/* * Copyright (C) 2013-2015 Freescale Semiconductor, Inc. * * Author: Fabio Estevam * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../common/pfuze.h" #include #include #if defined(CONFIG_MXC_EPDC) #include #include #endif #ifdef CONFIG_FSL_FASTBOOT #include #ifdef CONFIG_ANDROID_RECOVERY #include #include "../common/recovery_keypad.h" #endif #endif /*CONFIG_FSL_FASTBOOT*/ DECLARE_GLOBAL_DATA_PTR; #define UART_PAD_CTRL (PAD_CTL_PUS_100K_UP | \ PAD_CTL_SPEED_MED | PAD_CTL_DSE_40ohm | \ PAD_CTL_SRE_FAST | PAD_CTL_HYS) #define USDHC_PAD_CTRL (PAD_CTL_PUS_22K_UP | \ PAD_CTL_SPEED_LOW | PAD_CTL_DSE_80ohm | \ PAD_CTL_SRE_FAST | PAD_CTL_HYS) #define ENET_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_HYS) #define SPI_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST) #define I2C_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_HYS | \ PAD_CTL_ODE | PAD_CTL_SRE_FAST) #define OTGID_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_47K_UP | PAD_CTL_SPEED_LOW |\ PAD_CTL_DSE_80ohm | PAD_CTL_HYS | \ PAD_CTL_SRE_FAST) #define ELAN_INTR_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_47K_UP | PAD_CTL_HYS) #define EPDC_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_HYS) #define ETH_PHY_RESET IMX_GPIO_NR(4, 21) int dram_init(void) { gd->ram_size = get_ram_size((void *)PHYS_SDRAM, PHYS_SDRAM_SIZE); return 0; } static iomux_v3_cfg_t const uart1_pads[] = { MX6_PAD_UART1_TXD__UART1_TXD | MUX_PAD_CTRL(UART_PAD_CTRL), MX6_PAD_UART1_RXD__UART1_RXD | MUX_PAD_CTRL(UART_PAD_CTRL), }; static iomux_v3_cfg_t const usdhc1_pads[] = { /* 8 bit SD */ MX6_PAD_SD1_CLK__USDHC1_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD1_CMD__USDHC1_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD1_DAT0__USDHC1_DAT0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD1_DAT1__USDHC1_DAT1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD1_DAT2__USDHC1_DAT2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD1_DAT3__USDHC1_DAT3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD1_DAT4__USDHC1_DAT4 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD1_DAT5__USDHC1_DAT5 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD1_DAT6__USDHC1_DAT6 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD1_DAT7__USDHC1_DAT7 | MUX_PAD_CTRL(USDHC_PAD_CTRL), /*CD pin*/ MX6_PAD_KEY_ROW7__GPIO_4_7 | MUX_PAD_CTRL(NO_PAD_CTRL), }; static iomux_v3_cfg_t const usdhc2_pads[] = { MX6_PAD_SD2_CLK__USDHC2_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD2_CMD__USDHC2_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD2_DAT0__USDHC2_DAT0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD2_DAT1__USDHC2_DAT1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD2_DAT2__USDHC2_DAT2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD2_DAT3__USDHC2_DAT3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), /*CD pin*/ MX6_PAD_SD2_DAT7__GPIO_5_0 | MUX_PAD_CTRL(NO_PAD_CTRL), }; static iomux_v3_cfg_t const usdhc3_pads[] = { MX6_PAD_SD3_CLK__USDHC3_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD3_CMD__USDHC3_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD3_DAT0__USDHC3_DAT0 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD3_DAT1__USDHC3_DAT1 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD3_DAT2__USDHC3_DAT2 | MUX_PAD_CTRL(USDHC_PAD_CTRL), MX6_PAD_SD3_DAT3__USDHC3_DAT3 | MUX_PAD_CTRL(USDHC_PAD_CTRL), /*CD pin*/ MX6_PAD_REF_CLK_32K__GPIO_3_22 | MUX_PAD_CTRL(NO_PAD_CTRL), }; static iomux_v3_cfg_t const fec_pads[] = { MX6_PAD_FEC_MDC__FEC_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_FEC_MDIO__FEC_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_FEC_CRS_DV__FEC_RX_DV | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_FEC_RXD0__FEC_RX_DATA0 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_FEC_RXD1__FEC_RX_DATA1 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_FEC_TX_EN__FEC_TX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_FEC_TXD0__FEC_TX_DATA0 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_FEC_TXD1__FEC_TX_DATA1 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_FEC_REF_CLK__FEC_REF_OUT | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_FEC_RX_ER__GPIO_4_19 | MUX_PAD_CTRL(NO_PAD_CTRL), MX6_PAD_FEC_TX_CLK__GPIO_4_21 | MUX_PAD_CTRL(NO_PAD_CTRL), }; static iomux_v3_cfg_t const elan_pads[] = { MX6_PAD_EPDC_PWRCTRL2__GPIO_2_9 | MUX_PAD_CTRL(NO_PAD_CTRL), MX6_PAD_EPDC_PWRCTRL3__GPIO_2_10 | MUX_PAD_CTRL(ELAN_INTR_PAD_CTRL), MX6_PAD_KEY_COL6__GPIO_4_4 | MUX_PAD_CTRL(EPDC_PAD_CTRL), }; #ifdef CONFIG_MXC_SPI static iomux_v3_cfg_t ecspi1_pads[] = { MX6_PAD_ECSPI1_MISO__ECSPI_MISO | MUX_PAD_CTRL(SPI_PAD_CTRL), MX6_PAD_ECSPI1_MOSI__ECSPI_MOSI | MUX_PAD_CTRL(SPI_PAD_CTRL), MX6_PAD_ECSPI1_SCLK__ECSPI_SCLK | MUX_PAD_CTRL(SPI_PAD_CTRL), MX6_PAD_ECSPI1_SS0__GPIO4_IO11 | MUX_PAD_CTRL(NO_PAD_CTRL), }; int board_spi_cs_gpio(unsigned bus, unsigned cs) { return (bus == 0 && cs == 0) ? (IMX_GPIO_NR(4, 11)) : -1; } static void setup_spi(void) { imx_iomux_v3_setup_multiple_pads(ecspi1_pads, ARRAY_SIZE(ecspi1_pads)); } #endif static iomux_v3_cfg_t const epdc_enable_pads[] = { MX6_PAD_EPDC_D0__EPDC_SDDO_0 | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_D1__EPDC_SDDO_1 | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_D2__EPDC_SDDO_2 | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_D3__EPDC_SDDO_3 | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_D4__EPDC_SDDO_4 | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_D5__EPDC_SDDO_5 | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_D6__EPDC_SDDO_6 | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_D7__EPDC_SDDO_7 | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_GDCLK__EPDC_GDCLK | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_GDSP__EPDC_GDSP | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_GDOE__EPDC_GDOE | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_GDRL__EPDC_GDRL | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_SDCLK__EPDC_SDCLK | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_SDOE__EPDC_SDOE | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_SDLE__EPDC_SDLE | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_SDSHR__EPDC_SDSHR | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_BDR0__EPDC_BDR_0 | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_SDCE0__EPDC_SDCE_0 | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_SDCE1__EPDC_SDCE_1 | MUX_PAD_CTRL(EPDC_PAD_CTRL), MX6_PAD_EPDC_SDCE2__EPDC_SDCE_2 | MUX_PAD_CTRL(EPDC_PAD_CTRL), }; static iomux_v3_cfg_t const epdc_disable_pads[] = { MX6_PAD_EPDC_D0__GPIO_1_7, MX6_PAD_EPDC_D1__GPIO_1_8, MX6_PAD_EPDC_D2__GPIO_1_9, MX6_PAD_EPDC_D3__GPIO_1_10, MX6_PAD_EPDC_D4__GPIO_1_11, MX6_PAD_EPDC_D5__GPIO_1_12, MX6_PAD_EPDC_D6__GPIO_1_13, MX6_PAD_EPDC_D7__GPIO_1_14, MX6_PAD_EPDC_GDCLK__GPIO_1_31, MX6_PAD_EPDC_GDSP__GPIO_2_2, MX6_PAD_EPDC_GDOE__GPIO_2_0, MX6_PAD_EPDC_GDRL__GPIO_2_1, MX6_PAD_EPDC_SDCLK__GPIO_1_23, MX6_PAD_EPDC_SDOE__GPIO_1_25, MX6_PAD_EPDC_SDLE__GPIO_1_24, MX6_PAD_EPDC_SDSHR__GPIO_1_26, MX6_PAD_EPDC_BDR0__GPIO_2_5, MX6_PAD_EPDC_SDCE0__GPIO_1_27, MX6_PAD_EPDC_SDCE1__GPIO_1_28, MX6_PAD_EPDC_SDCE2__GPIO_1_29, }; static void setup_iomux_uart(void) { imx_iomux_v3_setup_multiple_pads(uart1_pads, ARRAY_SIZE(uart1_pads)); } static void setup_iomux_fec(void) { imx_iomux_v3_setup_multiple_pads(fec_pads, ARRAY_SIZE(fec_pads)); /* Reset LAN8720 PHY */ gpio_direction_output(ETH_PHY_RESET , 0); udelay(1000); gpio_set_value(ETH_PHY_RESET, 1); } #define USDHC1_CD_GPIO IMX_GPIO_NR(4, 7) #define USDHC2_CD_GPIO IMX_GPIO_NR(5, 0) #define USDHC3_CD_GPIO IMX_GPIO_NR(3, 22) static struct fsl_esdhc_cfg usdhc_cfg[3] = { {USDHC1_BASE_ADDR}, {USDHC2_BASE_ADDR, 0, 4}, {USDHC3_BASE_ADDR, 0, 4}, }; int mmc_get_env_devno(void) { u32 soc_sbmr = readl(SRC_BASE_ADDR + 0x4); u32 dev_no; u32 bootsel; bootsel = (soc_sbmr & 0x000000FF) >> 6 ; /* If not boot from sd/mmc, use default value */ if (bootsel != 1) return CONFIG_SYS_MMC_ENV_DEV; /* BOOT_CFG2[3] and BOOT_CFG2[4] */ dev_no = (soc_sbmr & 0x00001800) >> 11; return dev_no; } int mmc_map_to_kernel_blk(int dev_no) { return dev_no; } int board_mmc_getcd(struct mmc *mmc) { struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv; int ret = 0; switch (cfg->esdhc_base) { case USDHC1_BASE_ADDR: ret = !gpio_get_value(USDHC1_CD_GPIO); break; case USDHC2_BASE_ADDR: ret = !gpio_get_value(USDHC2_CD_GPIO); break; case USDHC3_BASE_ADDR: ret = !gpio_get_value(USDHC3_CD_GPIO); break; } return ret; } int board_mmc_init(bd_t *bis) { int i, ret; /* * According to the board_mmc_init() the following map is done: * (U-boot device node) (Physical Port) * mmc0 USDHC1 * mmc1 USDHC2 * mmc2 USDHC3 */ for (i = 0; i < CONFIG_SYS_FSL_USDHC_NUM; i++) { switch (i) { case 0: imx_iomux_v3_setup_multiple_pads( usdhc1_pads, ARRAY_SIZE(usdhc1_pads)); gpio_direction_input(USDHC1_CD_GPIO); usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK); break; case 1: imx_iomux_v3_setup_multiple_pads( usdhc2_pads, ARRAY_SIZE(usdhc2_pads)); gpio_direction_input(USDHC2_CD_GPIO); usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK); break; case 2: imx_iomux_v3_setup_multiple_pads( usdhc3_pads, ARRAY_SIZE(usdhc3_pads)); gpio_direction_input(USDHC3_CD_GPIO); usdhc_cfg[2].sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK); break; default: printf("Warning: you configured more USDHC controllers" "(%d) than supported by the board\n", i + 1); return -EINVAL; } ret = fsl_esdhc_initialize(bis, &usdhc_cfg[i]); if (ret) { printf("Warning: failed to initialize " "mmc dev %d\n", i); return ret; } } return 0; } int check_mmc_autodetect(void) { char *autodetect_str = getenv("mmcautodetect"); if ((autodetect_str != NULL) && (strcmp(autodetect_str, "yes") == 0)) { return 1; } return 0; } void board_late_mmc_env_init(void) { char cmd[32]; char mmcblk[32]; u32 dev_no = mmc_get_env_devno(); if (!check_mmc_autodetect()) return; setenv_ulong("mmcdev", dev_no); /* Set mmcblk env */ sprintf(mmcblk, "/dev/mmcblk%dp2 rootwait rw", mmc_map_to_kernel_blk(dev_no)); setenv("mmcroot", mmcblk); sprintf(cmd, "mmc dev %d", dev_no); run_command(cmd, 0); } #ifdef CONFIG_SYS_I2C_MXC #define PC MUX_PAD_CTRL(I2C_PAD_CTRL) /* I2C1 for PMIC */ struct i2c_pads_info i2c_pad_info1 = { .sda = { .i2c_mode = MX6_PAD_I2C1_SDA__I2C1_SDA | PC, .gpio_mode = MX6_PAD_I2C1_SDA__GPIO_3_13 | PC, .gp = IMX_GPIO_NR(3, 13), }, .scl = { .i2c_mode = MX6_PAD_I2C1_SCL__I2C1_SCL | PC, .gpio_mode = MX6_PAD_I2C1_SCL__GPIO_3_12 | PC, .gp = IMX_GPIO_NR(3, 12), }, }; static struct pmic *pfuze; int power_init_board(void) { unsigned int reg; int ret; pfuze = pfuze_common_init(I2C_PMIC); if (!pfuze) return -ENODEV; ret = pfuze_mode_init(pfuze, APS_PFM); if (ret < 0) return ret; /* set SW1AB staby volatage 0.975V */ pmic_reg_read(pfuze, PFUZE100_SW1ABSTBY, ®); reg &= ~0x3f; reg |= 0x1b; pmic_reg_write(pfuze, PFUZE100_SW1ABSTBY, reg); /* set SW1AB/VDDARM step ramp up time from 16us to 4us/25mV */ pmic_reg_read(pfuze, PFUZE100_SW1ABCONF, ®); reg &= ~0xc0; reg |= 0x40; pmic_reg_write(pfuze, PFUZE100_SW1ABCONF, reg); /* set SW1C staby volatage 0.975V */ pmic_reg_read(pfuze, PFUZE100_SW1CSTBY, ®); reg &= ~0x3f; reg |= 0x1b; pmic_reg_write(pfuze, PFUZE100_SW1CSTBY, reg); /* set SW1C/VDDSOC step ramp up time to from 16us to 4us/25mV */ pmic_reg_read(pfuze, PFUZE100_SW1CCONF, ®); reg &= ~0xc0; reg |= 0x40; pmic_reg_write(pfuze, PFUZE100_SW1CCONF, reg); return 0; } #ifdef CONFIG_LDO_BYPASS_CHECK void ldo_mode_set(int ldo_bypass) { u32 value; int is_400M; struct pmic *p = pfuze; if (!p) { printf("No pmic!\n"); return; } /* swith to ldo_bypass mode */ if (ldo_bypass) { prep_anatop_bypass(); /* decrease VDDARM to 1.1V */ pmic_reg_read(p, PFUZE100_SW1ABVOL, &value); value &= ~0x3f; value |= 0x20; pmic_reg_write(p, PFUZE100_SW1ABVOL, value); /* increase VDDSOC to 1.3V */ pmic_reg_read(p, PFUZE100_SW1CVOL, &value); value &= ~0x3f; value |= 0x28; pmic_reg_write(p, PFUZE100_SW1CVOL, value); is_400M = set_anatop_bypass(0); /* * MX6SL: VDDARM:1.175V@800M; VDDSOC:1.175V@800M * VDDARM:0.975V@400M; VDDSOC:1.175V@400M */ pmic_reg_read(p, PFUZE100_SW1ABVOL, &value); value &= ~0x3f; if (is_400M) value |= 0x1b; else value |= 0x23; pmic_reg_write(p, PFUZE100_SW1ABVOL, value); /* decrease VDDSOC to 1.175V */ pmic_reg_read(p, PFUZE100_SW1CVOL, &value); value &= ~0x3f; value |= 0x23; pmic_reg_write(p, PFUZE100_SW1CVOL, value); finish_anatop_bypass(); printf("switch to ldo_bypass mode!\n"); } } #endif #endif #ifdef CONFIG_FEC_MXC int board_eth_init(bd_t *bis) { setup_iomux_fec(); return cpu_eth_init(bis); } static int setup_fec(void) { struct iomuxc *iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR; /* clear gpr1[14], gpr1[18:17] to select anatop clock */ clrsetbits_le32(&iomuxc_regs->gpr[1], IOMUX_GPR1_FEC_MASK, 0); return enable_fec_anatop_clock(0, ENET_50MHZ); } #endif #ifdef CONFIG_USB_EHCI_MX6 #define USB_OTHERREGS_OFFSET 0x800 #define UCTRL_PWR_POL (1 << 9) static iomux_v3_cfg_t const usb_otg_pads[] = { /* OTG1 */ MX6_PAD_KEY_COL4__USB_USBOTG1_PWR | MUX_PAD_CTRL(NO_PAD_CTRL), MX6_PAD_EPDC_PWRCOM__ANATOP_USBOTG1_ID | MUX_PAD_CTRL(OTGID_PAD_CTRL), /* OTG2 */ MX6_PAD_KEY_COL5__USB_USBOTG2_PWR | MUX_PAD_CTRL(NO_PAD_CTRL) }; static void setup_usb(void) { imx_iomux_v3_setup_multiple_pads(usb_otg_pads, ARRAY_SIZE(usb_otg_pads)); } int board_usb_phy_mode(int port) { if (port == 1) return USB_INIT_HOST; else return usb_phy_mode(port); } int board_ehci_hcd_init(int port) { u32 *usbnc_usb_ctrl; if (port > 1) return -EINVAL; usbnc_usb_ctrl = (u32 *)(USB_BASE_ADDR + USB_OTHERREGS_OFFSET + port * 4); /* Set Power polarity */ setbits_le32(usbnc_usb_ctrl, UCTRL_PWR_POL); return 0; } #endif int board_early_init_f(void) { setup_iomux_uart(); #ifdef CONFIG_MXC_SPI setup_spi(); #endif return 0; } #ifdef CONFIG_MXC_EPDC vidinfo_t panel_info = { .vl_refresh = 85, .vl_col = 800, .vl_row = 600, .vl_pixclock = 26666667, .vl_left_margin = 8, .vl_right_margin = 100, .vl_upper_margin = 4, .vl_lower_margin = 8, .vl_hsync = 4, .vl_vsync = 1, .vl_sync = 0, .vl_mode = 0, .vl_flag = 0, .vl_bpix = 3, .cmap = 0, }; struct epdc_timing_params panel_timings = { .vscan_holdoff = 4, .sdoed_width = 10, .sdoed_delay = 20, .sdoez_width = 10, .sdoez_delay = 20, .gdclk_hp_offs = 419, .gdsp_offs = 20, .gdoe_offs = 0, .gdclk_offs = 5, .num_ce = 1, }; static void setup_epdc_power(void) { /* Setup epdc voltage */ /* EPDC_PWRSTAT - GPIO2[13] for PWR_GOOD status */ imx_iomux_v3_setup_pad(MX6_PAD_EPDC_PWRSTAT__GPIO_2_13 | MUX_PAD_CTRL(EPDC_PAD_CTRL)); gpio_direction_input(IMX_GPIO_NR(2, 13)); /* EPDC_VCOM0 - GPIO2[3] for VCOM control */ imx_iomux_v3_setup_pad(MX6_PAD_EPDC_VCOM0__GPIO_2_3 | MUX_PAD_CTRL(EPDC_PAD_CTRL)); /* Set as output */ gpio_direction_output(IMX_GPIO_NR(2, 3), 1); /* EPDC_PWRWAKEUP - GPIO2[14] for EPD PMIC WAKEUP */ imx_iomux_v3_setup_pad(MX6_PAD_EPDC_PWRWAKEUP__GPIO_2_14 | MUX_PAD_CTRL(EPDC_PAD_CTRL)); /* Set as output */ gpio_direction_output(IMX_GPIO_NR(2, 14), 1); /* EPDC_PWRCTRL0 - GPIO2[7] for EPD PWR CTL0 */ imx_iomux_v3_setup_pad(MX6_PAD_EPDC_PWRCTRL0__GPIO_2_7 | MUX_PAD_CTRL(EPDC_PAD_CTRL)); /* Set as output */ gpio_direction_output(IMX_GPIO_NR(2, 7), 1); } static void epdc_enable_pins(void) { /* epdc iomux settings */ imx_iomux_v3_setup_multiple_pads(epdc_enable_pads, ARRAY_SIZE(epdc_enable_pads)); } static void epdc_disable_pins(void) { /* Configure MUX settings for EPDC pins to GPIO and drive to 0 */ imx_iomux_v3_setup_multiple_pads(epdc_disable_pads, ARRAY_SIZE(epdc_disable_pads)); } static void setup_epdc(void) { unsigned int reg; struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR; /*** epdc Maxim PMIC settings ***/ /* EPDC PWRSTAT - GPIO2[13] for PWR_GOOD status */ imx_iomux_v3_setup_pad(MX6_PAD_EPDC_PWRSTAT__GPIO_2_13 | MUX_PAD_CTRL(EPDC_PAD_CTRL)); /* EPDC VCOM0 - GPIO2[3] for VCOM control */ imx_iomux_v3_setup_pad(MX6_PAD_EPDC_VCOM0__GPIO_2_3 | MUX_PAD_CTRL(EPDC_PAD_CTRL)); /* UART4 TXD - GPIO2[14] for EPD PMIC WAKEUP */ imx_iomux_v3_setup_pad(MX6_PAD_EPDC_PWRWAKEUP__GPIO_2_14 | MUX_PAD_CTRL(EPDC_PAD_CTRL)); /* EIM_A18 - GPIO2[7] for EPD PWR CTL0 */ imx_iomux_v3_setup_pad(MX6_PAD_EPDC_PWRCTRL0__GPIO_2_7 | MUX_PAD_CTRL(EPDC_PAD_CTRL)); /*** Set pixel clock rates for EPDC ***/ /* EPDC AXI clk from PFD_400M, set to 396/2 = 198MHz */ reg = readl(&ccm_regs->chsccdr); reg &= ~0x3F000; reg |= (0x4 << 15) | (1 << 12); writel(reg, &ccm_regs->chsccdr); /* EPDC AXI clk enable */ reg = readl(&ccm_regs->CCGR3); reg |= 0x0030; writel(reg, &ccm_regs->CCGR3); /* EPDC PIX clk from PFD_540M, set to 540/4/5 = 27MHz */ reg = readl(&ccm_regs->cscdr2); reg &= ~0x03F000; reg |= (0x5 << 15) | (4 << 12); writel(reg, &ccm_regs->cscdr2); reg = readl(&ccm_regs->cbcmr); reg &= ~0x03800000; reg |= (0x3 << 23); writel(reg, &ccm_regs->cbcmr); /* EPDC PIX clk enable */ reg = readl(&ccm_regs->CCGR3); reg |= 0x0C00; writel(reg, &ccm_regs->CCGR3); panel_info.epdc_data.wv_modes.mode_init = 0; panel_info.epdc_data.wv_modes.mode_du = 1; panel_info.epdc_data.wv_modes.mode_gc4 = 3; panel_info.epdc_data.wv_modes.mode_gc8 = 2; panel_info.epdc_data.wv_modes.mode_gc16 = 2; panel_info.epdc_data.wv_modes.mode_gc32 = 2; panel_info.epdc_data.epdc_timings = panel_timings; setup_epdc_power(); } void epdc_power_on(void) { unsigned int reg; struct gpio_regs *gpio_regs = (struct gpio_regs *)GPIO2_BASE_ADDR; /* Set EPD_PWR_CTL0 to high - enable EINK_VDD (3.15) */ gpio_set_value(IMX_GPIO_NR(2, 7), 1); udelay(1000); /* Enable epdc signal pin */ epdc_enable_pins(); /* Set PMIC Wakeup to high - enable Display power */ gpio_set_value(IMX_GPIO_NR(2, 14), 1); /* Wait for PWRGOOD == 1 */ while (1) { reg = readl(&gpio_regs->gpio_psr); if (!(reg & (1 << 13))) break; udelay(100); } /* Enable VCOM */ gpio_set_value(IMX_GPIO_NR(2, 3), 1); udelay(500); } void epdc_power_off(void) { /* Set PMIC Wakeup to low - disable Display power */ gpio_set_value(IMX_GPIO_NR(2, 14), 0); /* Disable VCOM */ gpio_set_value(IMX_GPIO_NR(2, 3), 0); epdc_disable_pins(); /* Set EPD_PWR_CTL0 to low - disable EINK_VDD (3.15) */ gpio_set_value(IMX_GPIO_NR(2, 7), 0); } #endif void setup_elan_pads(void) { #define TOUCH_CS IMX_GPIO_NR(2, 9) #define TOUCH_INT IMX_GPIO_NR(2, 10) #define TOUCH_RST IMX_GPIO_NR(4, 4) imx_iomux_v3_setup_multiple_pads(elan_pads, ARRAY_SIZE(elan_pads)); } int board_init(void) { /* address of boot parameters */ gd->bd->bi_boot_params = PHYS_SDRAM + 0x100; #ifdef CONFIG_SYS_I2C_MXC setup_i2c(0, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info1); setup_elan_pads(); #endif #ifdef CONFIG_FEC_MXC setup_fec(); #endif #ifdef CONFIG_MXC_EPDC setup_epdc(); #endif #ifdef CONFIG_USB_EHCI_MX6 setup_usb(); #endif return 0; } void elan_init(void) { gpio_direction_input(TOUCH_INT); /* * If epdc panel not plugged in, gpio_get_value(TOUCH_INT) will * return 1. And no need to mdelay, which will make i2c operation * slow. * If epdc panel plugged in, gpio_get_value(TOUCH_INT) will * return 0. And elan init flow will be executed. */ if (gpio_get_value(TOUCH_INT)) return; gpio_direction_output(TOUCH_CS , 1); gpio_set_value(TOUCH_CS, 0); gpio_direction_output(TOUCH_RST , 1); gpio_set_value(TOUCH_RST, 0); mdelay(10); gpio_set_value(TOUCH_RST, 1); gpio_set_value(TOUCH_CS, 1); mdelay(100); } /* * This function overwrite the function defined in * drivers/i2c/mxc_i2c.c, which is a weak symbol */ void i2c_force_reset_slave(void) { elan_init(); } int board_late_init(void) { #ifdef CONFIG_ENV_IS_IN_MMC board_late_mmc_env_init(); #endif return 0; } u32 get_board_rev(void) { return get_cpu_rev(); } int checkboard(void) { puts("Board: MX6SLEVK\n"); return 0; } #ifdef CONFIG_MXC_KPD #define MX6SL_KEYPAD_CTRL (PAD_CTL_HYS | PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_100K_UP | PAD_CTL_DSE_120ohm) iomux_v3_cfg_t const mxc_kpd_pads[] = { (MX6_PAD_KEY_COL0__KPP_COL_0 | MUX_PAD_CTRL(NO_PAD_CTRL)), (MX6_PAD_KEY_COL1__KPP_COL_1 | MUX_PAD_CTRL(NO_PAD_CTRL)), (MX6_PAD_KEY_COL2__KPP_COL_2 | MUX_PAD_CTRL(NO_PAD_CTRL)), (MX6_PAD_KEY_COL3__KPP_COL_3 | MUX_PAD_CTRL(NO_PAD_CTRL)), (MX6_PAD_KEY_ROW0__KPP_ROW_0 | MUX_PAD_CTRL(MX6SL_KEYPAD_CTRL)), (MX6_PAD_KEY_ROW1__KPP_ROW_1 | MUX_PAD_CTRL(MX6SL_KEYPAD_CTRL)), (MX6_PAD_KEY_ROW2__KPP_ROW_2 | MUX_PAD_CTRL(MX6SL_KEYPAD_CTRL)), (MX6_PAD_KEY_ROW3__KPP_ROW_3 | MUX_PAD_CTRL(MX6SL_KEYPAD_CTRL)), }; int setup_mxc_kpd(void) { imx_iomux_v3_setup_multiple_pads(mxc_kpd_pads, ARRAY_SIZE(mxc_kpd_pads)); return 0; } #endif /*CONFIG_MXC_KPD*/ #ifdef CONFIG_FSL_FASTBOOT void board_fastboot_setup(void) { switch (get_boot_device()) { #if defined(CONFIG_FASTBOOT_STORAGE_MMC) case SD1_BOOT: case MMC1_BOOT: if (!getenv("fastboot_dev")) setenv("fastboot_dev", "mmc0"); if (!getenv("bootcmd")) setenv("bootcmd", "boota mmc0"); break; case SD2_BOOT: case MMC2_BOOT: if (!getenv("fastboot_dev")) setenv("fastboot_dev", "mmc1"); if (!getenv("bootcmd")) setenv("bootcmd", "boota mmc1"); break; case SD3_BOOT: case MMC3_BOOT: if (!getenv("fastboot_dev")) setenv("fastboot_dev", "mmc2"); if (!getenv("bootcmd")) setenv("bootcmd", "boota mmc2"); break; #endif /*CONFIG_FASTBOOT_STORAGE_MMC*/ default: printf("unsupported boot devices\n"); break; } } #ifdef CONFIG_ANDROID_RECOVERY int is_recovery_key_pressing(void) { return is_recovery_keypad_pressing(); } void board_recovery_setup(void) { int bootdev = get_boot_device(); /*current uboot BSP only supports USDHC2*/ switch (bootdev) { #if defined(CONFIG_FASTBOOT_STORAGE_MMC) case SD1_BOOT: case MMC1_BOOT: if (!getenv("bootcmd_android_recovery")) setenv("bootcmd_android_recovery", "boota mmc0 recovery"); break; case SD2_BOOT: case MMC2_BOOT: if (!getenv("bootcmd_android_recovery")) setenv("bootcmd_android_recovery", "boota mmc1 recovery"); break; case SD3_BOOT: case MMC3_BOOT: if (!getenv("bootcmd_android_recovery")) setenv("bootcmd_android_recovery", "boota mmc2 recovery"); break; #endif /*CONFIG_FASTBOOT_STORAGE_MMC*/ default: printf("Unsupported bootup device for recovery: dev: %d\n", bootdev); return; } printf("setup env for recovery..\n"); setenv("bootcmd", "run bootcmd_android_recovery"); } #endif /*CONFIG_ANDROID_RECOVERY*/ #endif /*CONFIG_FSL_FASTBOOT*/