/* * (C) Copyright 2006 * Stefan Roese, DENX Software Engineering, sr@denx.de. * * Based on original work by * Roel Loeffen, (C) Copyright 2006 Prodrive B.V. * Josh Huber, (C) Copyright 2001 Mission Critical Linux, Inc. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * * modifications for the DB64360 eval board based by Ingo.Assmus@keymile.com * modifications for the cpci750 by reinhard.arlt@esd-electronics.com * modifications for the P3M750 by roel.loeffen@prodrive.nl */ /* * p3m750.c - main board support/init for the Prodrive p3m750/p3m7448. */ #include <common.h> #include <74xx_7xx.h> #include "../../Marvell/include/memory.h" #include "../../Marvell/include/pci.h" #include "../../Marvell/include/mv_gen_reg.h" #include <net.h> #include <i2c.h> #include "eth.h" #include "mpsc.h" #include "64460.h" #include "mv_regs.h" #include "p3mx.h" DECLARE_GLOBAL_DATA_PTR; #undef DEBUG /*#define DEBUG */ #ifdef CONFIG_PCI #define MAP_PCI #endif /* of CONFIG_PCI */ #ifdef DEBUG #define DP(x) x #else #define DP(x) #endif extern void flush_data_cache (void); extern void invalidate_l1_instruction_cache (void); extern flash_info_t flash_info[]; /* ------------------------------------------------------------------------- */ /* this is the current GT register space location */ /* it starts at CFG_DFL_GT_REGS but moves later to CFG_GT_REGS */ /* Unfortunately, we cant change it while we are in flash, so we initialize it * to the "final" value. This means that any debug_led calls before * board_early_init_f wont work right (like in cpu_init_f). * See also my_remap_gt_regs below. (NTL) */ void board_prebootm_init (void); unsigned int INTERNAL_REG_BASE_ADDR = CFG_GT_REGS; int display_mem_map (void); void set_led(int); /* ------------------------------------------------------------------------- */ /* * This is a version of the GT register space remapping function that * doesn't touch globals (meaning, it's ok to run from flash.) * * Unfortunately, this has the side effect that a writable * INTERNAL_REG_BASE_ADDR is impossible. Oh well. */ void my_remap_gt_regs (u32 cur_loc, u32 new_loc) { u32 temp; /* check and see if it's already moved */ temp = in_le32 ((u32 *) (new_loc + INTERNAL_SPACE_DECODE)); if ((temp & 0xffff) == new_loc >> 16) return; temp = (in_le32 ((u32 *) (cur_loc + INTERNAL_SPACE_DECODE)) & 0xffff0000) | (new_loc >> 16); out_le32 ((u32 *) (cur_loc + INTERNAL_SPACE_DECODE), temp); while (GTREGREAD (INTERNAL_SPACE_DECODE) != temp); } #ifdef CONFIG_PCI static void gt_pci_config (void) { unsigned int stat; unsigned int val = 0x00fff864; /* DINK32: BusNum 23:16, DevNum 15:11, */ /* FuncNum 10:8, RegNum 7:2 */ /* * In PCIX mode devices provide their own bus and device numbers. * We query the Discovery II's * config registers by writing ones to the bus and device. * We then update the Virtual register with the correct value for the * bus and device. */ if ((GTREGREAD (PCI_0_MODE) & (BIT4 | BIT5)) != 0) { /* if PCI-X */ GT_REG_WRITE (PCI_0_CONFIG_ADDR, BIT31 | val); GT_REG_READ (PCI_0_CONFIG_DATA_VIRTUAL_REG, &stat); GT_REG_WRITE (PCI_0_CONFIG_ADDR, BIT31 | val); GT_REG_WRITE (PCI_0_CONFIG_DATA_VIRTUAL_REG, (stat & 0xffff0000) | CFG_PCI_IDSEL); } if ((GTREGREAD (PCI_1_MODE) & (BIT4 | BIT5)) != 0) { /* if PCI-X */ GT_REG_WRITE (PCI_1_CONFIG_ADDR, BIT31 | val); GT_REG_READ (PCI_1_CONFIG_DATA_VIRTUAL_REG, &stat); GT_REG_WRITE (PCI_1_CONFIG_ADDR, BIT31 | val); GT_REG_WRITE (PCI_1_CONFIG_DATA_VIRTUAL_REG, (stat & 0xffff0000) | CFG_PCI_IDSEL); } /* Enable master */ PCI_MASTER_ENABLE (0, SELF); PCI_MASTER_ENABLE (1, SELF); /* Enable PCI0/1 Mem0 and IO 0 disable all others */ GT_REG_READ (BASE_ADDR_ENABLE, &stat); stat |= (1 << 11) | (1 << 12) | (1 << 13) | (1 << 16) | (1 << 17) | (1 << 18); stat &= ~((1 << 9) | (1 << 10) | (1 << 14) | (1 << 15)); GT_REG_WRITE (BASE_ADDR_ENABLE, stat); /* ronen: * add write to pci remap registers for 64460. * in 64360 when writing to pci base go and overide remap automaticaly, * in 64460 it doesn't */ GT_REG_WRITE (PCI_0_IO_BASE_ADDR, CFG_PCI0_IO_SPACE >> 16); GT_REG_WRITE (PCI_0I_O_ADDRESS_REMAP, CFG_PCI0_IO_SPACE_PCI >> 16); GT_REG_WRITE (PCI_0_IO_SIZE, (CFG_PCI0_IO_SIZE - 1) >> 16); GT_REG_WRITE (PCI_0_MEMORY0_BASE_ADDR, CFG_PCI0_MEM_BASE >> 16); GT_REG_WRITE (PCI_0MEMORY0_ADDRESS_REMAP, CFG_PCI0_MEM_BASE >> 16); GT_REG_WRITE (PCI_0_MEMORY0_SIZE, (CFG_PCI0_MEM_SIZE - 1) >> 16); GT_REG_WRITE (PCI_1_IO_BASE_ADDR, CFG_PCI1_IO_SPACE >> 16); GT_REG_WRITE (PCI_1I_O_ADDRESS_REMAP, CFG_PCI1_IO_SPACE_PCI >> 16); GT_REG_WRITE (PCI_1_IO_SIZE, (CFG_PCI1_IO_SIZE - 1) >> 16); GT_REG_WRITE (PCI_1_MEMORY0_BASE_ADDR, CFG_PCI1_MEM_BASE >> 16); GT_REG_WRITE (PCI_1MEMORY0_ADDRESS_REMAP, CFG_PCI1_MEM_BASE >> 16); GT_REG_WRITE (PCI_1_MEMORY0_SIZE, (CFG_PCI1_MEM_SIZE - 1) >> 16); /* PCI interface settings */ /* Timeout set to retry forever */ GT_REG_WRITE (PCI_0TIMEOUT_RETRY, 0x0); GT_REG_WRITE (PCI_1TIMEOUT_RETRY, 0x0); /* ronen - enable only CS0 and Internal reg!! */ GT_REG_WRITE (PCI_0BASE_ADDRESS_REGISTERS_ENABLE, 0xfffffdfe); GT_REG_WRITE (PCI_1BASE_ADDRESS_REGISTERS_ENABLE, 0xfffffdfe); /* ronen: * update the pci internal registers base address. */ #ifdef MAP_PCI for (stat = 0; stat <= PCI_HOST1; stat++) pciWriteConfigReg (stat, PCI_INTERNAL_REGISTERS_MEMORY_MAPPED_BASE_ADDRESS, SELF, CFG_GT_REGS); #endif } #endif /* Setup CPU interface paramaters */ static void gt_cpu_config (void) { cpu_t cpu = get_cpu_type (); ulong tmp; /* cpu configuration register */ tmp = GTREGREAD (CPU_CONFIGURATION); /* set the SINGLE_CPU bit see MV64460 */ #ifndef CFG_GT_DUAL_CPU /* SINGLE_CPU seems to cause JTAG problems */ tmp |= CPU_CONF_SINGLE_CPU; #endif tmp &= ~CPU_CONF_AACK_DELAY_2; tmp |= CPU_CONF_DP_VALID; tmp |= CPU_CONF_AP_VALID; tmp |= CPU_CONF_PIPELINE; GT_REG_WRITE (CPU_CONFIGURATION, tmp); /* Marvell (VXWorks) writes 0x20220FF */ /* CPU master control register */ tmp = GTREGREAD (CPU_MASTER_CONTROL); tmp |= CPU_MAST_CTL_ARB_EN; if ((cpu == CPU_7400) || (cpu == CPU_7410) || (cpu == CPU_7455) || (cpu == CPU_7450)) { tmp |= CPU_MAST_CTL_CLEAN_BLK; tmp |= CPU_MAST_CTL_FLUSH_BLK; } else { /* cleanblock must be cleared for CPUs * that do not support this command (603e, 750) * see Res#1 */ tmp &= ~CPU_MAST_CTL_CLEAN_BLK; tmp &= ~CPU_MAST_CTL_FLUSH_BLK; } GT_REG_WRITE (CPU_MASTER_CONTROL, tmp); } /* * board_early_init_f. * * set up gal. device mappings, etc. */ int board_early_init_f (void) { /* set up the GT the way the kernel wants it * the call to move the GT register space will obviously * fail if it has already been done, but we're going to assume * that if it's not at the power-on location, it's where we put * it last time. (huber) */ my_remap_gt_regs (CFG_DFL_GT_REGS, CFG_GT_REGS); #ifdef CONFIG_PCI gt_pci_config (); #endif /* mask all external interrupt sources */ GT_REG_WRITE (CPU_INTERRUPT_MASK_REGISTER_LOW, 0); GT_REG_WRITE (CPU_INTERRUPT_MASK_REGISTER_HIGH, 0); /* new in >MV6436x */ GT_REG_WRITE (CPU_INTERRUPT_1_MASK_REGISTER_LOW, 0); GT_REG_WRITE (CPU_INTERRUPT_1_MASK_REGISTER_HIGH, 0); /* --------------------- */ GT_REG_WRITE (PCI_0INTERRUPT_CAUSE_MASK_REGISTER_LOW, 0); GT_REG_WRITE (PCI_0INTERRUPT_CAUSE_MASK_REGISTER_HIGH, 0); GT_REG_WRITE (PCI_1INTERRUPT_CAUSE_MASK_REGISTER_LOW, 0); GT_REG_WRITE (PCI_1INTERRUPT_CAUSE_MASK_REGISTER_HIGH, 0); /* Device and Boot bus settings */ memoryMapDeviceSpace(DEVICE0, 0, 0); GT_REG_WRITE(DEVICE_BANK0PARAMETERS, 0); memoryMapDeviceSpace(DEVICE1, 0, 0); GT_REG_WRITE(DEVICE_BANK1PARAMETERS, 0); memoryMapDeviceSpace(DEVICE2, 0, 0); GT_REG_WRITE(DEVICE_BANK2PARAMETERS, 0); memoryMapDeviceSpace(DEVICE3, 0, 0); GT_REG_WRITE(DEVICE_BANK3PARAMETERS, 0); GT_REG_WRITE(DEVICE_BOOT_BANK_PARAMETERS, CFG_BOOT_PAR); gt_cpu_config(); /* MPP setup */ GT_REG_WRITE (MPP_CONTROL0, CFG_MPP_CONTROL_0); GT_REG_WRITE (MPP_CONTROL1, CFG_MPP_CONTROL_1); GT_REG_WRITE (MPP_CONTROL2, CFG_MPP_CONTROL_2); GT_REG_WRITE (MPP_CONTROL3, CFG_MPP_CONTROL_3); GT_REG_WRITE (GPP_LEVEL_CONTROL, CFG_GPP_LEVEL_CONTROL); set_led(LED_RED); return 0; } /* various things to do after relocation */ int misc_init_r () { u8 val; icache_enable (); #ifdef CFG_L2 l2cache_enable (); #endif #ifdef CONFIG_MPSC mpsc_sdma_init (); mpsc_init2 (); #endif /* * Enable trickle changing in RTC upon powerup * No diode, 250 ohm series resistor */ val = 0xa5; i2c_write(CFG_I2C_RTC_ADDR, 8, 1, &val, 1); return 0; } int board_early_init_r(void) { /* now relocate the debug serial driver */ mpsc_putchar += gd->reloc_off; mpsc_getchar += gd->reloc_off; mpsc_test_char += gd->reloc_off; return 0; } void after_reloc (ulong dest_addr, gd_t * gd) { memoryMapDeviceSpace (BOOT_DEVICE, CFG_BOOT_SPACE, CFG_BOOT_SIZE); /* display_mem_map(); */ /* now, jump to the main U-Boot board init code */ set_led(LED_GREEN); board_init_r (gd, dest_addr); /* NOTREACHED */ } /* * Check Board Identity: * right now, assume borad type. (there is just one...after all) */ int checkboard (void) { char *s = getenv("serial#"); printf("Board: %s", CFG_BOARD_NAME); if (s != NULL) { puts(", serial# "); puts(s); } putc('\n'); return (0); } void set_led(int col) { int tmp; int on_pin; int off_pin; /* Program Mpp[22] as Gpp[22] * Program Mpp[23] as Gpp[23] */ tmp = GTREGREAD(MPP_CONTROL2); tmp &= 0x00ffffff; GT_REG_WRITE(MPP_CONTROL2,tmp); /* Program Gpp[22] and Gpp[23] as output */ tmp = GTREGREAD(GPP_IO_CONTROL); tmp |= 0x00C00000; GT_REG_WRITE(GPP_IO_CONTROL, tmp); /* Program Gpp[22] and Gpp[23] as active high */ tmp = GTREGREAD(GPP_LEVEL_CONTROL); tmp &= 0xff3fffff; GT_REG_WRITE(GPP_LEVEL_CONTROL, tmp); switch(col) { default: case LED_OFF : on_pin = 0; off_pin = ((1 << 23) | (1 << 22)); break; case LED_RED : on_pin = (1 << 23); off_pin = (1 << 22); break; case LED_GREEN : on_pin = (1 << 22); off_pin = (1 << 23); break; case LED_ORANGE : on_pin = ((1 << 23) | (1 << 22)); off_pin = 0; break; } /* Set output Gpp[22] and Gpp[23] */ tmp = GTREGREAD(GPP_VALUE); tmp |= on_pin; tmp &= ~off_pin; GT_REG_WRITE(GPP_VALUE, tmp); } int display_mem_map (void) { int i; unsigned int base, size, width; #ifdef CONFIG_PCI int j; #endif /* SDRAM */ printf ("SD (DDR) RAM\n"); for (i = 0; i <= BANK3; i++) { base = memoryGetBankBaseAddress (i); size = memoryGetBankSize (i); if (size != 0) printf ("BANK%d: base - 0x%08x\tsize - %dM bytes\n", i, base, size >> 20); } #ifdef CONFIG_PCI /* CPU's PCI windows */ for (i = 0; i <= PCI_HOST1; i++) { printf ("\nCPU's PCI %d windows\n", i); base = pciGetSpaceBase (i, PCI_IO); size = pciGetSpaceSize (i, PCI_IO); printf (" IO: base - 0x%08x\tsize - %dM bytes\n", base, size >> 20); /* ronen currently only first PCI MEM is used 3 */ for (j = 0; j <= PCI_REGION0; j++) { base = pciGetSpaceBase (i, j); size = pciGetSpaceSize (i, j); printf ("MEMORY %d: base - 0x%08x\tsize - %dM bytes\n", j, base, size >> 20); } } #endif /* of CONFIG_PCI */ /* Bootrom */ base = memoryGetDeviceBaseAddress (BOOT_DEVICE); /* Boot */ size = memoryGetDeviceSize (BOOT_DEVICE); width = memoryGetDeviceWidth (BOOT_DEVICE) * 8; printf (" BOOT: base - 0x%08x size - %dM bytes\twidth - %d bits\t- FLASH\n", base, size >> 20, width); return (0); } /* DRAM check routines copied from gw8260 */ #if defined (CFG_DRAM_TEST) /*********************************************************************/ /* NAME: move64() - moves a double word (64-bit) */ /* */ /* DESCRIPTION: */ /* this function performs a double word move from the data at */ /* the source pointer to the location at the destination pointer. */ /* */ /* INPUTS: */ /* unsigned long long *src - pointer to data to move */ /* */ /* OUTPUTS: */ /* unsigned long long *dest - pointer to locate to move data */ /* */ /* RETURNS: */ /* None */ /* */ /* RESTRICTIONS/LIMITATIONS: */ /* May cloober fr0. */ /* */ /*********************************************************************/ static void move64 (unsigned long long *src, unsigned long long *dest) { asm ("lfd 0, 0(3)\n\t" /* fpr0 = *scr */ "stfd 0, 0(4)" /* *dest = fpr0 */ : : : "fr0"); /* Clobbers fr0 */ return; } #if defined (CFG_DRAM_TEST_DATA) unsigned long long pattern[] = { 0xaaaaaaaaaaaaaaaaULL, 0xccccccccccccccccULL, 0xf0f0f0f0f0f0f0f0ULL, 0xff00ff00ff00ff00ULL, 0xffff0000ffff0000ULL, 0xffffffff00000000ULL, 0x00000000ffffffffULL, 0x0000ffff0000ffffULL, 0x00ff00ff00ff00ffULL, 0x0f0f0f0f0f0f0f0fULL, 0x3333333333333333ULL, 0x5555555555555555ULL }; /*********************************************************************/ /* NAME: mem_test_data() - test data lines for shorts and opens */ /* */ /* DESCRIPTION: */ /* Tests data lines for shorts and opens by forcing adjacent data */ /* to opposite states. Because the data lines could be routed in */ /* an arbitrary manner the must ensure test patterns ensure that */ /* every case is tested. By using the following series of binary */ /* patterns every combination of adjacent bits is test regardless */ /* of routing. */ /* */ /* ...101010101010101010101010 */ /* ...110011001100110011001100 */ /* ...111100001111000011110000 */ /* ...111111110000000011111111 */ /* */ /* Carrying this out, gives us six hex patterns as follows: */ /* */ /* 0xaaaaaaaaaaaaaaaa */ /* 0xcccccccccccccccc */ /* 0xf0f0f0f0f0f0f0f0 */ /* 0xff00ff00ff00ff00 */ /* 0xffff0000ffff0000 */ /* 0xffffffff00000000 */ /* */ /* The number test patterns will always be given by: */ /* */ /* log(base 2)(number data bits) = log2 (64) = 6 */ /* */ /* To test for short and opens to other signals on our boards. we */ /* simply */ /* test with the 1's complemnt of the paterns as well. */ /* */ /* OUTPUTS: */ /* Displays failing test pattern */ /* */ /* RETURNS: */ /* 0 - Passed test */ /* 1 - Failed test */ /* */ /* RESTRICTIONS/LIMITATIONS: */ /* Assumes only one one SDRAM bank */ /* */ /*********************************************************************/ int mem_test_data (void) { unsigned long long *pmem = (unsigned long long *) CFG_MEMTEST_START; unsigned long long temp64 = 0; int num_patterns = sizeof (pattern) / sizeof (pattern[0]); int i; unsigned int hi, lo; for (i = 0; i < num_patterns; i++) { move64 (&(pattern[i]), pmem); move64 (pmem, &temp64); /* hi = (temp64>>32) & 0xffffffff; */ /* lo = temp64 & 0xffffffff; */ /* printf("\ntemp64 = 0x%08x%08x", hi, lo); */ hi = (pattern[i] >> 32) & 0xffffffff; lo = pattern[i] & 0xffffffff; /* printf("\npattern[%d] = 0x%08x%08x", i, hi, lo); */ if (temp64 != pattern[i]) { printf ("\n Data Test Failed, pattern 0x%08x%08x", hi, lo); return 1; } } return 0; } #endif /* CFG_DRAM_TEST_DATA */ #if defined (CFG_DRAM_TEST_ADDRESS) /*********************************************************************/ /* NAME: mem_test_address() - test address lines */ /* */ /* DESCRIPTION: */ /* This function performs a test to verify that each word im */ /* memory is uniquly addressable. The test sequence is as follows: */ /* */ /* 1) write the address of each word to each word. */ /* 2) verify that each location equals its address */ /* */ /* OUTPUTS: */ /* Displays failing test pattern and address */ /* */ /* RETURNS: */ /* 0 - Passed test */ /* 1 - Failed test */ /* */ /* RESTRICTIONS/LIMITATIONS: */ /* */ /* */ /*********************************************************************/ int mem_test_address (void) { volatile unsigned int *pmem = (volatile unsigned int *) CFG_MEMTEST_START; const unsigned int size = (CFG_MEMTEST_END - CFG_MEMTEST_START) / 4; unsigned int i; /* write address to each location */ for (i = 0; i < size; i++) pmem[i] = i; /* verify each loaction */ for (i = 0; i < size; i++) { if (pmem[i] != i) { printf ("\n Address Test Failed at 0x%x", i); return 1; } } return 0; } #endif /* CFG_DRAM_TEST_ADDRESS */ #if defined (CFG_DRAM_TEST_WALK) /*********************************************************************/ /* NAME: mem_march() - memory march */ /* */ /* DESCRIPTION: */ /* Marches up through memory. At each location verifies rmask if */ /* read = 1. At each location write wmask if write = 1. Displays */ /* failing address and pattern. */ /* */ /* INPUTS: */ /* volatile unsigned long long * base - start address of test */ /* unsigned int size - number of dwords(64-bit) to test */ /* unsigned long long rmask - read verify mask */ /* unsigned long long wmask - wrtie verify mask */ /* short read - verifies rmask if read = 1 */ /* short write - writes wmask if write = 1 */ /* */ /* OUTPUTS: */ /* Displays failing test pattern and address */ /* */ /* RETURNS: */ /* 0 - Passed test */ /* 1 - Failed test */ /* */ /* RESTRICTIONS/LIMITATIONS: */ /* */ /* */ /*********************************************************************/ int mem_march (volatile unsigned long long *base, unsigned int size, unsigned long long rmask, unsigned long long wmask, short read, short write) { unsigned int i; unsigned long long temp = 0; unsigned int hitemp, lotemp, himask, lomask; for (i = 0; i < size; i++) { if (read != 0) { /* temp = base[i]; */ move64 ((unsigned long long *) &(base[i]), &temp); if (rmask != temp) { hitemp = (temp >> 32) & 0xffffffff; lotemp = temp & 0xffffffff; himask = (rmask >> 32) & 0xffffffff; lomask = rmask & 0xffffffff; printf ("\n Walking one's test failed: address = 0x%08x," "\n\texpected 0x%08x%08x, found 0x%08x%08x", i << 3, himask, lomask, hitemp, lotemp); return 1; } } if (write != 0) { /* base[i] = wmask; */ move64 (&wmask, (unsigned long long *) &(base[i])); } } return 0; } #endif /* CFG_DRAM_TEST_WALK */ /*********************************************************************/ /* NAME: mem_test_walk() - a simple walking ones test */ /* */ /* DESCRIPTION: */ /* Performs a walking ones through entire physical memory. The */ /* test uses as series of memory marches, mem_march(), to verify */ /* and write the test patterns to memory. The test sequence is as */ /* follows: */ /* 1) march writing 0000...0001 */ /* 2) march verifying 0000...0001 , writing 0000...0010 */ /* 3) repeat step 2 shifting masks left 1 bit each time unitl */ /* the write mask equals 1000...0000 */ /* 4) march verifying 1000...0000 */ /* The test fails if any of the memory marches return a failure. */ /* */ /* OUTPUTS: */ /* Displays which pass on the memory test is executing */ /* */ /* RETURNS: */ /* 0 - Passed test */ /* 1 - Failed test */ /* */ /* RESTRICTIONS/LIMITATIONS: */ /* */ /* */ /*********************************************************************/ int mem_test_walk (void) { unsigned long long mask; volatile unsigned long long *pmem = (volatile unsigned long long *) CFG_MEMTEST_START; const unsigned long size = (CFG_MEMTEST_END - CFG_MEMTEST_START) / 8; unsigned int i; mask = 0x01; printf ("Initial Pass"); mem_march (pmem, size, 0x0, 0x1, 0, 1); printf ("\b\b\b\b\b\b\b\b\b\b\b\b"); printf (" "); printf (" "); printf ("\b\b\b\b\b\b\b\b\b\b\b\b"); for (i = 0; i < 63; i++) { printf ("Pass %2d", i + 2); if (mem_march (pmem, size, mask, mask << 1, 1, 1) != 0) { /*printf("mask: 0x%x, pass: %d, ", mask, i); */ return 1; } mask = mask << 1; printf ("\b\b\b\b\b\b\b"); } printf ("Last Pass"); if (mem_march (pmem, size, 0, mask, 0, 1) != 0) { /* printf("mask: 0x%x", mask); */ return 1; } printf ("\b\b\b\b\b\b\b\b\b"); printf (" "); printf ("\b\b\b\b\b\b\b\b\b"); return 0; } /*********************************************************************/ /* NAME: testdram() - calls any enabled memory tests */ /* */ /* DESCRIPTION: */ /* Runs memory tests if the environment test variables are set to */ /* 'y'. */ /* */ /* INPUTS: */ /* testdramdata - If set to 'y', data test is run. */ /* testdramaddress - If set to 'y', address test is run. */ /* testdramwalk - If set to 'y', walking ones test is run */ /* */ /* OUTPUTS: */ /* None */ /* */ /* RETURNS: */ /* 0 - Passed test */ /* 1 - Failed test */ /* */ /* RESTRICTIONS/LIMITATIONS: */ /* */ /* */ /*********************************************************************/ int testdram (void) { char *s; int rundata = 0; int runaddress = 0; int runwalk = 0; #ifdef CFG_DRAM_TEST_DATA s = getenv ("testdramdata"); rundata = (s && (*s == 'y')) ? 1 : 0; #endif #ifdef CFG_DRAM_TEST_ADDRESS s = getenv ("testdramaddress"); runaddress = (s && (*s == 'y')) ? 1 : 0; #endif #ifdef CFG_DRAM_TEST_WALK s = getenv ("testdramwalk"); runwalk = (s && (*s == 'y')) ? 1 : 0; #endif if ((rundata == 1) || (runaddress == 1) || (runwalk == 1)) printf ("Testing RAM from 0x%08x to 0x%08x ... " "(don't panic... that will take a moment !!!!)\n", CFG_MEMTEST_START, CFG_MEMTEST_END); #ifdef CFG_DRAM_TEST_DATA if (rundata == 1) { printf ("Test DATA ... "); if (mem_test_data () == 1) { printf ("failed \n"); return 1; } else printf ("ok \n"); } #endif #ifdef CFG_DRAM_TEST_ADDRESS if (runaddress == 1) { printf ("Test ADDRESS ... "); if (mem_test_address () == 1) { printf ("failed \n"); return 1; } else printf ("ok \n"); } #endif #ifdef CFG_DRAM_TEST_WALK if (runwalk == 1) { printf ("Test WALKING ONEs ... "); if (mem_test_walk () == 1) { printf ("failed \n"); return 1; } else printf ("ok \n"); } #endif if ((rundata == 1) || (runaddress == 1) || (runwalk == 1)) printf ("passed\n"); return 0; } #endif /* CFG_DRAM_TEST */ /* ronen - the below functions are used by the bootm function */ /* - we map the base register to fbe00000 (same mapping as in the LSP) */ /* - we turn off the RX gig dmas - to prevent the dma from overunning */ /* the kernel data areas. */ /* - we diable and invalidate the icache and dcache. */ void my_remap_gt_regs_bootm (u32 cur_loc, u32 new_loc) { u32 temp; temp = in_le32 ((u32 *) (new_loc + INTERNAL_SPACE_DECODE)); if ((temp & 0xffff) == new_loc >> 16) return; temp = (in_le32 ((u32 *) (cur_loc + INTERNAL_SPACE_DECODE)) & 0xffff0000) | (new_loc >> 16); out_le32 ((u32 *) (cur_loc + INTERNAL_SPACE_DECODE), temp); while ((WORD_SWAP (*((volatile unsigned int *) (NONE_CACHEABLE | new_loc | (INTERNAL_SPACE_DECODE))))) != temp); }