR
	uint data_width;
	uint rows;
	uint banks;
	uint cols;
	uint caslatency;
	uint width;
	uint rowst;
	uint sdam;
	uint bsma;
	uint sda10;
	u_char data;
	u_char cksum;
	int j;
#endif

#ifdef SDRAM_SPD_ADDR
	/* Keep the compiler from complaining about potentially uninitialized vars */
	data_width = chipselects = rows = banks = cols = caslatency = psrt =
		0;

	/*
	 * Read the SDRAM SPD EEPROM via I2C.
	 */
	i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1);
	cksum = data;
	for (j = 1; j < 64; j++) {	/* read only the checksummed bytes */
		/* note: the I2C address autoincrements when alen == 0 */
		i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1);
		if (j == 5)
			chipselects = data & 0x0F;
		else if (j == 6)
			data_width = data;
		else if (j == 7)
			data_width |= data << 8;
		else if (j == 3)
			rows = data & 0x0F;
		else if (j == 4)
			cols = data & 0x0F;
		else if (j == 12) {
			/*
			 * Refresh rate: this assumes the prescaler is set to
			 * approximately 1uSec per tick.
			 */
			switch (data & 0x7F) {
			default:
			case 0:
				psrt = 14;	/*  15.625uS */
				break;
			case 1:
				psrt = 2;	/*   3.9uS   */
				break;
			case 2:
				psrt = 6;	/*   7.8uS   */
				break;
			case 3:
				psrt = 29;	/*  31.3uS   */
				break;
			case 4:
				psrt = 60;	/*  62.5uS   */
				break;
			case 5:
				psrt = 120;	/* 125uS     */
				break;
			}
		} else if (j == 17)
			banks = data;
		else if (j == 18) {
			caslatency = 3;	/* default CL */
#if(PESSIMISTIC_SDRAM)
			if ((data & 0x04) != 0)
				caslatency = 3;
			else if ((data & 0x02) != 0)
				caslatency = 2;
			else if ((data & 0x01) != 0)
				caslatency = 1;
#else
			if ((data & 0x01) != 0)
				caslatency = 1;
			else if ((data & 0x02) != 0)
				caslatency = 2;
			else if ((data & 0x04) != 0)
				caslatency = 3;
#endif
			else {
				printf("WARNING: Unknown CAS latency 0x%02X, using 3\n", data);
			}
		} else if (j == 63) {
			if (data != cksum) {
				printf("WARNING: Configuration data checksum failure:" " is 0x%02x, calculated 0x%02x\n", data, cksum);
			}
		}
		cksum += data;
	}

	/* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */
	if (caslatency < 2) {
		printf("WARNING: CL was %d, forcing to 2\n", caslatency);
		caslatency = 2;
	}
	if (rows > 14) {
		printf("WARNING: This doesn't look good, rows = %d, should be <= 14\n",
			rows);
		rows = 14;
	}
	if (cols > 11) {
		printf("WARNING: This doesn't look good, columns = %d, should be <= 11\n",
			cols);
		cols = 11;
	}

	if ((data_width != 64) && (data_width != 72)) {
		printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n",
			data_width);
	}
	width = 3;		/* 2^3 = 8 bytes = 64 bits wide */
	/*
	 * Convert banks into log2(banks)
	 */
	if (banks == 2)
		banks = 1;
	else if (banks == 4)
		banks = 2;
	else if (banks == 8)
		banks = 3;

	sdram_size = 1 << (rows + cols + banks + width);

#if(CONFIG_PBI == 0)		/* bank-based interleaving */
	rowst = ((32 - 6) - (rows + cols + width)) * 2;
#else
	rowst = 32 - (rows + banks + cols + width);
#endif

	or = ~(sdram_size - 1) |	/* SDAM address mask    */
		((banks - 1) << 13) |	/* banks per device     */
		(rowst << 9) |		/* rowst                */
		((rows - 9) << 6);	/* numr                 */

	memctl->memc_or2 = or;

	/*
	 * SDAM specifies the number of columns that are multiplexed
	 * (reference AN2165/D), defined to be (columns - 6) for page
	 * interleave, (columns - 8) for bank interleave.
	 *
	 * BSMA is 14 - max(rows, cols).  The bank select lines come
	 * into play above the highest "address" line going into the
	 * the SDRAM.
	 */
#if(CONFIG_PBI == 0)		/* bank-based interleaving */
	sdam = cols - 8;
	bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
	sda10 = sdam + 2;
#else
	sdam = cols - 6;
	bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
	sda10 = sdam;
#endif
#if(PESSIMISTIC_SDRAM)
	psdmr = (CONFIG_PBI | PSDMR_RFEN | PSDMR_RFRC_16_CLK |
		PSDMR_PRETOACT_8W | PSDMR_ACTTORW_8W | PSDMR_WRC_4C |
		PSDMR_EAMUX | PSDMR_BUFCMD) | caslatency |
		((caslatency - 1) << 6) |	/* LDOTOPRE is CL - 1 */
		(sdam << 24) | (bsma << 21) | (sda10 << 18);
#else
	psdmr = (CONFIG_PBI | PSDMR_RFEN | PSDMR_RFRC_7_CLK |
		PSDMR_PRETOACT_3W |	/* 1 for 7E parts (fast PC-133) */
		PSDMR_ACTTORW_2W |	/* 1 for 7E parts (fast PC-133) */
		PSDMR_WRC_1C |	/* 1 clock + 7nSec */
		EAMUX | BUFCMD) |
		caslatency | ((caslatency - 1) << 6) |	/* LDOTOPRE is CL - 1 */
		(sdam << 24) | (bsma << 21) | (sda10 << 18);
#endif
#endif

	/*
	 * Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35):
	 *
	 * "At system reset, initialization software must set up the
	 *  programmable parameters in the memory controller banks registers
	 *  (ORx, BRx, P/LSDMR). After all memory parameters are configured,
	 *  system software should execute the following initialization sequence
	 *  for each SDRAM device.
	 *
	 *  1. Issue a PRECHARGE-ALL-BANKS command
	 *  2. Issue eight CBR REFRESH commands
	 *  3. Issue a MODE-SET command to initialize the mode register
	 *
	 * Quote from Micron MT48LC8M16A2 data sheet:
	 *
	 *  "...the SDRAM requires a 100uS delay prior to issuing any
	 *  command other than a COMMAND INHIBIT or NOP.  Starting at some
	 *  point during this 100uS period and continuing at least through
	 *  the end of this period, COMMAND INHIBIT or NOP commands should
	 *  be applied."
	 *
	 *  "Once the 100uS delay has been satisfied with at least one COMMAND
	 *  INHIBIT or NOP command having been applied, a /PRECHARGE command/
	 *  should be applied.  All banks must then be precharged, thereby
	 *  placing the device in the all banks idle state."
	 *
	 *  "Once in the idle state, /two/ AUTO REFRESH cycles must be
	 *  performed.  After the AUTO REFRESH cycles are complete, the
	 *  SDRAM is ready for mode register programming."
	 *
	 *  (/emphasis/ mine, gvb)
	 *
	 *  The way I interpret this, Micron start up sequence is:
	 *  1. Issue a PRECHARGE-BANK command (initial precharge)
	 *  2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged")
	 *  3. Issue two (presumably, doing eight is OK) CBR REFRESH commands
	 *  4. Issue a MODE-SET command to initialize the mode register
	 *
	 *  --------
	 *
	 *  The initial commands are executed by setting P/LSDMR[OP] and
	 *  accessing the SDRAM with a single-byte transaction."
	 *
	 * The appropriate BRx/ORx registers have already been set when we
	 * get here. The SDRAM can be accessed at the address CONFIG_SYS_SDRAM_BASE.
	 */

	memctl->memc_mptpr = CONFIG_SYS_MPTPR;
	memctl->memc_psrt = psrt;

	memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
	*ramaddr = c;

	memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
	for (i = 0; i < 8; i++)
		*ramaddr = c;

	memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
	*ramaddr = c;

	memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
	*ramaddr = c;

	/*
	 * Do it a second time for the second set of chips if the DIMM has
	 * two chip selects (double sided).
	 */
	if (chipselects > 1) {
		ramaddr += sdram_size;

		memctl->memc_br3 = CONFIG_SYS_BR3_PRELIM + sdram_size;
		memctl->memc_or3 = or;

		memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
		*ramaddr = c;

		memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
		for (i = 0; i < 8; i++)
			*ramaddr = c;

		memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
		*ramaddr = c;

		memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
		*ramaddr = c;
	}

	/* return total ram size */
	return (sdram_size * chipselects);
}

/*-----------------------------------------------------------------------
 * Board Control Functions
 */
void board_poweroff(void)
{
	while (1);		/* hang forever */
}


#ifdef CONFIG_MISC_INIT_R
/* ------------------------------------------------------------------------- */
int misc_init_r(void)
{
	/*
	 * Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization.
	 */
	volatile ioport_t *iopa =
		ioport_addr((immap_t *)CONFIG_SYS_IMMR, 0 /* port A */ );
	volatile ioport_t *iop =
		ioport_addr((immap_t *)CONFIG_SYS_IMMR, I2C_PORT);

	int reg;		/* I2C register value */
	char *ep;		/* Environment pointer */
	char str_buf[12];	/* sprintf output buffer */
	int sample_rate;	/* ADC/DAC sample rate */
	int sample_64x;		/* Use  64/4 clocking for the ADC/DAC */
	int sample_128x;	/* Use 128/4 clocking for the ADC/DAC */
	int right_just;		/* Is the data to the DAC right justified? */
	int mclk_divide;	/* MCLK Divide */
	int quiet;		/* Quiet or minimal output mode */

	quiet = 0;

	if ((ep = getenv("quiet")) != NULL)
		quiet = simple_strtol(ep, NULL, 10);
	else
		setenv("quiet", "0");

	/*
	 * SACSng custom initialization:
	 *    Start the ADC and DAC clocks, since the Crystal parts do not
	 *    work on the I2C bus until the clocks are running.
	 */

	sample_rate = INITIAL_SAMPLE_RATE;
	if ((ep = getenv("DaqSampleRate")) != NULL)
		sample_rate = simple_strtol(ep, NULL, 10);

	sample_64x = INITIAL_SAMPLE_64X;
	sample_128x = INITIAL_SAMPLE_128X;
	if ((ep = getenv("Daq64xSampling")) != NULL) {
		sample_64x = simple_strtol(ep, NULL, 10);
		if (sample_64x)
			sample_128x = 0;
		else
			sample_128x = 1;
	} else {
		if ((ep = getenv("Daq128xSampling")) != NULL) {
			sample_128x = simple_strtol(ep, NULL, 10);
			if (sample_128x)
				sample_64x = 0;
			else
				sample_64x = 1;
		}
	}

	/*
	 * Stop the clocks and wait for at least 1 LRCLK period
	 * to make sure the clocking has really stopped.
	 */
	Daq_Stop_Clocks();
	udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);

	/*
	 * Initialize the clocks with the new rates
	 */
	Daq_Init_Clocks(sample_rate, sample_64x);
	sample_rate = Daq_Get_SampleRate();

	/*
	 * Start the clocks and wait for at least 1 LRCLK period
	 * to make sure the clocking has become stable.
	 */
	Daq_Start_Clocks(sample_rate);
	udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);

	sprintf(str_buf, "%d", sample_rate);
	setenv("DaqSampleRate", str_buf);

	if (sample_64x) {
		setenv("Daq64xSampling", "1");
		setenv("Daq128xSampling", NULL);
	} else {
		setenv("Daq64xSampling", NULL);
		setenv("Daq128xSampling", "1");
	}

	/*
	 * Display the ADC/DAC clocking information
	 */
	if (!quiet)
		Daq_Display_Clocks();

	/*
	 * Determine the DAC data justification
	 */

	right_just = INITIAL_RIGHT_JUST;
	if ((ep = getenv("DaqDACRightJustified")) != NULL)
		right_just = simple_strtol(ep, NULL, 10);

	sprintf(str_buf, "%d", right_just);
	setenv("DaqDACRightJustified", str_buf);

	/*
	 * Determine the DAC MCLK Divide
	 */

	mclk_divide = INITIAL_MCLK_DIVIDE;
	if ((ep = getenv("DaqDACMClockDivide")) != NULL)
		mclk_divide = simple_strtol(ep, NULL, 10);

	sprintf(str_buf, "%d", mclk_divide);
	setenv("DaqDACMClockDivide", str_buf);

	/*
	 * Initializing the I2C address in the Crystal A/Ds:
	 *
	 * 1) Wait for VREF cap to settle (10uSec per uF)
	 * 2) Release pullup on SDATA
	 * 3) Write the I2C address to register 6
	 * 4) Enable address matching by setting the MSB in register 7
	 */

	if (!quiet)
		printf("Initializing the ADC...\n");

	udelay(ADC_INITIAL_DELAY);	/* 10uSec per uF of VREF cap */

	iopa->pdat &= ~ADC_SDATA1_MASK;	/* release SDATA1 */
	udelay(ADC_SDATA_DELAY);	/* arbitrary settling time */

	i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR);	/* set address */
	i2c_reg_write(I2C_ADC_1_ADDR, 0x07,	/* turn on ADDREN */
		      ADC_REG7_ADDR_ENABLE);

	i2c_reg_write(I2C_ADC_1_ADDR, 0x02,	/* 128x, slave mode, !HPEN */
		      (sample_64x ? 0 : ADC_REG2_128x) |
		      ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);

	reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F;
	if (reg != I2C_ADC_1_ADDR) {
		printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n",
			reg, I2C_ADC_1_ADDR);
	}

	iopa->pdat &= ~ADC_SDATA2_MASK;	/* release SDATA2 */
	udelay(ADC_SDATA_DELAY);	/* arbitrary settling time */

	/* set address (do not set ADDREN yet) */
	i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR);

	i2c_reg_write(I2C_ADC_2_ADDR, 0x02,	/* 64x, slave mode, !HPEN */
		      (sample_64x ? 0 : ADC_REG2_128x) |
		      ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);

	reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F;
	if (reg != I2C_ADC_2_ADDR) {
		printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n",
			reg, I2C_ADC_2_ADDR);
	}

	i2c_reg_write(I2C_ADC_1_ADDR, 0x01,	/* set FSTART and GNDCAL */
		      ADC_REG1_FRAME_START | ADC_REG1_GROUND_CAL);

	i2c_reg_write(I2C_ADC_1_ADDR, 0x02,	/* Start calibration */
		      (sample_64x ? 0 : ADC_REG2_128x) |
		      ADC_REG2_CAL |
		      ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);

	udelay(ADC_CAL_DELAY);	/* a minimum of 4100 LRCLKs */
	i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00);	/* remove GNDCAL */

	/*
	 * Now that we have synchronized the ADC's, enable address
	 * selection on the second ADC as well as the first.
	 */
	i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE);

	/*
	 * Initialize the Crystal DAC
	 *
	 * Two of the config lines are used for I2C so we have to set them
	 * to the proper initialization state without inadvertantly
	 * sending an I2C "start" sequence.  When we bring the I2C back to
	 * the normal state, we send an I2C "stop" sequence.
	 */
	if (!quiet)
		printf("Initializing the DAC...\n");

	/*
	 * Bring the I2C clock and data lines low for initialization
	 */
	I2C_SCL(0);
	I2C_DELAY;
	I2C_SDA(0);
	I2C_ACTIVE;
	I2C_DELAY;

	/* Reset the DAC */
	iopa->pdat &= ~DAC_RST_MASK;
	udelay(DAC_RESET_DELAY);

	/* Release the DAC reset */
	iopa->pdat |= DAC_RST_MASK;
	udelay(DAC_INITIAL_DELAY);

	/*
	 * Cause the DAC to:
	 *     Enable control port (I2C mode)
	 *     Going into power down
	 */
	i2c_reg_write(I2C_DAC_ADDR, 0x05,
		      DAC_REG5_I2C_MODE | DAC_REG5_POWER_DOWN);

	/*
	 * Cause the DAC to:
	 *     Enable control port (I2C mode)
	 *     Going into power down
	 *         . MCLK divide by 1
	 *         . MCLK divide by 2
	 */
	i2c_reg_write(I2C_DAC_ADDR, 0x05,
		      DAC_REG5_I2C_MODE |
		      DAC_REG5_POWER_DOWN |
		      (mclk_divide ? DAC_REG5_MCLK_DIV : 0));

	/*
	 * Cause the DAC to:
	 *     Auto-mute disabled
	 *         . Format 0, left  justified 24 bits
	 *         . Format 3, right justified 24 bits
	 *     No de-emphasis
	 *         . Single speed mode
	 *         . Double speed mode
	 */
	i2c_reg_write(I2C_DAC_ADDR, 0x01,
		      (right_just ? DAC_REG1_RIGHT_JUST_24BIT :
		       DAC_REG1_LEFT_JUST_24_BIT) |
		      DAC_REG1_DEM_NO |
		      (sample_rate >=
		       50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE));

	sprintf(str_buf, "%d",
		sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE);
	setenv("DaqDACFunctionalMode", str_buf);

	/*
	 * Cause the DAC to:
	 *     Enable control port (I2C mode)
	 *     Remove power down
	 *         . MCLK divide by 1
	 *         . MCLK divide by 2
	 */
	i2c_reg_write(I2C_DAC_ADDR, 0x05,
		      DAC_REG5_I2C_MODE |
		      (mclk_divide ? DAC_REG5_MCLK_DIV : 0));

	/*
	 * Create a I2C stop condition:
	 *     low->high on data while clock is high.
	 */
	I2C_SCL(1);
	I2C_DELAY;
	I2C_SDA(1);
	I2C_DELAY;
	I2C_TRISTATE;

	if (!quiet)
		printf("\n");
#ifdef CONFIG_ETHER_LOOPBACK_TEST
	/*
	 * Run the Ethernet loopback test
	 */
	eth_loopback_test();
#endif /* CONFIG_ETHER_LOOPBACK_TEST */

#ifdef CONFIG_SHOW_BOOT_PROGRESS
	/*
	 * Turn off the RED fail LED now that we are up and running.
	 */
	status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
#endif

	return 0;
}

#ifdef CONFIG_SHOW_BOOT_PROGRESS
/*
 * Show boot status: flash the LED if something goes wrong, indicating
 * that last thing that worked and thus, by implication, what is broken.
 *
 * This stores the last OK value in RAM so this will not work properly
 * before RAM is initialized.  Since it is being used for indicating
 * boot status (i.e. after RAM is initialized), that is OK.
 */
static void flash_code(uchar number, uchar modulo, uchar digits)
{
	int j;

	/*
	 * Recursively do upper digits.
	 */
	if (digits > 1)
		flash_code(number / modulo, modulo, digits - 1);

	number = number % modulo;

	/*
	 * Zero is indicated by one long flash (dash).
	 */
	if (number == 0) {
		status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
		udelay(1000000);
		status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
		udelay(200000);
	} else {
		/*
		 * Non-zero is indicated by short flashes, one per count.
		 */
		for (j = 0; j < number; j++) {
			status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
			udelay(100000);
			status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
			udelay(200000);
		}
	}
	/*
	 * Inter-digit pause: we've already waited 200 mSec, wait 1 sec total
	 */
	udelay(700000);
}

static int last_boot_progress;

void show_boot_progress(int status)
{
	int i, j;

	if (status > 0) {
		last_boot_progress = status;
	} else {
		/*
		 * If a specific failure code is given, flash this code
		 * else just use the last success code we've seen
		 */
		if (status < -1)
			last_boot_progress = -status;

		/*
		 * Flash this code 5 times
		 */
		for (j = 0; j < 5; j++) {
			/*
			 * Houston, we have a problem.
			 * Blink the last OK status which indicates where things failed.
			 */
			status_led_set(STATUS_LED_RED, STATUS_LED_ON);
			flash_code(last_boot_progress, 5, 3);

			/*
			 * Delay 5 seconds between repetitions,
			 * with the fault LED blinking
			 */
			for (i = 0; i < 5; i++) {
				status_led_set(STATUS_LED_RED,
					       STATUS_LED_OFF);
				udelay(500000);
				status_led_set(STATUS_LED_RED, STATUS_LED_ON);
				udelay(500000);
			}
		}

		/*
		 * Reset the board to retry initialization.
		 */
		do_reset(NULL, 0, 0, NULL);
	}
}
#endif /* CONFIG_SHOW_BOOT_PROGRESS */


/*
 * The following are used to control the SPI chip selects for the SPI command.
 */
#if defined(CONFIG_CMD_SPI)

#define SPI_ADC_CS_MASK	0x00000800
#define SPI_DAC_CS_MASK	0x00001000

static const u32 cs_mask[] = {
	SPI_ADC_CS_MASK,
	SPI_DAC_CS_MASK,
};

int spi_cs_is_valid(unsigned int bus, unsigned int cs)
{
	return bus == 0 && cs < sizeof(cs_mask) / sizeof(cs_mask[0]);
}

void spi_cs_activate(struct spi_slave *slave)
{
	volatile ioport_t *iopd =
		ioport_addr((immap_t *) CONFIG_SYS_IMMR, 3 /* port D */ );

	iopd->pdat &= ~cs_mask[slave->cs];
}

void spi_cs_deactivate(struct spi_slave *slave)
{
	volatile ioport_t *iopd =
		ioport_addr((immap_t *) CONFIG_SYS_IMMR, 3 /* port D */ );

	iopd->pdat |= cs_mask[slave->cs];
}

#endif

#endif /* CONFIG_MISC_INIT_R */