/* * Copyright (C) 2014-2016 Freescale Semiconductor, Inc. * * Author: Fabio Estevam * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../common/pfuze.h" #include #include #include #ifdef CONFIG_IMX_RDC #include #include #endif #ifdef CONFIG_FSL_FASTBOOT #include #ifdef CONFIG_ANDROID_RECOVERY #include #endif #endif /*CONFIG_FSL_FASTBOOT*/ DECLARE_GLOBAL_DATA_PTR; #define UART_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS) #define USDHC_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_22K_UP | PAD_CTL_SPEED_LOW | \ PAD_CTL_DSE_80ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS) #define I2C_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_HYS | \ PAD_CTL_ODE) #define ENET_PAD_CTRL (PAD_CTL_PUS_100K_UP | PAD_CTL_PUE | \ PAD_CTL_SPEED_HIGH | \ PAD_CTL_DSE_48ohm | PAD_CTL_SRE_FAST) #define ENET_CLK_PAD_CTRL (PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_120ohm | PAD_CTL_SRE_FAST) #define ENET_RX_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_SPEED_HIGH | PAD_CTL_SRE_FAST) #define I2C_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_HYS | \ PAD_CTL_ODE) #define LCD_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_PUS_100K_UP | PAD_CTL_PUE | \ PAD_CTL_PKE | PAD_CTL_SPEED_MED | PAD_CTL_DSE_40ohm) #define BUTTON_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_22K_UP | PAD_CTL_DSE_40ohm) #define WDOG_PAD_CTRL (PAD_CTL_PUE | PAD_CTL_PKE | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm) #define OTG_ID_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_47K_UP | PAD_CTL_SPEED_LOW | \ PAD_CTL_DSE_80ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS) int dram_init(void) { gd->ram_size = imx_ddr_size(); return 0; } static iomux_v3_cfg_t const uart1_pads[] = { MX6_PAD_GPIO1_IO04__UART1_TX | MUX_PAD_CTRL(UART_PAD_CTRL), MX6_PAD_GPIO1_IO05__UART1_RX | MUX_PAD_CTRL(UART_PAD_CTRL), }; static iomux_v3_cfg_t const usdhc2_pads[] = { MX6_PAD_SD2_CLK__USDHC2_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD2_CMD__USDHC2_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD2_DATA0__USDHC2_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD2_DATA1__USDHC2_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD2_DATA2__USDHC2_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD2_DATA3__USDHC2_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), }; static iomux_v3_cfg_t const usdhc3_pads[] = { MX6_PAD_SD3_CLK__USDHC3_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD3_CMD__USDHC3_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD3_DATA0__USDHC3_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD3_DATA1__USDHC3_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD3_DATA2__USDHC3_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD3_DATA3__USDHC3_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD3_DATA4__USDHC3_DATA4 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD3_DATA5__USDHC3_DATA5 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD3_DATA6__USDHC3_DATA6 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD3_DATA7__USDHC3_DATA7 | MUX_PAD_CTRL(USDHC_PAD_CTRL), /* CD pin */ MX6_PAD_KEY_COL0__GPIO2_IO_10 | MUX_PAD_CTRL(NO_PAD_CTRL), /* RST_B, used for power reset cycle */ MX6_PAD_KEY_COL1__GPIO2_IO_11 | MUX_PAD_CTRL(NO_PAD_CTRL), }; static iomux_v3_cfg_t const usdhc4_pads[] = { MX6_PAD_SD4_CLK__USDHC4_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_CMD__USDHC4_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_DATA0__USDHC4_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_DATA1__USDHC4_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_DATA2__USDHC4_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_DATA3__USDHC4_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_DATA7__GPIO6_IO_21 | MUX_PAD_CTRL(NO_PAD_CTRL), }; static iomux_v3_cfg_t const usdhc4_emmc_pads[] = { MX6_PAD_SD4_CLK__USDHC4_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_CMD__USDHC4_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_DATA0__USDHC4_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_DATA1__USDHC4_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_DATA2__USDHC4_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_DATA3__USDHC4_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_DATA4__USDHC4_DATA4 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_DATA5__USDHC4_DATA5 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_DATA6__USDHC4_DATA6 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_DATA7__USDHC4_DATA7 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD4_RESET_B__USDHC4_RESET_B | MUX_PAD_CTRL(NO_PAD_CTRL), }; static iomux_v3_cfg_t const wdog_b_pad = { MX6_PAD_GPIO1_IO13__GPIO1_IO_13 | MUX_PAD_CTRL(WDOG_PAD_CTRL), }; static iomux_v3_cfg_t const fec1_pads[] = { MX6_PAD_ENET1_MDC__ENET1_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_ENET1_MDIO__ENET1_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII1_RX_CTL__ENET1_RX_EN | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII1_RD0__ENET1_RX_DATA_0 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII1_RD1__ENET1_RX_DATA_1 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII1_RD2__ENET1_RX_DATA_2 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII1_RD3__ENET1_RX_DATA_3 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII1_RXC__ENET1_RX_CLK | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII1_TX_CTL__ENET1_TX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII1_TD0__ENET1_TX_DATA_0 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII1_TD1__ENET1_TX_DATA_1 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII1_TD2__ENET1_TX_DATA_2 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII1_TD3__ENET1_TX_DATA_3 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII1_TXC__ENET1_RGMII_TXC | MUX_PAD_CTRL(ENET_PAD_CTRL), }; static iomux_v3_cfg_t const fec2_pads[] = { MX6_PAD_ENET1_MDC__ENET2_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_ENET1_MDIO__ENET2_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII2_RX_CTL__ENET2_RX_EN | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII2_RD0__ENET2_RX_DATA_0 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII2_RD1__ENET2_RX_DATA_1 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII2_RD2__ENET2_RX_DATA_2 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII2_RD3__ENET2_RX_DATA_3 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII2_RXC__ENET2_RX_CLK | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII2_TX_CTL__ENET2_TX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII2_TD0__ENET2_TX_DATA_0 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII2_TD1__ENET2_TX_DATA_1 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII2_TD2__ENET2_TX_DATA_2 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII2_TD3__ENET2_TX_DATA_3 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII2_TXC__ENET2_RGMII_TXC | MUX_PAD_CTRL(ENET_PAD_CTRL), }; static iomux_v3_cfg_t const peri_3v3_pads[] = { MX6_PAD_QSPI1A_DATA0__GPIO4_IO_16 | MUX_PAD_CTRL(NO_PAD_CTRL), }; static iomux_v3_cfg_t const phy_control_pads[] = { /* 25MHz Ethernet PHY Clock */ MX6_PAD_ENET2_RX_CLK__ENET2_REF_CLK_25M | MUX_PAD_CTRL(ENET_CLK_PAD_CTRL), /* ENET PHY Power */ MX6_PAD_ENET2_COL__GPIO2_IO_6 | MUX_PAD_CTRL(NO_PAD_CTRL), /* AR8031 PHY Reset */ MX6_PAD_ENET2_CRS__GPIO2_IO_7 | MUX_PAD_CTRL(NO_PAD_CTRL), }; #ifdef CONFIG_PCIE_IMX iomux_v3_cfg_t const pcie_pads[] = { MX6_PAD_ENET1_COL__GPIO2_IO_0 | MUX_PAD_CTRL(NO_PAD_CTRL), /* POWER */ MX6_PAD_ENET1_CRS__GPIO2_IO_1 | MUX_PAD_CTRL(NO_PAD_CTRL), /* RESET */ }; static void setup_pcie(void) { imx_iomux_v3_setup_multiple_pads(pcie_pads, ARRAY_SIZE(pcie_pads)); gpio_request(CONFIG_PCIE_IMX_POWER_GPIO, "PCIE Power Enable"); gpio_request(CONFIG_PCIE_IMX_PERST_GPIO, "PCIE Reset"); } #endif static void setup_iomux_uart(void) { imx_iomux_v3_setup_multiple_pads(uart1_pads, ARRAY_SIZE(uart1_pads)); } static int setup_fec(int fec_id) { struct iomuxc *iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR; struct anatop_regs *anatop = (struct anatop_regs *)ANATOP_BASE_ADDR; int reg, ret; if (0 == fec_id) /* Use 125M anatop loopback REF_CLK1 for ENET1, clear gpr1[13], gpr1[17]*/ clrsetbits_le32(&iomuxc_regs->gpr[1], IOMUX_GPR1_FEC1_MASK, 0); else /* Use 125M anatop loopback REF_CLK1 for ENET2, clear gpr1[14], gpr1[18]*/ clrsetbits_le32(&iomuxc_regs->gpr[1], IOMUX_GPR1_FEC2_MASK, 0); ret = enable_fec_anatop_clock(fec_id, ENET_125MHZ); if (ret) return ret; imx_iomux_v3_setup_multiple_pads(phy_control_pads, ARRAY_SIZE(phy_control_pads)); /* Enable the ENET power, active low */ gpio_request(IMX_GPIO_NR(2, 6), "fec power en"); gpio_direction_output(IMX_GPIO_NR(2, 6) , 0); /* Reset AR8031 PHY */ gpio_request(IMX_GPIO_NR(2, 7), "ar8031 reset"); gpio_direction_output(IMX_GPIO_NR(2, 7) , 0); mdelay(10); gpio_set_value(IMX_GPIO_NR(2, 7), 1); reg = readl(&anatop->pll_enet); reg |= BM_ANADIG_PLL_ENET_REF_25M_ENABLE; writel(reg, &anatop->pll_enet); return 0; } int board_eth_init(bd_t *bis) { if (0 == CONFIG_FEC_ENET_DEV) imx_iomux_v3_setup_multiple_pads(fec1_pads, ARRAY_SIZE(fec1_pads)); else imx_iomux_v3_setup_multiple_pads(fec2_pads, ARRAY_SIZE(fec2_pads)); return cpu_eth_init(bis); } #define PC MUX_PAD_CTRL(I2C_PAD_CTRL) /* I2C1 for PMIC */ static struct i2c_pads_info i2c_pad_info1 = { .scl = { .i2c_mode = MX6_PAD_GPIO1_IO00__I2C1_SCL | PC, .gpio_mode = MX6_PAD_GPIO1_IO00__GPIO1_IO_0 | PC, .gp = IMX_GPIO_NR(1, 0), }, .sda = { .i2c_mode = MX6_PAD_GPIO1_IO01__I2C1_SDA | PC, .gpio_mode = MX6_PAD_GPIO1_IO01__GPIO1_IO_1 | PC, .gp = IMX_GPIO_NR(1, 1), }, }; /* I2C2 */ struct i2c_pads_info i2c_pad_info2 = { .scl = { .i2c_mode = MX6_PAD_GPIO1_IO02__I2C2_SCL | PC, .gpio_mode = MX6_PAD_GPIO1_IO02__GPIO1_IO_2 | PC, .gp = IMX_GPIO_NR(1, 2), }, .sda = { .i2c_mode = MX6_PAD_GPIO1_IO03__I2C2_SDA | PC, .gpio_mode = MX6_PAD_GPIO1_IO03__GPIO1_IO_3 | PC, .gp = IMX_GPIO_NR(1, 3), }, }; #ifdef CONFIG_POWER int power_init_board(void) { struct pmic *pfuze; unsigned int reg; int ret; pfuze = pfuze_common_init(I2C_PMIC); if (!pfuze) return -ENODEV; ret = pfuze_mode_init(pfuze, APS_PFM); if (ret < 0) return ret; /* set SW1AB standby volatage 1.10V */ pmic_reg_read(pfuze, PFUZE100_SW1ABSTBY, ®); reg &= ~0x3f; reg |= PFUZE100_SW1ABC_SETP(11000); pmic_reg_write(pfuze, PFUZE100_SW1ABSTBY, reg); /* set SW1AB/VDDARM step ramp up time from 16us to 4us/25mV */ pmic_reg_read(pfuze, PFUZE100_SW1ABCONF, ®); reg &= ~0xc0; reg |= 0x40; pmic_reg_write(pfuze, PFUZE100_SW1ABCONF, reg); /* set SW1C standby volatage 1.10V */ pmic_reg_read(pfuze, PFUZE100_SW1CSTBY, ®); reg &= ~0x3f; reg |= PFUZE100_SW1ABC_SETP(11000); pmic_reg_write(pfuze, PFUZE100_SW1CSTBY, reg); /* set SW1C/VDDSOC step ramp up time to from 16us to 4us/25mV */ pmic_reg_read(pfuze, PFUZE100_SW1CCONF, ®); reg &= ~0xc0; reg |= 0x40; pmic_reg_write(pfuze, PFUZE100_SW1CCONF, reg); /* Enable power of VGEN5 3V3, needed for SD3 */ pmic_reg_read(pfuze, PFUZE100_VGEN5VOL, ®); reg &= ~LDO_VOL_MASK; reg |= (LDOB_3_30V | (1 << LDO_EN)); pmic_reg_write(pfuze, PFUZE100_VGEN5VOL, reg); return 0; } #elif defined(CONFIG_DM_PMIC_PFUZE100) int power_init_board(void) { struct udevice *dev; unsigned int reg; int ret; dev = pfuze_common_init(); if (!dev) return -ENODEV; ret = pfuze_mode_init(dev, APS_PFM); if (ret < 0) return ret; /* set SW1AB staby volatage 0.975V*/ reg = pmic_reg_read(dev, PFUZE100_SW1ABSTBY); reg &= ~0x3f; reg |= PFUZE100_SW1ABC_SETP(11000); pmic_reg_write(dev, PFUZE100_SW1ABSTBY, reg); /* set SW1AB/VDDARM step ramp up time from 16us to 4us/25mV */ reg = pmic_reg_read(dev, PFUZE100_SW1ABCONF); reg &= ~0xc0; reg |= 0x40; pmic_reg_write(dev, PFUZE100_SW1ABCONF, reg); /* set SW1C staby volatage 0.975V*/ reg = pmic_reg_read(dev, PFUZE100_SW1CSTBY); reg &= ~0x3f; reg |= PFUZE100_SW1ABC_SETP(11000); pmic_reg_write(dev, PFUZE100_SW1CSTBY, reg); /* set SW1C/VDDSOC step ramp up time to from 16us to 4us/25mV */ reg = pmic_reg_read(dev, PFUZE100_SW1CCONF); reg &= ~0xc0; reg |= 0x40; pmic_reg_write(dev, PFUZE100_SW1CCONF, reg); /* Enable power of VGEN5 3V3, needed for SD3 */ reg = pmic_reg_read(dev, PFUZE100_VGEN5VOL); reg &= ~LDO_VOL_MASK; reg |= (LDOB_3_30V | (1 << LDO_EN)); pmic_reg_write(dev, PFUZE100_VGEN5VOL, reg); return 0; } #endif #ifdef CONFIG_LDO_BYPASS_CHECK #ifdef CONFIG_POWER void ldo_mode_set(int ldo_bypass) { unsigned int value; int is_400M; u32 vddarm; struct pmic *p = pmic_get("PFUZE100"); if (!p) { printf("No PMIC found!\n"); return; } /* switch to ldo_bypass mode */ if (ldo_bypass) { prep_anatop_bypass(); /* decrease VDDARM to 1.275V */ pmic_reg_read(p, PFUZE100_SW1ABVOL, &value); value &= ~0x3f; value |= PFUZE100_SW1ABC_SETP(12750); pmic_reg_write(p, PFUZE100_SW1ABVOL, value); /* decrease VDDSOC to 1.3V */ pmic_reg_read(p, PFUZE100_SW1CVOL, &value); value &= ~0x3f; value |= PFUZE100_SW1ABC_SETP(13000); pmic_reg_write(p, PFUZE100_SW1CVOL, value); is_400M = set_anatop_bypass(1); if (is_400M) vddarm = PFUZE100_SW1ABC_SETP(10750); else vddarm = PFUZE100_SW1ABC_SETP(11750); pmic_reg_read(p, PFUZE100_SW1ABVOL, &value); value &= ~0x3f; value |= vddarm; pmic_reg_write(p, PFUZE100_SW1ABVOL, value); pmic_reg_read(p, PFUZE100_SW1CVOL, &value); value &= ~0x3f; value |= PFUZE100_SW1ABC_SETP(11750); pmic_reg_write(p, PFUZE100_SW1CVOL, value); finish_anatop_bypass(); printf("switch to ldo_bypass mode!\n"); } } #elif defined(CONFIG_DM_PMIC_PFUZE100) void ldo_mode_set(int ldo_bypass) { struct udevice *dev; int ret; int is_400M; u32 vddarm; ret = pmic_get("pfuze100", &dev); if (ret == -ENODEV) { printf("No PMIC found!\n"); return; } /* switch to ldo_bypass mode , boot on 800Mhz */ if (ldo_bypass) { prep_anatop_bypass(); /* decrease VDDARM for 400Mhz DQ:1.1V, DL:1.275V */ pmic_clrsetbits(dev, PFUZE100_SW1ABVOL, 0x3f, PFUZE100_SW1ABC_SETP(12750)); /* increase VDDSOC to 1.3V */ pmic_clrsetbits(dev, PFUZE100_SW1CVOL, 0x3f, PFUZE100_SW1ABC_SETP(13000)); is_400M = set_anatop_bypass(1); if (is_400M) vddarm = PFUZE100_SW1ABC_SETP(10750); else vddarm = PFUZE100_SW1ABC_SETP(11750); pmic_clrsetbits(dev, PFUZE100_SW1ABVOL, 0x3f, vddarm); /* decrease VDDSOC to 1.175V */ pmic_clrsetbits(dev, PFUZE100_SW1CVOL, 0x3f, PFUZE100_SW1ABC_SETP(11750)); finish_anatop_bypass(); printf("switch to ldo_bypass mode!\n"); } } #endif #endif #ifdef CONFIG_USB_EHCI_MX6 #define USB_OTHERREGS_OFFSET 0x800 #define UCTRL_PWR_POL (1 << 9) static iomux_v3_cfg_t const usb_otg_pads[] = { /* OGT1 */ MX6_PAD_GPIO1_IO09__USB_OTG1_PWR | MUX_PAD_CTRL(NO_PAD_CTRL), MX6_PAD_GPIO1_IO10__ANATOP_OTG1_ID | MUX_PAD_CTRL(OTG_ID_PAD_CTRL), /* OTG2 */ MX6_PAD_GPIO1_IO12__USB_OTG2_PWR | MUX_PAD_CTRL(NO_PAD_CTRL) }; static void setup_usb(void) { imx_iomux_v3_setup_multiple_pads(usb_otg_pads, ARRAY_SIZE(usb_otg_pads)); } int board_usb_phy_mode(int port) { if (port == 1) return USB_INIT_HOST; else return usb_phy_mode(port); } int board_ehci_hcd_init(int port) { u32 *usbnc_usb_ctrl; if (port > 1) return -EINVAL; usbnc_usb_ctrl = (u32 *)(USB_BASE_ADDR + USB_OTHERREGS_OFFSET + port * 4); /* Set Power polarity */ setbits_le32(usbnc_usb_ctrl, UCTRL_PWR_POL); return 0; } #endif int board_phy_config(struct phy_device *phydev) { /* * Enable 1.8V(SEL_1P5_1P8_POS_REG) on * Phy control debug reg 0 */ phy_write(phydev, MDIO_DEVAD_NONE, 0x1d, 0x1f); phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, 0x8); /* rgmii tx clock delay enable */ phy_write(phydev, MDIO_DEVAD_NONE, 0x1d, 0x05); phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, 0x100); if (phydev->drv->config) phydev->drv->config(phydev); return 0; } #ifdef CONFIG_IMX_RDC static rdc_peri_cfg_t const shared_resources[] = { (RDC_PER_GPIO1 | RDC_DOMAIN(0) | RDC_DOMAIN(1)), }; #endif int board_early_init_f(void) { #ifdef CONFIG_IMX_RDC imx_rdc_setup_peripherals(shared_resources, ARRAY_SIZE(shared_resources)); #endif #ifdef CONFIG_SYS_AUXCORE_FASTUP arch_auxiliary_core_up(0, CONFIG_SYS_AUXCORE_BOOTDATA); #endif setup_iomux_uart(); return 0; } static struct fsl_esdhc_cfg usdhc_cfg[3] = { {USDHC2_BASE_ADDR, 0, 4}, {USDHC3_BASE_ADDR}, #ifdef CONFIG_MX6SXSABRESD_EMMC_REWORK {USDHC4_BASE_ADDR, 0, 8}, #else {USDHC4_BASE_ADDR}, #endif }; #define USDHC3_CD_GPIO IMX_GPIO_NR(2, 10) #define USDHC3_PWR_GPIO IMX_GPIO_NR(2, 11) #define USDHC4_CD_GPIO IMX_GPIO_NR(6, 21) int board_mmc_get_env_dev(int devno) { return devno - 1; } int mmc_map_to_kernel_blk(int dev_no) { return dev_no + 1; } int board_mmc_getcd(struct mmc *mmc) { struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv; int ret = 0; switch (cfg->esdhc_base) { case USDHC2_BASE_ADDR: ret = 1; /* Assume uSDHC2 is always present */ break; case USDHC3_BASE_ADDR: ret = !gpio_get_value(USDHC3_CD_GPIO); break; case USDHC4_BASE_ADDR: #ifdef CONFIG_MX6SXSABRESD_EMMC_REWORK ret = 1; #else ret = !gpio_get_value(USDHC4_CD_GPIO); #endif break; } return ret; } int board_mmc_init(bd_t *bis) { #ifndef CONFIG_SPL_BUILD int i, ret; /* * According to the board_mmc_init() the following map is done: * (U-Boot device node) (Physical Port) * mmc0 USDHC2 * mmc1 USDHC3 * mmc2 USDHC4 */ for (i = 0; i < CONFIG_SYS_FSL_USDHC_NUM; i++) { switch (i) { case 0: imx_iomux_v3_setup_multiple_pads( usdhc2_pads, ARRAY_SIZE(usdhc2_pads)); usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK); break; case 1: imx_iomux_v3_setup_multiple_pads( usdhc3_pads, ARRAY_SIZE(usdhc3_pads)); gpio_request(USDHC3_CD_GPIO, "usdhc3 cd"); gpio_request(USDHC3_PWR_GPIO, "usdhc3 pwr"); gpio_direction_input(USDHC3_CD_GPIO); gpio_direction_output(USDHC3_PWR_GPIO, 1); usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK); break; case 2: #ifdef CONFIG_MX6SXSABRESD_EMMC_REWORK imx_iomux_v3_setup_multiple_pads( usdhc4_emmc_pads, ARRAY_SIZE(usdhc4_emmc_pads)); #else imx_iomux_v3_setup_multiple_pads( usdhc4_pads, ARRAY_SIZE(usdhc4_pads)); gpio_request(USDHC4_CD_GPIO, "usdhc4 cd"); gpio_direction_input(USDHC4_CD_GPIO); #endif usdhc_cfg[2].sdhc_clk = mxc_get_clock(MXC_ESDHC4_CLK); break; default: printf("Warning: you configured more USDHC controllers" "(%d) than supported by the board\n", i + 1); return -EINVAL; } ret = fsl_esdhc_initialize(bis, &usdhc_cfg[i]); if (ret) { printf("Warning: failed to initialize mmc dev %d\n", i); return ret; } } return 0; #else struct src *src_regs = (struct src *)SRC_BASE_ADDR; u32 val; u32 port; val = readl(&src_regs->sbmr1); if ((val & 0xc0) != 0x40) { printf("Not boot from USDHC!\n"); return -EINVAL; } port = (val >> 11) & 0x3; printf("port %d\n", port); switch (port) { case 1: imx_iomux_v3_setup_multiple_pads( usdhc2_pads, ARRAY_SIZE(usdhc2_pads)); usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK); usdhc_cfg[0].esdhc_base = USDHC2_BASE_ADDR; break; case 2: imx_iomux_v3_setup_multiple_pads( usdhc3_pads, ARRAY_SIZE(usdhc3_pads)); gpio_request(USDHC3_CD_GPIO, "usdhc3 cd"); gpio_request(USDHC3_PWR_GPIO, "usdhc3 pwr"); gpio_direction_input(USDHC3_CD_GPIO); gpio_direction_output(USDHC3_PWR_GPIO, 1); usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK); usdhc_cfg[0].esdhc_base = USDHC3_BASE_ADDR; break; case 3: imx_iomux_v3_setup_multiple_pads( usdhc4_pads, ARRAY_SIZE(usdhc4_pads)); gpio_request(USDHC4_CD_GPIO, "usdhc4 cd"); gpio_direction_input(USDHC4_CD_GPIO); usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC4_CLK); usdhc_cfg[0].esdhc_base = USDHC4_BASE_ADDR; break; } gd->arch.sdhc_clk = usdhc_cfg[0].sdhc_clk; return fsl_esdhc_initialize(bis, &usdhc_cfg[0]); #endif } #ifdef CONFIG_FSL_QSPI #ifndef CONFIG_DM_SPI #define QSPI_PAD_CTRL1 \ (PAD_CTL_SRE_FAST | PAD_CTL_SPEED_HIGH | \ PAD_CTL_PKE | PAD_CTL_PUE | PAD_CTL_PUS_47K_UP | PAD_CTL_DSE_40ohm) static iomux_v3_cfg_t const quadspi_pads[] = { MX6_PAD_NAND_WP_B__QSPI2_A_DATA_0 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_NAND_READY_B__QSPI2_A_DATA_1 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_NAND_CE0_B__QSPI2_A_DATA_2 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_NAND_CE1_B__QSPI2_A_DATA_3 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_NAND_ALE__QSPI2_A_SS0_B | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_NAND_CLE__QSPI2_A_SCLK | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_NAND_DATA07__QSPI2_A_DQS | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_NAND_DATA01__QSPI2_B_DATA_0 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_NAND_DATA00__QSPI2_B_DATA_1 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_NAND_WE_B__QSPI2_B_DATA_2 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_NAND_RE_B__QSPI2_B_DATA_3 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_NAND_DATA03__QSPI2_B_SS0_B | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_NAND_DATA02__QSPI2_B_SCLK | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_NAND_DATA05__QSPI2_B_DQS | MUX_PAD_CTRL(QSPI_PAD_CTRL1), }; #endif int board_qspi_init(void) { #ifndef CONFIG_DM_SPI /* Set the iomux */ imx_iomux_v3_setup_multiple_pads(quadspi_pads, ARRAY_SIZE(quadspi_pads)); #endif /* Set the clock */ enable_qspi_clk(1); return 0; } #endif #ifdef CONFIG_CMD_BMODE static const struct boot_mode board_boot_modes[] = { /* 4 bit bus width */ {"sd3", MAKE_CFGVAL(0x42, 0x30, 0x00, 0x00)}, {"sd4", MAKE_CFGVAL(0x40, 0x38, 0x00, 0x00)}, {"qspi2", MAKE_CFGVAL(0x18, 0x00, 0x00, 0x00)}, {NULL, 0}, }; #endif #ifdef CONFIG_VIDEO_MXS static iomux_v3_cfg_t const lvds_ctrl_pads[] = { /* CABC enable */ MX6_PAD_QSPI1A_DATA2__GPIO4_IO_18 | MUX_PAD_CTRL(NO_PAD_CTRL), /* Use GPIO for Brightness adjustment, duty cycle = period */ MX6_PAD_SD1_DATA1__GPIO6_IO_3 | MUX_PAD_CTRL(NO_PAD_CTRL), }; static iomux_v3_cfg_t const lcd_pads[] = { MX6_PAD_LCD1_CLK__LCDIF1_CLK | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_ENABLE__LCDIF1_ENABLE | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_HSYNC__LCDIF1_HSYNC | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_VSYNC__LCDIF1_VSYNC | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA00__LCDIF1_DATA_0 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA01__LCDIF1_DATA_1 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA02__LCDIF1_DATA_2 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA03__LCDIF1_DATA_3 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA04__LCDIF1_DATA_4 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA05__LCDIF1_DATA_5 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA06__LCDIF1_DATA_6 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA07__LCDIF1_DATA_7 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA08__LCDIF1_DATA_8 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA09__LCDIF1_DATA_9 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA10__LCDIF1_DATA_10 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA11__LCDIF1_DATA_11 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA12__LCDIF1_DATA_12 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA13__LCDIF1_DATA_13 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA14__LCDIF1_DATA_14 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA15__LCDIF1_DATA_15 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA16__LCDIF1_DATA_16 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA17__LCDIF1_DATA_17 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA18__LCDIF1_DATA_18 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA19__LCDIF1_DATA_19 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA20__LCDIF1_DATA_20 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA21__LCDIF1_DATA_21 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA22__LCDIF1_DATA_22 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_DATA23__LCDIF1_DATA_23 | MUX_PAD_CTRL(LCD_PAD_CTRL), MX6_PAD_LCD1_RESET__GPIO3_IO_27 | MUX_PAD_CTRL(NO_PAD_CTRL), /* Use GPIO for Brightness adjustment, duty cycle = period */ MX6_PAD_SD1_DATA2__GPIO6_IO_4 | MUX_PAD_CTRL(NO_PAD_CTRL), }; void do_enable_lvds(struct display_info_t const *dev) { int ret; ret = enable_lcdif_clock(dev->bus, 1); if (ret) { printf("Enable LCDIF clock failed, %d\n", ret); return; } ret = enable_lvds_bridge(dev->bus); if (ret) { printf("Enable LVDS bridge failed, %d\n", ret); return; } imx_iomux_v3_setup_multiple_pads(lvds_ctrl_pads, ARRAY_SIZE(lvds_ctrl_pads)); /* Enable CABC */ gpio_request(IMX_GPIO_NR(4, 18), "CABC enable"); gpio_direction_output(IMX_GPIO_NR(4, 18) , 1); /* Set Brightness to high */ gpio_request(IMX_GPIO_NR(6, 3), "lvds backlight"); gpio_direction_output(IMX_GPIO_NR(6, 3) , 1); } void do_enable_parallel_lcd(struct display_info_t const *dev) { int ret; ret = enable_lcdif_clock(dev->bus, 1); if (ret) { printf("Enable LCDIF clock failed, %d\n", ret); return; } imx_iomux_v3_setup_multiple_pads(lcd_pads, ARRAY_SIZE(lcd_pads)); /* Reset the LCD */ gpio_request(IMX_GPIO_NR(3, 27), "lcd reset"); gpio_direction_output(IMX_GPIO_NR(3, 27) , 0); udelay(500); gpio_direction_output(IMX_GPIO_NR(3, 27) , 1); /* Set Brightness to high */ gpio_request(IMX_GPIO_NR(6, 4), "lcd backlight"); gpio_direction_output(IMX_GPIO_NR(6, 4) , 1); } struct display_info_t const displays[] = {{ .bus = LCDIF2_BASE_ADDR, .addr = 0, .pixfmt = 18, .detect = NULL, .enable = do_enable_lvds, .mode = { .name = "Hannstar-XGA", .xres = 1024, .yres = 768, .pixclock = 15385, .left_margin = 220, .right_margin = 40, .upper_margin = 21, .lower_margin = 7, .hsync_len = 60, .vsync_len = 10, .sync = 0, .vmode = FB_VMODE_NONINTERLACED } }, { .bus = MX6SX_LCDIF1_BASE_ADDR, .addr = 0, .pixfmt = 24, .detect = NULL, .enable = do_enable_parallel_lcd, .mode = { .name = "MCIMX28LCD", .xres = 800, .yres = 480, .pixclock = 29850, .left_margin = 89, .right_margin = 164, .upper_margin = 23, .lower_margin = 10, .hsync_len = 10, .vsync_len = 10, .sync = 0, .vmode = FB_VMODE_NONINTERLACED } } }; size_t display_count = ARRAY_SIZE(displays); #endif int board_init(void) { /* Address of boot parameters */ gd->bd->bi_boot_params = PHYS_SDRAM + 0x100; /* * Because kernel set WDOG_B mux before pad with the commone pinctrl * framwork now and wdog reset will be triggered once set WDOG_B mux * with default pad setting, we set pad setting here to workaround this. * Since imx_iomux_v3_setup_pad also set mux before pad setting, we set * as GPIO mux firstly here to workaround it. */ imx_iomux_v3_setup_pad(wdog_b_pad); /* Enable PERI_3V3, which is used by SD2, ENET, LVDS, BT */ imx_iomux_v3_setup_multiple_pads(peri_3v3_pads, ARRAY_SIZE(peri_3v3_pads)); /* Active high for ncp692 */ gpio_request(IMX_GPIO_NR(4, 16), "peri_3v3"); gpio_direction_output(IMX_GPIO_NR(4, 16) , 1); #ifdef CONFIG_SYS_I2C_MXC setup_i2c(0, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info1); setup_i2c(1, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info2); #endif #ifdef CONFIG_USB_EHCI_MX6 setup_usb(); #endif #ifdef CONFIG_FSL_QSPI board_qspi_init(); #endif #ifdef CONFIG_PCIE_IMX setup_pcie(); #endif /* Also used for OF_CONTROL enabled */ #ifdef CONFIG_FEC_MXC setup_fec(CONFIG_FEC_ENET_DEV); #endif return 0; } int board_late_init(void) { #ifdef CONFIG_CMD_BMODE add_board_boot_modes(board_boot_modes); #endif #ifdef CONFIG_ENV_IS_IN_MMC board_late_mmc_env_init(); #endif return 0; } int checkboard(void) { puts("Board: MX6SX SABRE SDB\n"); return 0; } #ifdef CONFIG_FSL_FASTBOOT void board_fastboot_setup(void) { switch (get_boot_device()) { #if defined(CONFIG_FASTBOOT_STORAGE_MMC) case SD2_BOOT: case MMC2_BOOT: if (!getenv("fastboot_dev")) setenv("fastboot_dev", "mmc0"); if (!getenv("bootcmd")) setenv("bootcmd", "boota mmc0"); break; case SD3_BOOT: case MMC3_BOOT: if (!getenv("fastboot_dev")) setenv("fastboot_dev", "mmc1"); if (!getenv("bootcmd")) setenv("bootcmd", "boota mmc1"); break; case SD4_BOOT: case MMC4_BOOT: if (!getenv("fastboot_dev")) setenv("fastboot_dev", "mmc2"); if (!getenv("bootcmd")) setenv("bootcmd", "boota mmc2"); break; #endif /*CONFIG_FASTBOOT_STORAGE_MMC*/ default: printf("unsupported boot devices\n"); break; } } #ifdef CONFIG_ANDROID_RECOVERY #define GPIO_VOL_DN_KEY IMX_GPIO_NR(1, 19) iomux_v3_cfg_t const recovery_key_pads[] = { (MX6_PAD_CSI_DATA05__GPIO1_IO_19 | MUX_PAD_CTRL(BUTTON_PAD_CTRL)), }; int check_recovery_cmd_file(void) { int button_pressed = 0; int recovery_mode = 0; recovery_mode = recovery_check_and_clean_flag(); /* Check Recovery Combo Button press or not. */ imx_iomux_v3_setup_multiple_pads(recovery_key_pads, ARRAY_SIZE(recovery_key_pads)); gpio_request(GPIO_VOL_DN_KEY, "volume_dn_key"); gpio_direction_input(GPIO_VOL_DN_KEY); if (gpio_get_value(GPIO_VOL_DN_KEY) == 0) { /* VOL_DN key is low assert */ button_pressed = 1; printf("Recovery key pressed\n"); } return recovery_mode || button_pressed; } void board_recovery_setup(void) { int bootdev = get_boot_device(); switch (bootdev) { #if defined(CONFIG_FASTBOOT_STORAGE_MMC) case SD2_BOOT: case MMC2_BOOT: if (!getenv("bootcmd_android_recovery")) setenv("bootcmd_android_recovery", "boota mmc0 recovery"); break; case SD3_BOOT: case MMC3_BOOT: if (!getenv("bootcmd_android_recovery")) setenv("bootcmd_android_recovery", "boota mmc1 recovery"); break; case SD4_BOOT: case MMC4_BOOT: if (!getenv("bootcmd_android_recovery")) setenv("bootcmd_android_recovery", "boota mmc2 recovery"); break; #endif /*CONFIG_FASTBOOT_STORAGE_MMC*/ default: printf("Unsupported bootup device for recovery: dev: %d\n", bootdev); return; } printf("setup env for recovery..\n"); setenv("bootcmd", "run bootcmd_android_recovery"); } #endif /*CONFIG_ANDROID_RECOVERY*/ #endif /*CONFIG_FSL_FASTBOOT*/ #ifdef CONFIG_SPL_BUILD #include #include #include const struct mx6sx_iomux_ddr_regs mx6_ddr_ioregs = { .dram_dqm0 = 0x00000028, .dram_dqm1 = 0x00000028, .dram_dqm2 = 0x00000028, .dram_dqm3 = 0x00000028, .dram_ras = 0x00000020, .dram_cas = 0x00000020, .dram_odt0 = 0x00000020, .dram_odt1 = 0x00000020, .dram_sdba2 = 0x00000000, .dram_sdcke0 = 0x00003000, .dram_sdcke1 = 0x00003000, .dram_sdclk_0 = 0x00000030, .dram_sdqs0 = 0x00000028, .dram_sdqs1 = 0x00000028, .dram_sdqs2 = 0x00000028, .dram_sdqs3 = 0x00000028, .dram_reset = 0x00000020, }; const struct mx6sx_iomux_grp_regs mx6_grp_ioregs = { .grp_addds = 0x00000020, .grp_ddrmode_ctl = 0x00020000, .grp_ddrpke = 0x00000000, .grp_ddrmode = 0x00020000, .grp_b0ds = 0x00000028, .grp_b1ds = 0x00000028, .grp_ctlds = 0x00000020, .grp_ddr_type = 0x000c0000, .grp_b2ds = 0x00000028, .grp_b3ds = 0x00000028, }; const struct mx6_mmdc_calibration mx6_mmcd_calib = { .p0_mpwldectrl0 = 0x00290025, .p0_mpwldectrl1 = 0x00220022, .p0_mpdgctrl0 = 0x41480144, .p0_mpdgctrl1 = 0x01340130, .p0_mprddlctl = 0x3C3E4244, .p0_mpwrdlctl = 0x34363638, }; static struct mx6_ddr3_cfg mem_ddr = { .mem_speed = 1600, .density = 4, .width = 32, .banks = 8, .rowaddr = 15, .coladdr = 10, .pagesz = 2, .trcd = 1375, .trcmin = 4875, .trasmin = 3500, }; static void ccgr_init(void) { struct mxc_ccm_reg *ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; writel(0xFFFFFFFF, &ccm->CCGR0); writel(0xFFFFFFFF, &ccm->CCGR1); writel(0xFFFFFFFF, &ccm->CCGR2); writel(0xFFFFFFFF, &ccm->CCGR3); writel(0xFFFFFFFF, &ccm->CCGR4); writel(0xFFFFFFFF, &ccm->CCGR5); writel(0xFFFFFFFF, &ccm->CCGR6); writel(0xFFFFFFFF, &ccm->CCGR7); } static void spl_dram_init(void) { struct mx6_ddr_sysinfo sysinfo = { .dsize = mem_ddr.width/32, .cs_density = 24, .ncs = 1, .cs1_mirror = 0, .rtt_wr = 2, .rtt_nom = 2, /* RTT_Nom = RZQ/2 */ .walat = 1, /* Write additional latency */ .ralat = 5, /* Read additional latency */ .mif3_mode = 3, /* Command prediction working mode */ .bi_on = 1, /* Bank interleaving enabled */ .sde_to_rst = 0x10, /* 14 cycles, 200us (JEDEC default) */ .rst_to_cke = 0x23, /* 33 cycles, 500us (JEDEC default) */ .ddr_type = DDR_TYPE_DDR3, .refsel = 1, /* Refresh cycles at 32KHz */ .refr = 7, /* 8 refresh commands per refresh cycle */ }; mx6sx_dram_iocfg(mem_ddr.width, &mx6_ddr_ioregs, &mx6_grp_ioregs); mx6_dram_cfg(&sysinfo, &mx6_mmcd_calib, &mem_ddr); } void board_init_f(ulong dummy) { /* setup AIPS and disable watchdog */ arch_cpu_init(); ccgr_init(); /* iomux and setup of i2c */ board_early_init_f(); /* setup GP timer */ timer_init(); /* UART clocks enabled and gd valid - init serial console */ preloader_console_init(); /* DDR initialization */ spl_dram_init(); /* Clear the BSS. */ memset(__bss_start, 0, __bss_end - __bss_start); /* load/boot image from boot device */ board_init_r(NULL, 0); } #endif