/* * (C) Copyright 2002 * Sysgo Real-Time Solutions, GmbH <www.elinos.com> * Marius Groeger <mgroeger@sysgo.de> * * (C) Copyright 2002 * David Mueller, ELSOFT AG, <d.mueller@elsoft.ch> * * (C) Copyright 2003 * Texas Instruments, <www.ti.com> * Kshitij Gupta <Kshitij@ti.com> * * (C) Copyright 2004 * ARM Ltd. * Philippe Robin, <philippe.robin@arm.com> * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #ifdef CONFIG_PCI #include <pci.h> #endif DECLARE_GLOBAL_DATA_PTR; void flash__init (void); void ether__init (void); void peripheral_power_enable (void); #if defined(CONFIG_SHOW_BOOT_PROGRESS) void show_boot_progress(int progress) { printf("Boot reached stage %d\n", progress); } #endif #define COMP_MODE_ENABLE ((unsigned int)0x0000EAEF) static inline void delay (unsigned long loops) { __asm__ volatile ("1:\n" "subs %0, %1, #1\n" "bne 1b":"=r" (loops):"0" (loops)); } /* * Miscellaneous platform dependent initialisations */ int board_init (void) { /* arch number of Integrator Board */ gd->bd->bi_arch_number = MACH_TYPE_INTEGRATOR; /* adress of boot parameters */ gd->bd->bi_boot_params = 0x00000100; gd->flags = 0; #ifdef CONFIG_CM_REMAP extern void cm_remap(void); cm_remap(); /* remaps writeable memory to 0x00000000 */ #endif icache_enable (); flash__init (); return 0; } int misc_init_r (void) { #ifdef CONFIG_PCI pci_init(); #endif setenv("verify", "n"); return (0); } /* * Initialize PCI Devices, report devices found. */ #ifdef CONFIG_PCI #ifndef CONFIG_PCI_PNP static struct pci_config_table pci_integrator_config_table[] = { { PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 0x0f, PCI_ANY_ID, pci_cfgfunc_config_device, { PCI_ENET0_IOADDR, PCI_ENET0_MEMADDR, PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER }}, { } }; #endif /* V3 access routines */ #define _V3Write16(o,v) (*(volatile unsigned short *)(PCI_V3_BASE + (unsigned int)(o)) = (unsigned short)(v)) #define _V3Read16(o) (*(volatile unsigned short *)(PCI_V3_BASE + (unsigned int)(o))) #define _V3Write32(o,v) (*(volatile unsigned int *)(PCI_V3_BASE + (unsigned int)(o)) = (unsigned int)(v)) #define _V3Read32(o) (*(volatile unsigned int *)(PCI_V3_BASE + (unsigned int)(o))) /* Compute address necessary to access PCI config space for the given */ /* bus and device. */ #define PCI_CONFIG_ADDRESS( __bus, __devfn, __offset ) ({ \ unsigned int __address, __devicebit; \ unsigned short __mapaddress; \ unsigned int __dev = PCI_DEV (__devfn); /* FIXME to check!! (slot?) */ \ \ if (__bus == 0) { \ /* local bus segment so need a type 0 config cycle */ \ /* build the PCI configuration "address" with one-hot in A31-A11 */ \ __address = PCI_CONFIG_BASE; \ __address |= ((__devfn & 0x07) << 8); \ __address |= __offset & 0xFF; \ __mapaddress = 0x000A; /* 101=>config cycle, 0=>A1=A0=0 */ \ __devicebit = (1 << (__dev + 11)); \ \ if ((__devicebit & 0xFF000000) != 0) { \ /* high order bits are handled by the MAP register */ \ __mapaddress |= (__devicebit >> 16); \ } else { \ /* low order bits handled directly in the address */ \ __address |= __devicebit; \ } \ } else { /* bus !=0 */ \ /* not the local bus segment so need a type 1 config cycle */ \ /* A31-A24 are don't care (so clear to 0) */ \ __mapaddress = 0x000B; /* 101=>config cycle, 1=>A1&A0 from PCI_CFG */ \ __address = PCI_CONFIG_BASE; \ __address |= ((__bus & 0xFF) << 16); /* bits 23..16 = bus number */ \ __address |= ((__dev & 0x1F) << 11); /* bits 15..11 = device number */ \ __address |= ((__devfn & 0x07) << 8); /* bits 10..8 = function number */ \ __address |= __offset & 0xFF; /* bits 7..0 = register number */ \ } \ _V3Write16 (V3_LB_MAP1, __mapaddress); \ __address; \ }) /* _V3OpenConfigWindow - open V3 configuration window */ #define _V3OpenConfigWindow() { \ /* Set up base0 to see all 512Mbytes of memory space (not */ \ /* prefetchable), this frees up base1 for re-use by configuration*/ \ /* memory */ \ \ _V3Write32 (V3_LB_BASE0, ((INTEGRATOR_PCI_BASE & 0xFFF00000) | \ 0x90 | V3_LB_BASE_M_ENABLE)); \ /* Set up base1 to point into configuration space, note that MAP1 */ \ /* register is set up by pciMakeConfigAddress(). */ \ \ _V3Write32 (V3_LB_BASE1, ((CPU_PCI_CNFG_ADRS & 0xFFF00000) | \ 0x40 | V3_LB_BASE_M_ENABLE)); \ } /* _V3CloseConfigWindow - close V3 configuration window */ #define _V3CloseConfigWindow() { \ /* Reassign base1 for use by prefetchable PCI memory */ \ _V3Write32 (V3_LB_BASE1, (((INTEGRATOR_PCI_BASE + 0x10000000) & 0xFFF00000) \ | 0x84 | V3_LB_BASE_M_ENABLE)); \ _V3Write16 (V3_LB_MAP1, \ (((INTEGRATOR_PCI_BASE + 0x10000000) & 0xFFF00000) >> 16) | 0x0006); \ \ /* And shrink base0 back to a 256M window (NOTE: MAP0 already correct) */ \ \ _V3Write32 (V3_LB_BASE0, ((INTEGRATOR_PCI_BASE & 0xFFF00000) | \ 0x80 | V3_LB_BASE_M_ENABLE)); \ } static int pci_integrator_read_byte (struct pci_controller *hose, pci_dev_t dev, int offset, unsigned char *val) { _V3OpenConfigWindow (); *val = *(volatile unsigned char *) PCI_CONFIG_ADDRESS (PCI_BUS (dev), PCI_FUNC (dev), offset); _V3CloseConfigWindow (); return 0; } static int pci_integrator_read__word (struct pci_controller *hose, pci_dev_t dev, int offset, unsigned short *val) { _V3OpenConfigWindow (); *val = *(volatile unsigned short *) PCI_CONFIG_ADDRESS (PCI_BUS (dev), PCI_FUNC (dev), offset); _V3CloseConfigWindow (); return 0; } static int pci_integrator_read_dword (struct pci_controller *hose, pci_dev_t dev, int offset, unsigned int *val) { _V3OpenConfigWindow (); *val = *(volatile unsigned short *) PCI_CONFIG_ADDRESS (PCI_BUS (dev), PCI_FUNC (dev), offset); *val |= (*(volatile unsigned int *) PCI_CONFIG_ADDRESS (PCI_BUS (dev), PCI_FUNC (dev), (offset + 2))) << 16; _V3CloseConfigWindow (); return 0; } static int pci_integrator_write_byte (struct pci_controller *hose, pci_dev_t dev, int offset, unsigned char val) { _V3OpenConfigWindow (); *(volatile unsigned char *) PCI_CONFIG_ADDRESS (PCI_BUS (dev), PCI_FUNC (dev), offset) = val; _V3CloseConfigWindow (); return 0; } static int pci_integrator_write_word (struct pci_controller *hose, pci_dev_t dev, int offset, unsigned short val) { _V3OpenConfigWindow (); *(volatile unsigned short *) PCI_CONFIG_ADDRESS (PCI_BUS (dev), PCI_FUNC (dev), offset) = val; _V3CloseConfigWindow (); return 0; } static int pci_integrator_write_dword (struct pci_controller *hose, pci_dev_t dev, int offset, unsigned int val) { _V3OpenConfigWindow (); *(volatile unsigned short *) PCI_CONFIG_ADDRESS (PCI_BUS (dev), PCI_FUNC (dev), offset) = (val & 0xFFFF); *(volatile unsigned short *) PCI_CONFIG_ADDRESS (PCI_BUS (dev), PCI_FUNC (dev), (offset + 2)) = ((val >> 16) & 0xFFFF); _V3CloseConfigWindow (); return 0; } /****************************** * PCI initialisation ******************************/ struct pci_controller integrator_hose = { #ifndef CONFIG_PCI_PNP config_table: pci_integrator_config_table, #endif }; void pci_init_board (void) { volatile int i, j; struct pci_controller *hose = &integrator_hose; /* setting this register will take the V3 out of reset */ *(volatile unsigned int *) (INTEGRATOR_SC_PCIENABLE) = 1; /* wait a few usecs to settle the device and the PCI bus */ for (i = 0; i < 100; i++) j = i + 1; /* Now write the Base I/O Address Word to V3_BASE + 0x6C */ *(volatile unsigned short *) (V3_BASE + V3_LB_IO_BASE) = (unsigned short) (V3_BASE >> 16); do { *(volatile unsigned char *) (V3_BASE + V3_MAIL_DATA) = 0xAA; *(volatile unsigned char *) (V3_BASE + V3_MAIL_DATA + 4) = 0x55; } while (*(volatile unsigned char *) (V3_BASE + V3_MAIL_DATA) != 0xAA || *(volatile unsigned char *) (V3_BASE + V3_MAIL_DATA + 4) != 0x55); /* Make sure that V3 register access is not locked, if it is, unlock it */ if ((*(volatile unsigned short *) (V3_BASE + V3_SYSTEM) & V3_SYSTEM_M_LOCK) == V3_SYSTEM_M_LOCK) *(volatile unsigned short *) (V3_BASE + V3_SYSTEM) = 0xA05F; /* Ensure that the slave accesses from PCI are disabled while we */ /* setup windows */ *(volatile unsigned short *) (V3_BASE + V3_PCI_CMD) &= ~(V3_COMMAND_M_MEM_EN | V3_COMMAND_M_IO_EN); /* Clear RST_OUT to 0; keep the PCI bus in reset until we've finished */ *(volatile unsigned short *) (V3_BASE + V3_SYSTEM) &= ~V3_SYSTEM_M_RST_OUT; /* Make all accesses from PCI space retry until we're ready for them */ *(volatile unsigned short *) (V3_BASE + V3_PCI_CFG) |= V3_PCI_CFG_M_RETRY_EN; /* Set up any V3 PCI Configuration Registers that we absolutely have to */ /* LB_CFG controls Local Bus protocol. */ /* Enable LocalBus byte strobes for READ accesses too. */ /* set bit 7 BE_IMODE and bit 6 BE_OMODE */ *(volatile unsigned short *) (V3_BASE + V3_LB_CFG) |= 0x0C0; /* PCI_CMD controls overall PCI operation. */ /* Enable PCI bus master. */ *(volatile unsigned short *) (V3_BASE + V3_PCI_CMD) |= 0x04; /* PCI_MAP0 controls where the PCI to CPU memory window is on Local Bus */ *(volatile unsigned int *) (V3_BASE + V3_PCI_MAP0) = (INTEGRATOR_BOOT_ROM_BASE) | (V3_PCI_MAP_M_ADR_SIZE_512M | V3_PCI_MAP_M_REG_EN | V3_PCI_MAP_M_ENABLE); /* PCI_BASE0 is the PCI address of the start of the window */ *(volatile unsigned int *) (V3_BASE + V3_PCI_BASE0) = INTEGRATOR_BOOT_ROM_BASE; /* PCI_MAP1 is LOCAL address of the start of the window */ *(volatile unsigned int *) (V3_BASE + V3_PCI_MAP1) = (INTEGRATOR_HDR0_SDRAM_BASE) | (V3_PCI_MAP_M_ADR_SIZE_1024M | V3_PCI_MAP_M_REG_EN | V3_PCI_MAP_M_ENABLE); /* PCI_BASE1 is the PCI address of the start of the window */ *(volatile unsigned int *) (V3_BASE + V3_PCI_BASE1) = INTEGRATOR_HDR0_SDRAM_BASE; /* Set up the windows from local bus memory into PCI configuration, */ /* I/O and Memory. */ /* PCI I/O, LB_BASE2 and LB_MAP2 are used exclusively for this. */ *(volatile unsigned short *) (V3_BASE + V3_LB_BASE2) = ((CPU_PCI_IO_ADRS >> 24) << 8) | V3_LB_BASE_M_ENABLE; *(volatile unsigned short *) (V3_BASE + V3_LB_MAP2) = 0; /* PCI Configuration, use LB_BASE1/LB_MAP1. */ /* PCI Memory use LB_BASE0/LB_MAP0 and LB_BASE1/LB_MAP1 */ /* Map first 256Mbytes as non-prefetchable via BASE0/MAP0 */ /* (INTEGRATOR_PCI_BASE == PCI_MEM_BASE) */ *(volatile unsigned int *) (V3_BASE + V3_LB_BASE0) = INTEGRATOR_PCI_BASE | (0x80 | V3_LB_BASE_M_ENABLE); *(volatile unsigned short *) (V3_BASE + V3_LB_MAP0) = ((INTEGRATOR_PCI_BASE >> 20) << 0x4) | 0x0006; /* Map second 256 Mbytes as prefetchable via BASE1/MAP1 */ *(volatile unsigned int *) (V3_BASE + V3_LB_BASE1) = INTEGRATOR_PCI_BASE | (0x84 | V3_LB_BASE_M_ENABLE); *(volatile unsigned short *) (V3_BASE + V3_LB_MAP1) = (((INTEGRATOR_PCI_BASE + 0x10000000) >> 20) << 4) | 0x0006; /* Allow accesses to PCI Configuration space */ /* and set up A1, A0 for type 1 config cycles */ *(volatile unsigned short *) (V3_BASE + V3_PCI_CFG) = ((*(volatile unsigned short *) (V3_BASE + V3_PCI_CFG)) & ~(V3_PCI_CFG_M_RETRY_EN | V3_PCI_CFG_M_AD_LOW1)) | V3_PCI_CFG_M_AD_LOW0; /* now we can allow in PCI MEMORY accesses */ *(volatile unsigned short *) (V3_BASE + V3_PCI_CMD) = (*(volatile unsigned short *) (V3_BASE + V3_PCI_CMD)) | V3_COMMAND_M_MEM_EN; /* Set RST_OUT to take the PCI bus is out of reset, PCI devices can */ /* initialise and lock the V3 system register so that no one else */ /* can play with it */ *(volatile unsigned short *) (V3_BASE + V3_SYSTEM) = (*(volatile unsigned short *) (V3_BASE + V3_SYSTEM)) | V3_SYSTEM_M_RST_OUT; *(volatile unsigned short *) (V3_BASE + V3_SYSTEM) = (*(volatile unsigned short *) (V3_BASE + V3_SYSTEM)) | V3_SYSTEM_M_LOCK; /* * Register the hose */ hose->first_busno = 0; hose->last_busno = 0xff; /* System memory space */ pci_set_region (hose->regions + 0, 0x00000000, 0x40000000, 0x01000000, PCI_REGION_MEM | PCI_REGION_MEMORY); /* PCI Memory - config space */ pci_set_region (hose->regions + 1, 0x00000000, 0x62000000, 0x01000000, PCI_REGION_MEM); /* PCI V3 regs */ pci_set_region (hose->regions + 2, 0x00000000, 0x61000000, 0x00080000, PCI_REGION_MEM); /* PCI I/O space */ pci_set_region (hose->regions + 3, 0x00000000, 0x60000000, 0x00010000, PCI_REGION_IO); pci_set_ops (hose, pci_integrator_read_byte, pci_integrator_read__word, pci_integrator_read_dword, pci_integrator_write_byte, pci_integrator_write_word, pci_integrator_write_dword); hose->region_count = 4; pci_register_hose (hose); pciauto_config_init (hose); pciauto_config_device (hose, 0); hose->last_busno = pci_hose_scan (hose); } #endif /****************************** Routine: Description: ******************************/ void flash__init (void) { } /************************************************************* Routine:ether__init Description: take the Ethernet controller out of reset and wait for the EEPROM load to complete. *************************************************************/ void ether__init (void) { } /****************************** Routine: Description: ******************************/ int dram_init (void) { gd->bd->bi_dram[0].start = PHYS_SDRAM_1; gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE; #ifdef CONFIG_CM_SPD_DETECT { extern void dram_query(void); unsigned long cm_reg_sdram; unsigned long sdram_shift; dram_query(); /* Assembler accesses to CM registers */ /* Queries the SPD values */ /* Obtain the SDRAM size from the CM SDRAM register */ cm_reg_sdram = *(volatile ulong *)(CM_BASE + OS_SDRAM); /* Register SDRAM size * * 0xXXXXXXbbb000bb 16 MB * 0xXXXXXXbbb001bb 32 MB * 0xXXXXXXbbb010bb 64 MB * 0xXXXXXXbbb011bb 128 MB * 0xXXXXXXbbb100bb 256 MB * */ sdram_shift = ((cm_reg_sdram & 0x0000001C)/4)%4; gd->bd->bi_dram[0].size = 0x01000000 << sdram_shift; } #endif /* CM_SPD_DETECT */ return 0; } /* The Integrator/AP timer1 is clocked at 24MHz * can be divided by 16 or 256 * and is a 16-bit counter */ /* U-Boot expects a 32 bit timer running at CFG_HZ*/ static ulong timestamp; /* U-Boot ticks since startup */ static ulong total_count = 0; /* Total timer count */ static ulong lastdec; /* Timer reading at last call */ static ulong div_clock = 256; /* Divisor applied to the timer clock */ static ulong div_timer = 1; /* Divisor to convert timer reading * change to U-Boot ticks */ /* CFG_HZ = CFG_HZ_CLOCK/(div_clock * div_timer) */ #define TIMER_LOAD_VAL 0x0000FFFFL #define READ_TIMER ((*(volatile ulong *)(CFG_TIMERBASE+4)) & 0x0000FFFFL) /* all function return values in U-Boot ticks i.e. (1/CFG_HZ) sec * - unless otherwise stated */ /* starts a counter * - the Integrator/AP timer issues an interrupt * each time it reaches zero */ int interrupt_init (void) { /* Load timer with initial value */ *(volatile ulong *)(CFG_TIMERBASE + 0) = TIMER_LOAD_VAL; /* Set timer to be * enabled 1 * free-running 0 * XX 00 * divider 256 10 * XX 00 */ *(volatile ulong *)(CFG_TIMERBASE + 8) = 0x00000088; total_count = 0; /* init the timestamp and lastdec value */ reset_timer_masked(); div_timer = CFG_HZ_CLOCK / CFG_HZ; div_timer /= div_clock; return (0); } /* * timer without interrupts */ void reset_timer (void) { reset_timer_masked (); } ulong get_timer (ulong base_ticks) { return get_timer_masked () - base_ticks; } void set_timer (ulong ticks) { timestamp = ticks; total_count = ticks * div_timer; reset_timer_masked(); } /* delay x useconds */ void udelay (unsigned long usec) { ulong tmo, tmp; /* Convert to U-Boot ticks */ tmo = usec * CFG_HZ; tmo /= (1000000L); tmp = get_timer_masked(); /* get current timestamp */ tmo += tmp; /* wake up timestamp */ while (get_timer_masked () < tmo) { /* loop till event */ /*NOP*/; } } void reset_timer_masked (void) { /* reset time */ lastdec = READ_TIMER; /* capture current decrementer value */ timestamp = 0; /* start "advancing" time stamp from 0 */ } /* converts the timer reading to U-Boot ticks */ /* the timestamp is the number of ticks since reset */ /* This routine does not detect wraps unless called regularly ASSUMES a call at least every 16 seconds to detect every reload */ ulong get_timer_masked (void) { ulong now = READ_TIMER; /* current count */ if (now > lastdec) { /* Must have wrapped */ total_count += lastdec + TIMER_LOAD_VAL + 1 - now; } else { total_count += lastdec - now; } lastdec = now; timestamp = total_count/div_timer; return timestamp; } /* waits specified delay value and resets timestamp */ void udelay_masked (unsigned long usec) { udelay(usec); } /* * This function is derived from PowerPC code (read timebase as long long). * On ARM it just returns the timer value. */ unsigned long long get_ticks(void) { return get_timer(0); } /* * Return the timebase clock frequency * i.e. how often the timer decrements */ ulong get_tbclk (void) { return CFG_HZ_CLOCK/div_clock; }