/* * Copyright (C) 2014 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SYS_I2C_MXC #include #include #endif #include DECLARE_GLOBAL_DATA_PTR; #define UART_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS) #define USDHC_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_47K_UP | PAD_CTL_SPEED_LOW | \ PAD_CTL_DSE_80ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS) #define ENET_PAD_CTRL (PAD_CTL_PUS_100K_UP | PAD_CTL_PUE | \ PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST) #define ENET_RX_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_SPEED_MED | PAD_CTL_SRE_FAST) #define I2C_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_HYS | \ PAD_CTL_ODE) #define EPDC_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_HYS) #define GPMI_PAD_CTRL0 (PAD_CTL_PKE | PAD_CTL_PUE | PAD_CTL_PUS_100K_UP) #define GPMI_PAD_CTRL1 (PAD_CTL_DSE_40ohm | PAD_CTL_SPEED_MED | \ PAD_CTL_SRE_FAST) #define GPMI_PAD_CTRL2 (GPMI_PAD_CTRL0 | GPMI_PAD_CTRL1) #define SPI_PAD_CTRL (PAD_CTL_HYS | \ PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST) #ifdef CONFIG_SYS_I2C_MXC #define PC MUX_PAD_CTRL(I2C_PAD_CTRL) /* I2C1 for PMIC */ struct i2c_pads_info i2c_pad_info1 = { .scl = { .i2c_mode = MX6SX_PAD_GPIO1_IO00__I2C1_SCL | PC, .gpio_mode = MX6SX_PAD_GPIO1_IO00__GPIO1_IO_0 | PC, .gp = IMX_GPIO_NR(1, 0), }, .sda = { .i2c_mode = MX6SX_PAD_GPIO1_IO01__I2C1_SDA | PC, .gpio_mode = MX6SX_PAD_GPIO1_IO01__GPIO1_IO_1 | PC, .gp = IMX_GPIO_NR(1, 1), }, }; /* I2C2 */ struct i2c_pads_info i2c_pad_info2 = { .scl = { .i2c_mode = MX6SX_PAD_GPIO1_IO02__I2C2_SCL | PC, .gpio_mode = MX6SX_PAD_GPIO1_IO02__GPIO1_IO_2 | PC, .gp = IMX_GPIO_NR(1, 2), }, .sda = { .i2c_mode = MX6SX_PAD_GPIO1_IO03__I2C2_SDA | PC, .gpio_mode = MX6SX_PAD_GPIO1_IO03__GPIO1_IO_3 | PC, .gp = IMX_GPIO_NR(1, 3), }, }; #endif int dram_init(void) { gd->ram_size = PHYS_SDRAM_SIZE; return 0; } static iomux_v3_cfg_t const uart1_pads[] = { MX6SX_PAD_GPIO1_IO04__UART1_TX | MUX_PAD_CTRL(UART_PAD_CTRL), MX6SX_PAD_GPIO1_IO05__UART1_RX | MUX_PAD_CTRL(UART_PAD_CTRL), }; static iomux_v3_cfg_t const usdhc2_pads[] = { MX6SX_PAD_SD2_CLK__USDHC2_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD2_CMD__USDHC2_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD2_DATA0__USDHC2_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD2_DATA1__USDHC2_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD2_DATA2__USDHC2_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD2_DATA3__USDHC2_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), }; static iomux_v3_cfg_t const usdhc3_pads[] = { MX6SX_PAD_SD3_CLK__USDHC3_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD3_CMD__USDHC3_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD3_DATA0__USDHC3_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD3_DATA1__USDHC3_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD3_DATA2__USDHC3_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD3_DATA3__USDHC3_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD3_DATA4__USDHC3_DATA4 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD3_DATA5__USDHC3_DATA5 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD3_DATA6__USDHC3_DATA6 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD3_DATA7__USDHC3_DATA7 | MUX_PAD_CTRL(USDHC_PAD_CTRL), /*CD pin*/ MX6SX_PAD_KEY_COL0__GPIO2_IO_10 | MUX_PAD_CTRL(USDHC_PAD_CTRL), }; static iomux_v3_cfg_t const usdhc4_pads[] = { MX6SX_PAD_SD4_CLK__USDHC4_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD4_CMD__USDHC4_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD4_DATA0__USDHC4_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD4_DATA1__USDHC4_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD4_DATA2__USDHC4_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD4_DATA3__USDHC4_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD4_DATA4__USDHC4_DATA4 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD4_DATA5__USDHC4_DATA5 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD4_DATA6__USDHC4_DATA6 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6SX_PAD_SD4_DATA7__USDHC4_DATA7 | MUX_PAD_CTRL(USDHC_PAD_CTRL), }; #ifdef CONFIG_FEC_MXC static iomux_v3_cfg_t const fec1_pads[] = { MX6SX_PAD_ENET1_MDC__ENET1_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6SX_PAD_ENET1_MDIO__ENET1_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6SX_PAD_RGMII1_RX_CTL__ENET1_RX_EN | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6SX_PAD_RGMII1_RD0__ENET1_RX_DATA_0 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6SX_PAD_RGMII1_RD1__ENET1_RX_DATA_1 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6SX_PAD_RGMII1_RD2__ENET1_RX_DATA_2 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6SX_PAD_RGMII1_RD3__ENET1_RX_DATA_3 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6SX_PAD_RGMII1_RXC__ENET1_RX_CLK | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6SX_PAD_RGMII1_TX_CTL__ENET1_TX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6SX_PAD_RGMII1_TD0__ENET1_TX_DATA_0 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6SX_PAD_RGMII1_TD1__ENET1_TX_DATA_1 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6SX_PAD_RGMII1_TD2__ENET1_TX_DATA_2 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6SX_PAD_RGMII1_TD3__ENET1_TX_DATA_3 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6SX_PAD_RGMII1_TXC__ENET1_RGMII_TXC | MUX_PAD_CTRL(ENET_PAD_CTRL), /* AR8031 PHY Reset. For arm2 board, silder the resistance */ MX6SX_PAD_QSPI1A_SS0_B__GPIO4_IO_22 | MUX_PAD_CTRL(NO_PAD_CTRL), }; static void setup_iomux_fec1(void) { imx_iomux_v3_setup_multiple_pads(fec1_pads, ARRAY_SIZE(fec1_pads)); /* Reset AR8031 PHY */ gpio_direction_output(IMX_GPIO_NR(4, 22) , 0); udelay(500); gpio_set_value(IMX_GPIO_NR(4, 22), 1); } #endif static void setup_iomux_uart(void) { imx_iomux_v3_setup_multiple_pads(uart1_pads, ARRAY_SIZE(uart1_pads)); } #ifdef CONFIG_QSPI #define QSPI_PAD_CTRL1 \ (PAD_CTL_SRE_FAST | PAD_CTL_SPEED_HIGH | \ PAD_CTL_PKE | PAD_CTL_PUE | PAD_CTL_PUS_47K_UP | PAD_CTL_DSE_34ohm) #define QSPI_PAD_CTRL2 (QSPI_PAD_CTRL1 | PAD_CTL_DSE_34ohm) static iomux_v3_cfg_t const quadspi_pads[] = { MX6SX_PAD_NAND_WP_B__QSPI2_A_DATA_0 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6SX_PAD_NAND_READY_B__QSPI2_A_DATA_1 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6SX_PAD_NAND_CE0_B__QSPI2_A_DATA_2 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6SX_PAD_NAND_CE1_B__QSPI2_A_DATA_3 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6SX_PAD_NAND_CLE__QSPI2_A_SCLK | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6SX_PAD_NAND_ALE__QSPI2_A_SS0_B | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6SX_PAD_NAND_DATA01__QSPI2_B_DATA_0 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6SX_PAD_NAND_DATA00__QSPI2_B_DATA_1 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6SX_PAD_NAND_WE_B__QSPI2_B_DATA_2 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6SX_PAD_NAND_RE_B__QSPI2_B_DATA_3 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6SX_PAD_NAND_DATA03__QSPI2_B_SS0_B | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6SX_PAD_NAND_DATA02__QSPI2_B_SCLK | MUX_PAD_CTRL(QSPI_PAD_CTRL1), }; int board_qspi_init(void) { /* Set the iomux */ imx_iomux_v3_setup_multiple_pads(quadspi_pads, ARRAY_SIZE(quadspi_pads)); /* Set the clock */ enable_qspi_clk(1); return 0; } #endif #ifdef CONFIG_FSL_ESDHC static struct fsl_esdhc_cfg usdhc_cfg[3] = { {USDHC2_BASE_ADDR, 0, 4}, {USDHC3_BASE_ADDR}, {USDHC4_BASE_ADDR}, }; #define USDHC3_CD_GPIO IMX_GPIO_NR(2, 10) int mmc_get_env_devno(void) { u32 soc_sbmr = readl(SRC_BASE_ADDR + 0x4); u32 dev_no; /* BOOT_CFG2[3] and BOOT_CFG2[4] */ dev_no = (soc_sbmr & 0x00001800) >> 11; /* need ubstract 2 to map to the mmc device id * see the comments in board_mmc_init function */ dev_no--; return dev_no; } int board_mmc_getcd(struct mmc *mmc) { struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv; int ret = 0; switch (cfg->esdhc_base) { case USDHC2_BASE_ADDR: ret = 1; /*always present */ break; case USDHC3_BASE_ADDR: ret = !gpio_get_value(USDHC3_CD_GPIO); break; case USDHC4_BASE_ADDR: ret = 1; /*always present */ break; } return ret; } #ifdef CONFIG_SYS_USE_SPINOR int board_mmc_init(bd_t *bis) { int i; /* * According to the board_mmc_init() the following map is done: * (U-boot device node) (Physical Port) * mmc0 SD3 (SDB) * mmc1 eMMC */ for (i = 0; i < CONFIG_SYS_FSL_USDHC_NUM; i++) { switch (i) { case 0: imx_iomux_v3_setup_multiple_pads( usdhc3_pads, ARRAY_SIZE(usdhc3_pads)); gpio_direction_input(USDHC3_CD_GPIO); usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK); break; case 1: imx_iomux_v3_setup_multiple_pads( usdhc4_pads, ARRAY_SIZE(usdhc4_pads)); usdhc_cfg[2].sdhc_clk = mxc_get_clock(MXC_ESDHC4_CLK); break; default: printf("Warning: you configured more USDHC controllers" "(%d) than supported by the board\n", i + 1); return 0; } if (fsl_esdhc_initialize(bis, &usdhc_cfg[i])) printf("Warning: failed to initialize mmc dev %d\n", i); } return 0; } #else int board_mmc_init(bd_t *bis) { int i; /* * According to the board_mmc_init() the following map is done: * (U-boot device node) (Physical Port) * mmc0 SD2 (SDA) * mmc1 SD3 (SDB) * mmc2 eMMC */ for (i = 0; i < CONFIG_SYS_FSL_USDHC_NUM; i++) { switch (i) { case 0: imx_iomux_v3_setup_multiple_pads( usdhc2_pads, ARRAY_SIZE(usdhc2_pads)); usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK); break; case 1: imx_iomux_v3_setup_multiple_pads( usdhc3_pads, ARRAY_SIZE(usdhc3_pads)); gpio_direction_input(USDHC3_CD_GPIO); usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK); break; case 2: imx_iomux_v3_setup_multiple_pads( usdhc4_pads, ARRAY_SIZE(usdhc4_pads)); usdhc_cfg[2].sdhc_clk = mxc_get_clock(MXC_ESDHC4_CLK); break; default: printf("Warning: you configured more USDHC controllers" "(%d) than supported by the board\n", i + 1); return 0; } if (fsl_esdhc_initialize(bis, &usdhc_cfg[i])) printf("Warning: failed to initialize mmc dev %d\n", i); } return 0; } #endif void board_late_mmc_init(void) { char cmd[32]; u32 dev_no = mmc_get_env_devno(); setenv_ulong("mmcdev", dev_no); sprintf(cmd, "mmc dev %d", dev_no); run_command(cmd, 0); } #endif #ifdef CONFIG_SYS_USE_SPINOR iomux_v3_cfg_t const ecspi4_pads[] = { MX6SX_PAD_SD2_CLK__ECSPI4_SCLK | MUX_PAD_CTRL(SPI_PAD_CTRL), MX6SX_PAD_SD2_DATA3__ECSPI4_MISO | MUX_PAD_CTRL(SPI_PAD_CTRL), MX6SX_PAD_SD2_CMD__ECSPI4_MOSI | MUX_PAD_CTRL(SPI_PAD_CTRL), MX6SX_PAD_SD2_DATA2__GPIO6_IO_10 | MUX_PAD_CTRL(NO_PAD_CTRL), }; void setup_spinor(void) { imx_iomux_v3_setup_multiple_pads(ecspi4_pads, ARRAY_SIZE(ecspi4_pads)); gpio_direction_output(IMX_GPIO_NR(6, 10), 0); } #endif #ifdef CONFIG_SYS_USE_NAND iomux_v3_cfg_t gpmi_pads[] = { MX6SX_PAD_NAND_CLE__RAWNAND_CLE | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6SX_PAD_NAND_ALE__RAWNAND_ALE | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6SX_PAD_NAND_WP_B__RAWNAND_WP_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6SX_PAD_NAND_READY_B__RAWNAND_READY_B | MUX_PAD_CTRL(GPMI_PAD_CTRL0), MX6SX_PAD_NAND_CE0_B__RAWNAND_CE0_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6SX_PAD_NAND_RE_B__RAWNAND_RE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6SX_PAD_NAND_WE_B__RAWNAND_WE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6SX_PAD_NAND_DATA00__RAWNAND_DATA00 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6SX_PAD_NAND_DATA01__RAWNAND_DATA01 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6SX_PAD_NAND_DATA02__RAWNAND_DATA02 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6SX_PAD_NAND_DATA03__RAWNAND_DATA03 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6SX_PAD_NAND_DATA04__RAWNAND_DATA04 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6SX_PAD_NAND_DATA05__RAWNAND_DATA05 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6SX_PAD_NAND_DATA06__RAWNAND_DATA06 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6SX_PAD_NAND_DATA07__RAWNAND_DATA07 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), }; static void setup_gpmi_nand(void) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; /* config gpmi nand iomux */ imx_iomux_v3_setup_multiple_pads(gpmi_pads, ARRAY_SIZE(gpmi_pads)); /* config gpmi and bch clock to 100 MHz */ clrsetbits_le32(&mxc_ccm->cs2cdr, MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK | MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK | MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK, MXC_CCM_CS2CDR_QSPI2_CLK_PODF(0) | MXC_CCM_CS2CDR_QSPI2_CLK_PRED(3) | MXC_CCM_CS2CDR_QSPI2_CLK_SEL(3)); /* enable gpmi and bch clock gating */ setbits_le32(&mxc_ccm->CCGR4, MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK | MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK); /* enable apbh clock gating */ setbits_le32(&mxc_ccm->CCGR0, MXC_CCM_CCGR0_APBHDMA_MASK); } #endif #ifdef CONFIG_FEC_MXC int board_eth_init(bd_t *bis) { int ret; setup_iomux_fec1(); ret = fecmxc_initialize_multi(bis, 0, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE); if (ret) printf("FEC1 MXC: %s:failed\n", __func__); return 0; } static int setup_fec(void) { struct iomuxc_gpr_base_regs *const iomuxc_gpr_regs = (struct iomuxc_gpr_base_regs *) IOMUXC_GPR_BASE_ADDR; int ret; unsigned char value = 1; /* clear gpr1[13], gpr1[17] to select anatop clock */ clrsetbits_le32(&iomuxc_gpr_regs->gpr[1], IOMUX_GPR1_FEC1_MASK, 0); ret = enable_fec_anatop_clock(0, ENET_125MHz); if (ret) return ret; enable_enet_clock(); #ifdef CONFIG_FEC_ENABLE_MAX7322 /* This is needed to drive the pads to 1.8V instead of 1.5V */ i2c_set_bus_num(CONFIG_MAX7322_I2C_BUS); if (!i2c_probe(CONFIG_MAX7322_I2C_ADDR)) { /* Write 0x1 to enable O0 output, this device has no addr */ /* hence addr length is 0 */ value = 0x1; if (i2c_write(CONFIG_MAX7322_I2C_ADDR, 0, 0, &value, 1)) printf("MAX7322 write failed\n"); } else { printf("MAX7322 Not found\n"); } #endif return 0; } int board_phy_config(struct phy_device *phydev) { #ifdef CONFIG_FEC_ENABLE_MAX7322 /* Enable 1.8V(SEL_1P5_1P8_POS_REG) on Phy control debug reg 0 */ phy_write(phydev, MDIO_DEVAD_NONE, 0x1d, 0x1f); phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, 0x8); #endif /* rgmii tx clock delay enable */ phy_write(phydev, MDIO_DEVAD_NONE, 0x1d, 0x05); phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, 0x100); if (phydev->drv->config) phydev->drv->config(phydev); return 0; } #endif #ifdef CONFIG_PFUZE100_PMIC_I2C #define PFUZE100_DEVICEID 0x0 #define PFUZE100_REVID 0x3 #define PFUZE100_FABID 0x4 #define PFUZE100_SW1ABVOL 0x20 #define PFUZE100_SW1ABSTBY 0x21 #define PFUZE100_SW1ABCONF 0x24 #define PFUZE100_SW1CVOL 0x2e #define PFUZE100_SW1CSTBY 0x2f #define PFUZE100_SW1CCONF 0x32 #define PFUZE100_SW1ABC_SETP(x) ((x-3000)/250) /* set all switches APS in normal and PFM mode in standby */ static int setup_pmic_mode(int chip) { unsigned char offset, i, switch_num, value; if (!chip) { /* pfuze100 */ switch_num = 6; offset = 0x31; } else { /* pfuze200 */ switch_num = 4; offset = 0x38; } value = 0xc; if (i2c_write(0x8, 0x23, 1, &value, 1)) { printf("Set SW1AB mode error!\n"); return -1; } for (i = 0; i < switch_num - 1; i++) { if (i2c_write(0x8, offset + i * 7, 1, &value, 1)) { printf("Set switch%x mode error!\n", offset); return -1; } } return 0; } static int setup_pmic_voltages(void) { unsigned char value, rev_id = 0; i2c_set_bus_num(CONFIG_PMIC_I2C_BUS); if (!i2c_probe(CONFIG_PMIC_I2C_SLAVE)) { if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_DEVICEID, 1, &value, 1)) { printf("Read device ID error!\n"); return -1; } if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_REVID, 1, &rev_id, 1)) { printf("Read Rev ID error!\n"); return -1; } printf("Found PFUZE100! deviceid 0x%x, revid 0x%x\n", value, rev_id); if (setup_pmic_mode(value & 0xf)) { printf("setup pmic mode error!\n"); return -1; } /* set SW1AB staby volatage 0.975V */ if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1ABSTBY, 1, &value, 1)) { printf("Read SW1ABSTBY error!\n"); return -1; } value &= ~0x3f; value |= PFUZE100_SW1ABC_SETP(9750); if (i2c_write(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1ABSTBY, 1, &value, 1)) { printf("Set SW1ABSTBY error!\n"); return -1; } /* set SW1AB/VDDARM step ramp up time from 16us to 4us/25mV */ if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1ABCONF, 1, &value, 1)) { printf("Read SW1ABCONFIG error!\n"); return -1; } value &= ~0xc0; value |= 0x40; if (i2c_write(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1ABCONF, 1, &value, 1)) { printf("Set SW1ABCONFIG error!\n"); return -1; } /* set SW1C staby volatage 0.975V */ if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1CSTBY, 1, &value, 1)) { printf("Read SW1CSTBY error!\n"); return -1; } value &= ~0x3f; value |= PFUZE100_SW1ABC_SETP(9750); if (i2c_write(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1CSTBY, 1, &value, 1)) { printf("Set SW1CSTBY error!\n"); return -1; } /* set SW1C/VDDSOC step ramp up time to from 16us to 4us/25mV */ if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1CCONF, 1, &value, 1)) { printf("Read SW1CCONFIG error!\n"); return -1; } value &= ~0xc0; value |= 0x40; if (i2c_write(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1CCONF, 1, &value, 1)) { printf("Set SW1CCONFIG error!\n"); return -1; } } return 0; } #ifdef CONFIG_LDO_BYPASS_CHECK void ldo_mode_set(int ldo_bypass) { unsigned char value; /* swith to ldo_bypass mode */ if (ldo_bypass) { /* decrease VDDARM to 1.15V */ if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1ABVOL, 1, &value, 1)) { printf("Read SW1AB error!\n"); return; } value &= ~0x3f; value |= PFUZE100_SW1ABC_SETP(11500); if (i2c_write(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1ABVOL, 1, &value, 1)) { printf("Set SW1AB error!\n"); return; } /* increase VDDSOC to 1.15V */ if (i2c_read(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1CVOL, 1, &value, 1)) { printf("Read SW1C error!\n"); return; } value &= ~0x3f; value |= PFUZE100_SW1ABC_SETP(11500); if (i2c_write(CONFIG_PMIC_I2C_SLAVE, PFUZE100_SW1CVOL, 1, &value, 1)) { printf("Set SW1C error!\n"); return; } set_anatop_bypass(); printf("switch to ldo_bypass mode!\n"); } } #endif #endif int board_early_init_f(void) { setup_iomux_uart(); return 0; } int board_init(void) { /* address of boot parameters */ gd->bd->bi_boot_params = PHYS_SDRAM + 0x100; #ifdef CONFIG_SYS_I2C_MXC setup_i2c(0, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info1); setup_i2c(1, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info2); #endif #ifdef CONFIG_FEC_MXC setup_fec(); #endif #ifdef CONFIG_SYS_USE_SPINOR setup_spinor(); #endif #ifdef CONFIG_SYS_USE_NAND setup_gpmi_nand(); #endif #ifdef CONFIG_QSPI board_qspi_init(); #endif return 0; } #ifdef CONFIG_CMD_BMODE static const struct boot_mode board_boot_modes[] = { /* 4 bit bus width */ {"sd2", MAKE_CFGVAL(0x40, 0x28, 0x00, 0x00)}, {"sd3", MAKE_CFGVAL(0x40, 0x30, 0x00, 0x00)}, {"emmc", MAKE_CFGVAL(0x60, 0x38, 0x00, 0x00)}, {"qspi2", MAKE_CFGVAL(0x18, 0x00, 0x00, 0x00)}, {"spinor", MAKE_CFGVAL(0x30, 0x00, 0x00, 0x0B)}, {"nand", MAKE_CFGVAL(0x80, 0x00, 0x00, 0x00)}, {NULL, 0}, }; #endif int board_late_init(void) { #ifdef CONFIG_CMD_BMODE add_board_boot_modes(board_boot_modes); #endif #ifdef CONFIG_PFUZE100_PMIC_I2C int ret = 0; ret = setup_pmic_voltages(); if (ret) return -1; #endif #ifdef CONFIG_ENV_IS_IN_MMC board_late_mmc_init(); #endif return 0; } u32 get_board_rev(void) { return get_cpu_rev(); } int checkboard(void) { puts("Board: MX6SX 17x17 ARM2\n"); return 0; } #ifdef CONFIG_USB_EHCI_MX6 iomux_v3_cfg_t const usb_otg1_pads[] = { MX6SX_PAD_GPIO1_IO09__USB_OTG1_PWR | MUX_PAD_CTRL(NO_PAD_CTRL), MX6SX_PAD_GPIO1_IO10__ANATOP_OTG1_ID | MUX_PAD_CTRL(NO_PAD_CTRL) }; iomux_v3_cfg_t const usb_otg2_pads[] = { MX6SX_PAD_GPIO1_IO12__USB_OTG2_PWR | MUX_PAD_CTRL(NO_PAD_CTRL), }; int board_ehci_hcd_init(int port) { switch (port) { case 0: imx_iomux_v3_setup_multiple_pads(usb_otg1_pads, ARRAY_SIZE(usb_otg1_pads)); break; case 1: imx_iomux_v3_setup_multiple_pads(usb_otg2_pads, ARRAY_SIZE(usb_otg2_pads)); break; default: printf("MXC USB port %d not yet supported\n", port); return 1; } return 0; } #endif