/*
 * (C) Copyright 2001
 * Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net
 *
 * (C) Copyright 2001-2002
 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>
#include <malloc.h>
#include <mpc8xx.h>

/* ------------------------------------------------------------------------- */

static long int dram_size (long int, long int *, long int);

/* ------------------------------------------------------------------------- */

#define	_NOT_USED_	0xFFFFFFFF

const uint sdram_table[] =
{
#if (MPC8XX_SPEED <= 50000000L)
	/*
	 * Single Read. (Offset 0 in UPMA RAM)
	 */
	0x0F07EC04,
	0x01BBD804,
	0x1FF7F440,
	0xFFFFFC07,
	0xFFFFFFFF,

	/*
	 * SDRAM Initialization (offset 5 in UPMA RAM)
	 *
	 * This is no UPM entry point. The following definition uses
	 * the remaining space to establish an initialization
	 * sequence, which is executed by a RUN command.
	 *
	 */
	0x1FE7F434,
	0xEFABE834,
	0x1FA7D435,

	/*
	 * Burst Read. (Offset 8 in UPMA RAM)
	 */
	0x0F07EC04,
	0x10EFDC04,
	0xF0AFFC00,
	0xF0AFFC00,
	0xF1AFFC00,
	0xFFAFFC40,
	0xFFAFFC07,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,

	/*
	 * Single Write. (Offset 18 in UPMA RAM)
	 */
	0x0E07E804,
	0x01BBD000,
	0x1FF7F447,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,

	/*
	 * Burst Write. (Offset 20 in UPMA RAM)
	 */
	0x0E07E800,
	0x10EFD400,
	0xF0AFFC00,
	0xF0AFFC00,
	0xF1AFFC47,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,

	/*
	 * Refresh  (Offset 30 in UPMA RAM)
	 */
	0x1FF7DC84,
	0xFFFFFC04,
	0xFFFFFC84,
	0xFFFFFC07,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF,

	/*
	 * Exception. (Offset 3c in UPMA RAM)
	 */
	0x7FFFFC07,
	0xFFFFFFFF,
	0xFFFFFFFF,
	0xFFFFFFFF

#else

	/*
	 * Single Read. (Offset 0 in UPMA RAM)
	 */
	0x1F07FC04,
	0xEEAFEC04,
	0x11AFDC04,
	0xEFBBF800,
	0x1FF7F447,

	/*
	 * SDRAM Initialization (offset 5 in UPMA RAM)
	 *
	 * This is no UPM entry point. The following definition uses
	 * the remaining space to establish an initialization
	 * sequence, which is executed by a RUN command.
	 *
	 */
	0x1FF7F434,
	0xEFEBE834,
	0x1FB7D435,

	/*
	 * Burst Read. (Offset 8 in UPMA RAM)
	 */
	0x1F07FC04,
	0xEEAFEC04,
	0x10AFDC04,
	0xF0AFFC00,
	0xF0AFFC00,
	0xF1AFFC00,
	0xEFBBF800,
	0x1FF7F447,
	_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
	_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,

	/*
	 * Single Write. (Offset 18 in UPMA RAM)
	 */
	0x1F07FC04,
	0xEEAFE800,
	0x01BBD004,
	0x1FF7F447,
	_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,

	/*
	 * Burst Write. (Offset 20 in UPMA RAM)
	 */
	0x1F07FC04,
	0xEEAFE800,
	0x10AFD400,
	0xF0AFFC00,
	0xF0AFFC00,
	0xE1BBF804,
	0x1FF7F447,
 	_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
	_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,

	/*
	 * Refresh  (Offset 30 in UPMA RAM)
	 */
	0x1FF7DC84,
	0xFFFFFC04,
	0xFFFFFC04,
	0xFFFFFC04,
	0xFFFFFC84,
	0xFFFFFC07,
	_NOT_USED_, _NOT_USED_, _NOT_USED_,
	_NOT_USED_, _NOT_USED_, _NOT_USED_,

	/*
	 * Exception. (Offset 3c in UPMA RAM)
	 */
	0x7FFFFC07,		/* last */
   _NOT_USED_, _NOT_USED_, _NOT_USED_,
#endif
};

/* ------------------------------------------------------------------------- */


/*
 * Check Board Identity:
 *
 */

int checkboard (void)
{
    printf ("Board: Nexus NX823");
    return (0);
}

/* ------------------------------------------------------------------------- */

long int initdram (int board_type)
{
    volatile immap_t     *immap  = (immap_t *)CFG_IMMR;
    volatile memctl8xx_t *memctl = &immap->im_memctl;
    long int size_b0, size_b1, size8, size9;

    upmconfig(UPMA, (uint *)sdram_table, sizeof(sdram_table)/sizeof(uint));

    /*
     * Up to 2 Banks of 64Mbit x 2 devices
	  * Initial builds only have 1
     */
    memctl->memc_mptpr = CFG_MPTPR_1BK_4K;
    memctl->memc_mar  = 0x00000088;

    /*
     * Map controller SDRAM bank 0
     */
    memctl->memc_or1 = CFG_OR1_PRELIM;
    memctl->memc_br1 = CFG_BR1_PRELIM;
    memctl->memc_mamr = CFG_MAMR_8COL & (~(MAMR_PTAE)); /* no refresh yet */
    udelay(200);

    /*
     * Map controller SDRAM bank 1
     */
    memctl->memc_or2 = CFG_OR2_PRELIM;
    memctl->memc_br2 = CFG_BR2_PRELIM;

    /*
     * Perform SDRAM initializsation sequence
     */
    memctl->memc_mcr  = 0x80002105;	/* SDRAM bank 0 */
    udelay(1);
    memctl->memc_mcr  = 0x80002230;	/* SDRAM bank 0 - execute twice */
    udelay(1);

    memctl->memc_mcr  = 0x80004105;	/* SDRAM bank 1 */
    udelay(1);
    memctl->memc_mcr  = 0x80004230;	/* SDRAM bank 1 - execute twice */
    udelay(1);

    memctl->memc_mamr |= MAMR_PTAE;	/* enable refresh */
    udelay (1000);

    /*
     * Preliminary prescaler for refresh (depends on number of
     * banks): This value is selected for four cycles every 62.4 us
     * with two SDRAM banks or four cycles every 31.2 us with one
     * bank. It will be adjusted after memory sizing.
     */
    memctl->memc_mptpr = CFG_MPTPR_2BK_8K;

    memctl->memc_mar  = 0x00000088;


    /*
     * Check Bank 0 Memory Size for re-configuration
     *
     * try 8 column mode
     */
     size8 = dram_size (CFG_MAMR_8COL, (ulong *)SDRAM_BASE1_PRELIM, SDRAM_MAX_SIZE);

    udelay (1000);

    /*
     * try 9 column mode
     */
    size9 = dram_size (CFG_MAMR_9COL, (ulong *)SDRAM_BASE1_PRELIM, SDRAM_MAX_SIZE);

    if (size8 < size9) {		/* leave configuration at 9 columns	*/
	size_b0 = size9;
/*	debug ("SDRAM Bank 0 in 9 column mode: %ld MB\n", size >> 20);	*/
    } else {				/* back to 8 columns			*/
	size_b0 = size8;
	memctl->memc_mamr = CFG_MAMR_8COL;
	udelay(500);
/*	debug ("SDRAM Bank 0 in 8 column mode: %ld MB\n", size >> 20);	*/
    }

	/*
	 * Check Bank 1 Memory Size
	 * use current column settings
	 * [9 column SDRAM may also be used in 8 column mode,
	 *  but then only half the real size will be used.]
	 */
	size_b1 = dram_size (memctl->memc_mamr, (ulong *)SDRAM_BASE2_PRELIM,
				SDRAM_MAX_SIZE);
/*	debug ("SDRAM Bank 1: %ld MB\n", size8 >> 20);	*/

    udelay (1000);

    /*
     * Adjust refresh rate depending on SDRAM type, both banks
     * For types > 128 MBit leave it at the current (fast) rate
     */
    if ((size_b0 < 0x02000000) && (size_b1 < 0x02000000)) {
	/* reduce to 15.6 us (62.4 us / quad) */
	memctl->memc_mptpr = CFG_MPTPR_2BK_4K;
	udelay(1000);
    }

    /*
     * Final mapping: map bigger bank first
     */
    if (size_b1 > size_b0) {	/* SDRAM Bank 1 is bigger - map first	*/

	memctl->memc_or2 = ((-size_b1) & 0xFFFF0000) | CFG_OR_TIMING_SDRAM;
	memctl->memc_br2 = (CFG_SDRAM_BASE & BR_BA_MSK) | BR_MS_UPMA | BR_V;

	if (size_b0 > 0) {
	    /*
	     * Position Bank 0 immediately above Bank 1
	     */
	    memctl->memc_or1 = ((-size_b0) & 0xFFFF0000) | CFG_OR_TIMING_SDRAM;
	    memctl->memc_br1 = ((CFG_SDRAM_BASE & BR_BA_MSK) | BR_MS_UPMA | BR_V)
	    		       + size_b1;
	} else {
	    unsigned long reg;
	    /*
	     * No bank 0
	     *
	     * invalidate bank
	     */
	    memctl->memc_br1 = 0;

	    /* adjust refresh rate depending on SDRAM type, one bank */
	    reg = memctl->memc_mptpr;
	    reg >>= 1;	/* reduce to CFG_MPTPR_1BK_8K / _4K */
	    memctl->memc_mptpr = reg;
	}

    } else {			/* SDRAM Bank 0 is bigger - map first	*/

	memctl->memc_or1 = ((-size_b0) & 0xFFFF0000) | CFG_OR_TIMING_SDRAM;
	memctl->memc_br1 = (CFG_SDRAM_BASE & BR_BA_MSK) | BR_MS_UPMA | BR_V;

	if (size_b1 > 0) {
	    /*
	     * Position Bank 1 immediately above Bank 0
	     */
	    memctl->memc_or2 = ((-size_b1) & 0xFFFF0000) | CFG_OR_TIMING_SDRAM;
	    memctl->memc_br2 = ((CFG_SDRAM_BASE & BR_BA_MSK) | BR_MS_UPMA | BR_V)
	    		       + size_b0;
	} else {
	    unsigned long reg;
	    /*
	     * No bank 1
	     *
	     * invalidate bank
	     */
	    memctl->memc_br2 = 0;

	    /* adjust refresh rate depending on SDRAM type, one bank */
	    reg = memctl->memc_mptpr;
	    reg >>= 1;	/* reduce to CFG_MPTPR_1BK_8K / _4K */
	    memctl->memc_mptpr = reg;
	}
    }

    udelay(10000);

    return (size_b0 + size_b1);
}

/* ------------------------------------------------------------------------- */

/*
 * Check memory range for valid RAM. A simple memory test determines
 * the actually available RAM size between addresses `base' and
 * `base + maxsize'. Some (not all) hardware errors are detected:
 * - short between address lines
 * - short between data lines
 */

static long int dram_size (long int mamr_value, long int *base, long int maxsize)
{
    volatile immap_t     *immap  = (immap_t *)CFG_IMMR;
    volatile memctl8xx_t *memctl = &immap->im_memctl;
    volatile long int	 *addr;
    long int		  cnt, val;

    memctl->memc_mamr = mamr_value;

    for (cnt = maxsize/sizeof(long); cnt > 0; cnt >>= 1) {
	addr = base + cnt;	/* pointer arith! */

	*addr = ~cnt;
    }

    /* write 0 to base address */
    addr = base;
    *addr = 0;

    /* check at base address */
    if ((val = *addr) != 0) {
	return (0);
    }

    for (cnt = 1; ; cnt <<= 1) {
	addr = base + cnt;	/* pointer arith! */

	val = *addr;

	if (val != (~cnt)) {
	    return (cnt * sizeof(long));
	}
    }
    /* NOTREACHED */
}

u_long *my_sernum;

int misc_init_r (void)
{
	DECLARE_GLOBAL_DATA_PTR;

	char tmp[50];
	u_char *e = gd->bd->bi_enetaddr;

	/* save serial numbre from flash (uniquely programmed) */
	my_sernum = malloc(8);
	memcpy(my_sernum,gd->bd->bi_sernum,8);

	/* save env variables according to sernum */
	sprintf(tmp,"%08lx%08lx",my_sernum[0],my_sernum[1]);
	setenv("serial#",tmp);

	sprintf(tmp,"%02x:%02x:%02x:%02x:%02x:%02x"
				,e[0],e[1],e[2],e[3],e[4],e[5]);
	setenv("ethaddr",tmp);
	return (0);
}

void load_sernum_ethaddr (void)
{
	DECLARE_GLOBAL_DATA_PTR;

	int i;
	bd_t * bd = gd->bd;

	for (i = 0; i < 8; i++) {
		bd->bi_sernum[i] = *(u_char *) (CFG_FLASH_SN_BASE + i);
	}
	bd->bi_enetaddr[0] = 0x10;
	bd->bi_enetaddr[1] = 0x20;
	bd->bi_enetaddr[2] = 0x30;
	bd->bi_enetaddr[3] = bd->bi_sernum[1] << 4 | bd->bi_sernum[2];
	bd->bi_enetaddr[4] = bd->bi_sernum[5];
	bd->bi_enetaddr[5] = bd->bi_sernum[6];
}