/* * Copyright (C) 2012-2013 Freescale Semiconductor, Inc. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #ifdef CONFIG_MXC_FEC #include #endif #if defined(CONFIG_VIDEO_MX5) #include #include #include #include #include #endif #ifdef CONFIG_IMX_ECSPI #include #endif #if CONFIG_I2C_MXC #include #endif #ifdef CONFIG_CMD_MMC #include #include #endif #ifdef CONFIG_ARCH_MMU #include #include #endif #ifdef CONFIG_CMD_CLOCK #include #endif #ifdef CONFIG_CMD_IMXOTP #include #endif #ifdef CONFIG_MXC_GPIO #include #include #endif #ifdef CONFIG_ANDROID_RECOVERY #include #endif DECLARE_GLOBAL_DATA_PTR; static enum boot_device boot_dev; #define GPIO_REVB_POWER_KEY IMX_GPIO_NR(1, 27) #define USB_OTG_PWR IMX_GPIO_NR(4, 15) #define USB_H1_POWER IMX_GPIO_NR(4, 14) #define HDMIDONGLE_CHG_SYS_ON IMX_GPIO_NR(2, 6) #ifdef CONFIG_VIDEO_MX5 extern unsigned char fsl_bmp_600x400[]; extern int fsl_bmp_600x400_size; extern int g_ipu_hw_rev; #if defined(CONFIG_BMP_8BPP) unsigned short colormap[256]; #elif defined(CONFIG_BMP_16BPP) unsigned short colormap[65536]; #else unsigned short colormap[16777216]; #endif static int di = 1; extern int ipuv3_fb_init(struct fb_videomode *mode, int di, int interface_pix_fmt, ipu_di_clk_parent_t di_clk_parent, int di_clk_val); static struct fb_videomode lvds_xga = { "XGA", 60, 1024, 768, 15385, 220, 40, 21, 7, 60, 10, FB_SYNC_EXT, FB_VMODE_NONINTERLACED, 0, }; vidinfo_t panel_info; #endif static inline void setup_boot_device(void) { uint soc_sbmr = readl(SRC_BASE_ADDR + 0x4); uint bt_mem_ctl = (soc_sbmr & 0x000000FF) >> 4 ; uint bt_mem_type = (soc_sbmr & 0x00000008) >> 3; switch (bt_mem_ctl) { case 0x0: if (bt_mem_type) boot_dev = ONE_NAND_BOOT; else boot_dev = WEIM_NOR_BOOT; break; case 0x2: boot_dev = SATA_BOOT; break; case 0x3: if (bt_mem_type) boot_dev = I2C_BOOT; else boot_dev = SPI_NOR_BOOT; break; case 0x4: case 0x5: boot_dev = SD_BOOT; break; case 0x6: case 0x7: boot_dev = MMC_BOOT; break; case 0x8 ... 0xf: boot_dev = NAND_BOOT; break; default: boot_dev = UNKNOWN_BOOT; break; } } enum boot_device get_boot_device(void) { return boot_dev; } u32 get_board_rev(void) { return fsl_system_rev; } #ifdef CONFIG_ARCH_MMU void board_mmu_init(void) { unsigned long ttb_base = PHYS_SDRAM_1 + 0x4000; unsigned long i; /* * Set the TTB register */ asm volatile ("mcr p15,0,%0,c2,c0,0" : : "r"(ttb_base) /*:*/); /* * Set the Domain Access Control Register */ i = ARM_ACCESS_DACR_DEFAULT; asm volatile ("mcr p15,0,%0,c3,c0,0" : : "r"(i) /*:*/); /* * First clear all TT entries - ie Set them to Faulting */ memset((void *)ttb_base, 0, ARM_FIRST_LEVEL_PAGE_TABLE_SIZE); /* Actual Virtual Size Attributes Function */ /* Base Base MB cached? buffered? access permissions */ /* xxx00000 xxx00000 */ X_ARM_MMU_SECTION(0x000, 0x000, 0x001, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* ROM, 1M */ X_ARM_MMU_SECTION(0x001, 0x001, 0x008, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* 8M */ X_ARM_MMU_SECTION(0x009, 0x009, 0x001, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* IRAM */ X_ARM_MMU_SECTION(0x00A, 0x00A, 0x0F6, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* 246M */ /* 2 GB memory starting at 0x10000000, only map 1.875 GB */ X_ARM_MMU_SECTION(0x100, 0x100, 0x780, ARM_CACHEABLE, ARM_BUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* uncached alias of the same 1.875 GB memory */ X_ARM_MMU_SECTION(0x100, 0x880, 0x780, ARM_UNCACHEABLE, ARM_UNBUFFERABLE, ARM_ACCESS_PERM_RW_RW); /* Enable MMU */ MMU_ON(); } #endif #define ANATOP_PLL_LOCK 0x80000000 #define ANATOP_PLL_ENABLE_MASK 0x00002000 #define ANATOP_PLL_BYPASS_MASK 0x00010000 #define ANATOP_PLL_PWDN_MASK 0x00001000 #define ANATOP_PLL_HOLD_RING_OFF_MASK 0x00000800 #define ANATOP_SATA_CLK_ENABLE_MASK 0x00100000 /* Note: udelay() is not accurate for i2c timing */ static void __udelay(int time) { int i, j; for (i = 0; i < time; i++) { for (j = 0; j < 200; j++) { asm("nop"); asm("nop"); } } } static int setup_sata(void) { u32 reg = 0; s32 timeout = 100000; /* Enable sata clock */ reg = readl(CCM_BASE_ADDR + 0x7c); /* CCGR5 */ reg |= 0x30; writel(reg, CCM_BASE_ADDR + 0x7c); /* Enable PLLs */ reg = readl(ANATOP_BASE_ADDR + 0xe0); /* ENET PLL */ reg &= ~ANATOP_PLL_PWDN_MASK; writel(reg, ANATOP_BASE_ADDR + 0xe0); reg |= ANATOP_PLL_ENABLE_MASK; while (timeout--) { if (readl(ANATOP_BASE_ADDR + 0xe0) & ANATOP_PLL_LOCK) break; } if (timeout <= 0) return -1; reg &= ~ANATOP_PLL_BYPASS_MASK; writel(reg, ANATOP_BASE_ADDR + 0xe0); reg |= ANATOP_SATA_CLK_ENABLE_MASK; writel(reg, ANATOP_BASE_ADDR + 0xe0); /* Enable sata phy */ reg = readl(IOMUXC_BASE_ADDR + 0x34); /* GPR13 */ reg &= ~0x07ffffff; /* * rx_eq_val_0 = 5 [26:24] * los_lvl = 0x12 [23:19] * rx_dpll_mode_0 = 0x3 [18:16] * mpll_ss_en = 0x0 [14] * tx_atten_0 = 0x4 [13:11] * tx_boost_0 = 0x0 [10:7] * tx_lvl = 0x11 [6:2] * mpll_ck_off_b = 0x1 [1] * tx_edgerate_0 = 0x0 [0] * */ reg |= 0x59124c6; writel(reg, IOMUXC_BASE_ADDR + 0x34); return 0; } int dram_init(void) { /* * Switch PL301_FAST2 to DDR Dual-channel mapping * however this block the boot up, temperory redraw */ /* * u32 reg = 1; * writel(reg, GPV0_BASE_ADDR); */ gd->bd->bi_dram[0].start = PHYS_SDRAM_1; gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE; return 0; } static void setup_uart(void) { #if defined CONFIG_MX6Q /* UART4 TXD */ mxc_iomux_v3_setup_pad(MX6Q_PAD_KEY_COL0__UART4_TXD); /* UART4 RXD */ mxc_iomux_v3_setup_pad(MX6Q_PAD_KEY_ROW0__UART4_RXD); #elif defined CONFIG_MX6DL /* UART4 TXD */ mxc_iomux_v3_setup_pad(MX6DL_PAD_KEY_COL0__UART4_TXD); /* UART4 RXD */ mxc_iomux_v3_setup_pad(MX6DL_PAD_KEY_ROW0__UART4_RXD); #endif } #ifdef CONFIG_VIDEO_MX5 void setup_lvds_poweron(void) { int reg; /* AUX_5V_EN: GPIO(6, 10) */ #ifdef CONFIG_MX6DL mxc_iomux_v3_setup_pad(MX6DL_PAD_NANDF_RB0__GPIO_6_10); #else mxc_iomux_v3_setup_pad(MX6Q_PAD_NANDF_RB0__GPIO_6_10); #endif reg = readl(GPIO6_BASE_ADDR + GPIO_GDIR); reg |= (1 << 10); writel(reg, GPIO6_BASE_ADDR + GPIO_GDIR); reg = readl(GPIO6_BASE_ADDR + GPIO_DR); reg |= (1 << 10); writel(reg, GPIO6_BASE_ADDR + GPIO_DR); } #endif #ifdef CONFIG_I2C_MXC #define I2C1_SDA_GPIO5_26_BIT_MASK (1 << 26) #define I2C1_SCL_GPIO5_27_BIT_MASK (1 << 27) #define I2C2_SCL_GPIO4_12_BIT_MASK (1 << 12) #define I2C2_SDA_GPIO4_13_BIT_MASK (1 << 13) #define I2C3_SCL_GPIO1_3_BIT_MASK (1 << 3) #define I2C3_SDA_GPIO1_6_BIT_MASK (1 << 6) static void setup_i2c(unsigned int module_base) { unsigned int reg; switch (module_base) { case I2C1_BASE_ADDR: #if defined CONFIG_MX6Q /* i2c1 SDA */ mxc_iomux_v3_setup_pad(MX6Q_PAD_CSI0_DAT8__I2C1_SDA); /* i2c1 SCL */ mxc_iomux_v3_setup_pad(MX6Q_PAD_CSI0_DAT9__I2C1_SCL); #elif defined CONFIG_MX6DL /* i2c1 SDA */ mxc_iomux_v3_setup_pad(MX6DL_PAD_CSI0_DAT8__I2C1_SDA); /* i2c1 SCL */ mxc_iomux_v3_setup_pad(MX6DL_PAD_CSI0_DAT9__I2C1_SCL); #endif /* Enable i2c clock */ reg = readl(CCM_BASE_ADDR + CLKCTL_CCGR2); reg |= 0xC0; writel(reg, CCM_BASE_ADDR + CLKCTL_CCGR2); break; case I2C2_BASE_ADDR: #if defined CONFIG_MX6Q /* i2c2 SDA */ mxc_iomux_v3_setup_pad(MX6Q_PAD_KEY_ROW3__I2C2_SDA); /* i2c2 SCL */ mxc_iomux_v3_setup_pad(MX6Q_PAD_KEY_COL3__I2C2_SCL); #elif defined CONFIG_MX6DL /* i2c2 SDA */ mxc_iomux_v3_setup_pad(MX6DL_PAD_KEY_ROW3__I2C2_SDA); /* i2c2 SCL */ mxc_iomux_v3_setup_pad(MX6DL_PAD_KEY_COL3__I2C2_SCL); #endif /* Enable i2c clock */ reg = readl(CCM_BASE_ADDR + CLKCTL_CCGR2); reg |= 0x300; writel(reg, CCM_BASE_ADDR + CLKCTL_CCGR2); break; case I2C3_BASE_ADDR: #if defined CONFIG_MX6Q /* GPIO_3 for I2C3_SCL */ mxc_iomux_v3_setup_pad(MX6Q_PAD_GPIO_3__I2C3_SCL); /* GPIO_6 for I2C3_SDA */ mxc_iomux_v3_setup_pad(MX6Q_PAD_GPIO_6__I2C3_SDA); #elif defined CONFIG_MX6DL /* GPIO_3 for I2C3_SCL */ mxc_iomux_v3_setup_pad(MX6DL_PAD_GPIO_3__I2C3_SCL); /* GPIO_6 for I2C3_SDA */ mxc_iomux_v3_setup_pad(MX6DL_PAD_GPIO_6__I2C3_SDA); #endif /* Enable i2c clock */ reg = readl(CCM_BASE_ADDR + CLKCTL_CCGR2); reg |= 0xC00; writel(reg, CCM_BASE_ADDR + CLKCTL_CCGR2); break; default: printf("Invalid I2C base: 0x%x\n", module_base); break; } } static void mx6q_i2c_gpio_scl_direction(int bus, int output) { u32 reg; switch (bus) { case 1: #if defined CONFIG_MX6Q mxc_iomux_v3_setup_pad(MX6Q_PAD_CSI0_DAT9__GPIO_5_27); #elif defined CONFIG_MX6DL mxc_iomux_v3_setup_pad(MX6DL_PAD_CSI0_DAT9__GPIO_5_27); #endif reg = readl(GPIO5_BASE_ADDR + GPIO_GDIR); if (output) reg |= I2C1_SCL_GPIO5_27_BIT_MASK; else reg &= ~I2C1_SCL_GPIO5_27_BIT_MASK; writel(reg, GPIO5_BASE_ADDR + GPIO_GDIR); break; case 2: #if defined CONFIG_MX6Q mxc_iomux_v3_setup_pad(MX6Q_PAD_KEY_COL3__GPIO_4_12); #elif defined CONFIG_MX6DL mxc_iomux_v3_setup_pad(MX6DL_PAD_KEY_COL3__GPIO_4_12); #endif reg = readl(GPIO4_BASE_ADDR + GPIO_GDIR); if (output) reg |= I2C2_SCL_GPIO4_12_BIT_MASK; else reg &= ~I2C2_SCL_GPIO4_12_BIT_MASK; writel(reg, GPIO4_BASE_ADDR + GPIO_GDIR); break; case 3: #if defined CONFIG_MX6Q mxc_iomux_v3_setup_pad(MX6Q_PAD_GPIO_3__GPIO_1_3); #elif defined CONFIG_MX6DL mxc_iomux_v3_setup_pad(MX6DL_PAD_GPIO_3__GPIO_1_3); #endif reg = readl(GPIO1_BASE_ADDR + GPIO_GDIR); if (output) reg |= I2C3_SCL_GPIO1_3_BIT_MASK; else reg &= I2C3_SCL_GPIO1_3_BIT_MASK; writel(reg, GPIO1_BASE_ADDR + GPIO_GDIR); break; } } /* set 1 to output, sent 0 to input */ static void mx6q_i2c_gpio_sda_direction(int bus, int output) { u32 reg; switch (bus) { case 1: #if defined CONFIG_MX6Q mxc_iomux_v3_setup_pad(MX6Q_PAD_CSI0_DAT8__GPIO_5_26); #elif defined CONFIG_MX6DL mxc_iomux_v3_setup_pad(MX6DL_PAD_CSI0_DAT8__GPIO_5_26); #endif reg = readl(GPIO5_BASE_ADDR + GPIO_GDIR); if (output) reg |= I2C1_SDA_GPIO5_26_BIT_MASK; else reg &= ~I2C1_SDA_GPIO5_26_BIT_MASK; writel(reg, GPIO5_BASE_ADDR + GPIO_GDIR); break; case 2: #if defined CONFIG_MX6Q mxc_iomux_v3_setup_pad(MX6Q_PAD_KEY_ROW3__GPIO_4_13); #elif defined CONFIG_MX6DL mxc_iomux_v3_setup_pad(MX6DL_PAD_KEY_ROW3__GPIO_4_13); #endif reg = readl(GPIO4_BASE_ADDR + GPIO_GDIR); if (output) reg |= I2C2_SDA_GPIO4_13_BIT_MASK; else reg &= ~I2C2_SDA_GPIO4_13_BIT_MASK; writel(reg, GPIO4_BASE_ADDR + GPIO_GDIR); case 3: #if defined CONFIG_MX6Q mxc_iomux_v3_setup_pad(MX6Q_PAD_GPIO_6__GPIO_1_6); #elif defined CONFIG_MX6DL mxc_iomux_v3_setup_pad(MX6DL_PAD_GPIO_6__GPIO_1_6); #endif reg = readl(GPIO1_BASE_ADDR + GPIO_GDIR); if (output) reg |= I2C3_SDA_GPIO1_6_BIT_MASK; else reg &= ~I2C3_SDA_GPIO1_6_BIT_MASK; writel(reg, GPIO1_BASE_ADDR + GPIO_GDIR); default: break; } } /* set 1 to high 0 to low */ static void mx6q_i2c_gpio_scl_set_level(int bus, int high) { u32 reg; switch (bus) { case 1: reg = readl(GPIO5_BASE_ADDR + GPIO_DR); if (high) reg |= I2C1_SCL_GPIO5_27_BIT_MASK; else reg &= ~I2C1_SCL_GPIO5_27_BIT_MASK; writel(reg, GPIO5_BASE_ADDR + GPIO_DR); break; case 2: reg = readl(GPIO4_BASE_ADDR + GPIO_DR); if (high) reg |= I2C2_SCL_GPIO4_12_BIT_MASK; else reg &= ~I2C2_SCL_GPIO4_12_BIT_MASK; writel(reg, GPIO4_BASE_ADDR + GPIO_DR); break; case 3: reg = readl(GPIO1_BASE_ADDR + GPIO_DR); if (high) reg |= I2C3_SCL_GPIO1_3_BIT_MASK; else reg &= ~I2C3_SCL_GPIO1_3_BIT_MASK; writel(reg, GPIO1_BASE_ADDR + GPIO_DR); break; } } /* set 1 to high 0 to low */ static void mx6q_i2c_gpio_sda_set_level(int bus, int high) { u32 reg; switch (bus) { case 1: reg = readl(GPIO5_BASE_ADDR + GPIO_DR); if (high) reg |= I2C1_SDA_GPIO5_26_BIT_MASK; else reg &= ~I2C1_SDA_GPIO5_26_BIT_MASK; writel(reg, GPIO5_BASE_ADDR + GPIO_DR); break; case 2: reg = readl(GPIO4_BASE_ADDR + GPIO_DR); if (high) reg |= I2C2_SDA_GPIO4_13_BIT_MASK; else reg &= ~I2C2_SDA_GPIO4_13_BIT_MASK; writel(reg, GPIO4_BASE_ADDR + GPIO_DR); break; case 3: reg = readl(GPIO1_BASE_ADDR + GPIO_DR); if (high) reg |= I2C3_SDA_GPIO1_6_BIT_MASK; else reg &= ~I2C3_SDA_GPIO1_6_BIT_MASK; writel(reg, GPIO1_BASE_ADDR + GPIO_DR); break; } } static int mx6q_i2c_gpio_check_sda(int bus) { u32 reg; int result = 0; switch (bus) { case 1: reg = readl(GPIO5_BASE_ADDR + GPIO_PSR); result = !!(reg & I2C1_SDA_GPIO5_26_BIT_MASK); break; case 2: reg = readl(GPIO4_BASE_ADDR + GPIO_PSR); result = !!(reg & I2C2_SDA_GPIO4_13_BIT_MASK); break; case 3: reg = readl(GPIO1_BASE_ADDR + GPIO_PSR); result = !!(reg & I2C3_SDA_GPIO1_6_BIT_MASK); break; } return result; } /* Random reboot cause i2c SDA low issue: * the i2c bus busy because some device pull down the I2C SDA * line. This happens when Host is reading some byte from slave, and * then host is reset/reboot. Since in this case, device is * controlling i2c SDA line, the only thing host can do this give the * clock on SCL and sending NAK, and STOP to finish this * transaction. * * How to fix this issue: * detect if the SDA was low on bus send 8 dummy clock, and 1 * clock + NAK, and STOP to finish i2c transaction the pending * transfer. */ int i2c_bus_recovery(void) { int i, bus, result = 0; for (bus = 1; bus <= 3; bus++) { mx6q_i2c_gpio_sda_direction(bus, 0); if (mx6q_i2c_gpio_check_sda(bus) == 0) { printf("i2c: I2C%d SDA is low, start i2c recovery...\n", bus); mx6q_i2c_gpio_scl_direction(bus, 1); mx6q_i2c_gpio_scl_set_level(bus, 1); __udelay(10000); for (i = 0; i < 9; i++) { mx6q_i2c_gpio_scl_set_level(bus, 1); __udelay(5); mx6q_i2c_gpio_scl_set_level(bus, 0); __udelay(5); } /* 9th clock here, the slave should already release the SDA, we can set SDA as high to a NAK.*/ mx6q_i2c_gpio_sda_direction(bus, 1); mx6q_i2c_gpio_sda_set_level(bus, 1); __udelay(1); /* Pull up SDA first */ mx6q_i2c_gpio_scl_set_level(bus, 1); __udelay(5); /* plus pervious 1 us */ mx6q_i2c_gpio_scl_set_level(bus, 0); __udelay(5); mx6q_i2c_gpio_sda_set_level(bus, 0); __udelay(5); mx6q_i2c_gpio_scl_set_level(bus, 1); __udelay(5); /* Here: SCL is high, and SDA from low to high, it's a * stop condition */ mx6q_i2c_gpio_sda_set_level(bus, 1); __udelay(5); mx6q_i2c_gpio_sda_direction(bus, 0); if (mx6q_i2c_gpio_check_sda(bus) == 1) printf("I2C%d Recovery success\n", bus); else { printf("I2C%d Recovery failed, I2C1 SDA still low!!!\n", bus); result |= 1 << bus; } } /* configure back to i2c */ switch (bus) { case 1: setup_i2c(I2C1_BASE_ADDR); break; case 2: setup_i2c(I2C2_BASE_ADDR); break; case 3: setup_i2c(I2C3_BASE_ADDR); break; } } return result; } void setup_pmic_voltages(void) { unsigned char value = 0 ; i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE); if (!i2c_probe(0x8)) { if (i2c_read(0x8, 0, 1, &value, 1)) printf("%s:i2c_read:error\n", __func__); printf("Found PFUZE100! device id=%x\n", value); #if CONFIG_MX6_INTER_LDO_BYPASS /*VDDCORE 1.1V@800Mhz: SW1AB*/ value = 0x20; i2c_write(0x8, 0x20, 1, &value, 1); /*VDDSOC 1.2V : SW1C*/ value = 0x24; i2c_write(0x8, 0x2e, 1, &value, 1); /* Bypass the VDDSOC from Anatop */ val = REG_RD(ANATOP_BASE_ADDR, HW_ANADIG_REG_CORE); val &= ~BM_ANADIG_REG_CORE_REG2_TRG; val |= BF_ANADIG_REG_CORE_REG2_TRG(0x1f); REG_WR(ANATOP_BASE_ADDR, HW_ANADIG_REG_CORE, val); /* Bypass the VDDCORE from Anatop */ val = REG_RD(ANATOP_BASE_ADDR, HW_ANADIG_REG_CORE); val &= ~BM_ANADIG_REG_CORE_REG0_TRG; val |= BF_ANADIG_REG_CORE_REG0_TRG(0x1f); REG_WR(ANATOP_BASE_ADDR, HW_ANADIG_REG_CORE, val); /* Bypass the VDDPU from Anatop */ val = REG_RD(ANATOP_BASE_ADDR, HW_ANADIG_REG_CORE); val &= ~BM_ANADIG_REG_CORE_REG1_TRG; val |= BF_ANADIG_REG_CORE_REG1_TRG(0x1f); REG_WR(ANATOP_BASE_ADDR, HW_ANADIG_REG_CORE, val); /*clear PowerDown Enable bit of WDOG1_WMCR*/ writew(0, WDOG1_BASE_ADDR + 0x08); printf("hw_anadig_reg_core=%x\n", REG_RD(ANATOP_BASE_ADDR, HW_ANADIG_REG_CORE)); #endif } } #endif #ifdef CONFIG_IMX_ECSPI s32 spi_get_cfg(struct imx_spi_dev_t *dev) { switch (dev->slave.cs) { case 0: /* SPI-NOR */ dev->base = ECSPI2_BASE_ADDR; dev->freq = 25000000; dev->ss_pol = IMX_SPI_ACTIVE_LOW; dev->ss = 0; dev->fifo_sz = 64 * 4; dev->us_delay = 0; break; case 1: /* SPI-NOR */ dev->base = ECSPI2_BASE_ADDR; dev->freq = 25000000; dev->ss_pol = IMX_SPI_ACTIVE_LOW; dev->ss = 1; dev->fifo_sz = 64 * 4; dev->us_delay = 0; break; default: printf("Invalid Bus ID!\n"); } return 0; } void spi_io_init(struct imx_spi_dev_t *dev) { u32 reg; switch (dev->base) { case ECSPI2_BASE_ADDR: /* Enable clock */ reg = readl(CCM_BASE_ADDR + CLKCTL_CCGR1); reg |= 0xC; writel(reg, CCM_BASE_ADDR + CLKCTL_CCGR1); #if defined CONFIG_MX6Q /* SCLK */ mxc_iomux_v3_setup_pad(MX6Q_PAD_EIM_CS0__ECSPI2_SCLK); /* MISO */ mxc_iomux_v3_setup_pad(MX6Q_PAD_EIM_OE__ECSPI2_MISO); /* MOSI */ mxc_iomux_v3_setup_pad(MX6Q_PAD_EIM_CS1__ECSPI2_MOSI); mxc_iomux_v3_setup_pad(MX6Q_PAD_EIM_RW__ECSPI2_SS0); #elif defined CONFIG_MX6DL /* SCLK */ mxc_iomux_v3_setup_pad(MX6DL_PAD_EIM_OE__ECSPI2_MISO); /* MISO */ mxc_iomux_v3_setup_pad(MX6DL_PAD_EIM_OE__ECSPI2_MISO); /* MOSI */ mxc_iomux_v3_setup_pad(MX6DL_PAD_EIM_CS1__ECSPI2_MOSI); mxc_iomux_v3_setup_pad(MX6DL_PAD_EIM_RW__ECSPI2_SS0); #endif break; case ECSPI1_BASE_ADDR: case ECSPI3_BASE_ADDR: /* ecspi1,3 fall through */ break; default: break; } } #endif #ifdef CONFIG_NAND_GPMI #if defined CONFIG_MX6Q iomux_v3_cfg_t nfc_pads[] = { MX6Q_PAD_NANDF_CLE__RAWNAND_CLE, MX6Q_PAD_NANDF_ALE__RAWNAND_ALE, MX6Q_PAD_NANDF_WP_B__RAWNAND_RESETN, MX6Q_PAD_NANDF_RB0__RAWNAND_READY0, MX6Q_PAD_NANDF_CS0__RAWNAND_CE0N, MX6Q_PAD_NANDF_CS1__RAWNAND_CE1N, MX6Q_PAD_NANDF_CS2__RAWNAND_CE2N, MX6Q_PAD_NANDF_CS3__RAWNAND_CE3N, MX6Q_PAD_SD4_CMD__RAWNAND_RDN, MX6Q_PAD_SD4_CLK__RAWNAND_WRN, MX6Q_PAD_NANDF_D0__RAWNAND_D0, MX6Q_PAD_NANDF_D1__RAWNAND_D1, MX6Q_PAD_NANDF_D2__RAWNAND_D2, MX6Q_PAD_NANDF_D3__RAWNAND_D3, MX6Q_PAD_NANDF_D4__RAWNAND_D4, MX6Q_PAD_NANDF_D5__RAWNAND_D5, MX6Q_PAD_NANDF_D6__RAWNAND_D6, MX6Q_PAD_NANDF_D7__RAWNAND_D7, MX6Q_PAD_SD4_DAT0__RAWNAND_DQS, }; #elif defined CONFIG_MX6DL iomux_v3_cfg_t nfc_pads[] = { MX6DL_PAD_NANDF_CLE__RAWNAND_CLE, MX6DL_PAD_NANDF_ALE__RAWNAND_ALE, MX6DL_PAD_NANDF_WP_B__RAWNAND_RESETN, MX6DL_PAD_NANDF_RB0__RAWNAND_READY0, MX6DL_PAD_NANDF_CS0__RAWNAND_CE0N, MX6DL_PAD_NANDF_CS1__RAWNAND_CE1N, MX6DL_PAD_NANDF_CS2__RAWNAND_CE2N, MX6DL_PAD_NANDF_CS3__RAWNAND_CE3N, MX6DL_PAD_SD4_CMD__RAWNAND_RDN, MX6DL_PAD_SD4_CLK__RAWNAND_WRN, MX6DL_PAD_NANDF_D0__RAWNAND_D0, MX6DL_PAD_NANDF_D1__RAWNAND_D1, MX6DL_PAD_NANDF_D2__RAWNAND_D2, MX6DL_PAD_NANDF_D3__RAWNAND_D3, MX6DL_PAD_NANDF_D4__RAWNAND_D4, MX6DL_PAD_NANDF_D5__RAWNAND_D5, MX6DL_PAD_NANDF_D6__RAWNAND_D6, MX6DL_PAD_NANDF_D7__RAWNAND_D7, MX6DL_PAD_SD4_DAT0__RAWNAND_DQS, }; #endif int setup_gpmi_nand(void) { unsigned int reg; /* config gpmi nand iomux */ mxc_iomux_v3_setup_multiple_pads(nfc_pads, ARRAY_SIZE(nfc_pads)); /* config gpmi and bch clock to 11Mhz*/ reg = readl(CCM_BASE_ADDR + CLKCTL_CS2CDR); reg &= 0xF800FFFF; reg |= 0x01E40000; writel(reg, CCM_BASE_ADDR + CLKCTL_CS2CDR); /* enable gpmi and bch clock gating */ reg = readl(CCM_BASE_ADDR + CLKCTL_CCGR4); reg |= 0xFF003000; writel(reg, CCM_BASE_ADDR + CLKCTL_CCGR4); /* enable apbh clock gating */ reg = readl(CCM_BASE_ADDR + CLKCTL_CCGR0); reg |= 0x0030; writel(reg, CCM_BASE_ADDR + CLKCTL_CCGR0); } #endif #ifdef CONFIG_NET_MULTI int board_eth_init(bd_t *bis) { int rc = -ENODEV; return rc; } #endif #ifdef CONFIG_CMD_MMC /* On this board, only SD3 can support 1.8V signalling * that is required for UHS-I mode of operation. * Last element in struct is used to indicate 1.8V support. */ struct fsl_esdhc_cfg usdhc_cfg[4] = { {USDHC1_BASE_ADDR, 1, 1, 1, 0}, {USDHC2_BASE_ADDR, 1, 1, 1, 0}, {USDHC3_BASE_ADDR, 1, 1, 1, 0}, {USDHC4_BASE_ADDR, 1, 1, 1, 0}, }; #if defined CONFIG_MX6Q iomux_v3_cfg_t usdhc1_pads[] = { MX6Q_PAD_SD1_CLK__USDHC1_CLK, MX6Q_PAD_SD1_CMD__USDHC1_CMD, MX6Q_PAD_SD1_DAT0__USDHC1_DAT0, MX6Q_PAD_SD1_DAT1__USDHC1_DAT1, MX6Q_PAD_SD1_DAT2__USDHC1_DAT2, MX6Q_PAD_SD1_DAT3__USDHC1_DAT3, }; iomux_v3_cfg_t usdhc2_pads[] = { MX6Q_PAD_SD2_CLK__USDHC2_CLK, MX6Q_PAD_SD2_CMD__USDHC2_CMD, MX6Q_PAD_SD2_DAT0__USDHC2_DAT0, MX6Q_PAD_SD2_DAT1__USDHC2_DAT1, MX6Q_PAD_SD2_DAT2__USDHC2_DAT2, MX6Q_PAD_SD2_DAT3__USDHC2_DAT3, }; iomux_v3_cfg_t usdhc3_pads[] = { MX6Q_PAD_SD3_CLK__USDHC3_CLK, MX6Q_PAD_SD3_CMD__USDHC3_CMD, MX6Q_PAD_SD3_DAT0__USDHC3_DAT0, MX6Q_PAD_SD3_DAT1__USDHC3_DAT1, MX6Q_PAD_SD3_DAT2__USDHC3_DAT2, MX6Q_PAD_SD3_DAT3__USDHC3_DAT3, MX6Q_PAD_SD3_DAT4__USDHC3_DAT4, MX6Q_PAD_SD3_DAT5__USDHC3_DAT5, MX6Q_PAD_SD3_DAT6__USDHC3_DAT6, MX6Q_PAD_SD3_DAT7__USDHC3_DAT7, }; iomux_v3_cfg_t usdhc4_pads[] = { MX6Q_PAD_SD4_CLK__USDHC4_CLK, MX6Q_PAD_SD4_CMD__USDHC4_CMD, MX6Q_PAD_SD4_DAT0__USDHC4_DAT0, MX6Q_PAD_SD4_DAT1__USDHC4_DAT1, MX6Q_PAD_SD4_DAT2__USDHC4_DAT2, MX6Q_PAD_SD4_DAT3__USDHC4_DAT3, MX6Q_PAD_SD4_DAT4__USDHC4_DAT4, MX6Q_PAD_SD4_DAT5__USDHC4_DAT5, MX6Q_PAD_SD4_DAT6__USDHC4_DAT6, MX6Q_PAD_SD4_DAT7__USDHC4_DAT7, }; #elif defined CONFIG_MX6DL iomux_v3_cfg_t usdhc1_pads[] = { MX6DL_PAD_SD1_CLK__USDHC1_CLK, MX6DL_PAD_SD1_CMD__USDHC1_CMD, MX6DL_PAD_SD1_DAT0__USDHC1_DAT0, MX6DL_PAD_SD1_DAT1__USDHC1_DAT1, MX6DL_PAD_SD1_DAT2__USDHC1_DAT2, MX6DL_PAD_SD1_DAT3__USDHC1_DAT3, }; iomux_v3_cfg_t usdhc2_pads[] = { MX6DL_PAD_SD2_CLK__USDHC2_CLK, MX6DL_PAD_SD2_CMD__USDHC2_CMD, MX6DL_PAD_SD2_DAT0__USDHC2_DAT0, MX6DL_PAD_SD2_DAT1__USDHC2_DAT1, MX6DL_PAD_SD2_DAT2__USDHC2_DAT2, MX6DL_PAD_SD2_DAT3__USDHC2_DAT3, }; iomux_v3_cfg_t usdhc3_pads[] = { MX6DL_PAD_SD3_CLK__USDHC3_CLK, MX6DL_PAD_SD3_CMD__USDHC3_CMD, MX6DL_PAD_SD3_DAT0__USDHC3_DAT0, MX6DL_PAD_SD3_DAT1__USDHC3_DAT1, MX6DL_PAD_SD3_DAT2__USDHC3_DAT2, MX6DL_PAD_SD3_DAT3__USDHC3_DAT3, MX6DL_PAD_SD3_DAT4__USDHC3_DAT4, MX6DL_PAD_SD3_DAT5__USDHC3_DAT5, MX6DL_PAD_SD3_DAT6__USDHC3_DAT6, MX6DL_PAD_SD3_DAT7__USDHC3_DAT7, }; iomux_v3_cfg_t usdhc4_pads[] = { MX6DL_PAD_SD4_CLK__USDHC4_CLK, MX6DL_PAD_SD4_CMD__USDHC4_CMD, MX6DL_PAD_SD4_DAT0__USDHC4_DAT0, MX6DL_PAD_SD4_DAT1__USDHC4_DAT1, MX6DL_PAD_SD4_DAT2__USDHC4_DAT2, MX6DL_PAD_SD4_DAT3__USDHC4_DAT3, MX6DL_PAD_SD4_DAT4__USDHC4_DAT4, MX6DL_PAD_SD4_DAT5__USDHC4_DAT5, MX6DL_PAD_SD4_DAT6__USDHC4_DAT6, MX6DL_PAD_SD4_DAT7__USDHC4_DAT7, }; #endif int usdhc_gpio_init(bd_t *bis) { s32 status = 0; u32 index = 0; for (index = 0; index < CONFIG_SYS_FSL_USDHC_NUM; ++index) { switch (index) { case 0: mxc_iomux_v3_setup_multiple_pads(usdhc1_pads, sizeof(usdhc1_pads) / sizeof(usdhc1_pads[0])); break; case 1: mxc_iomux_v3_setup_multiple_pads(usdhc2_pads, sizeof(usdhc2_pads) / sizeof(usdhc2_pads[0])); break; case 2: mxc_iomux_v3_setup_multiple_pads(usdhc3_pads, sizeof(usdhc3_pads) / sizeof(usdhc3_pads[0])); break; case 3: mxc_iomux_v3_setup_multiple_pads(usdhc4_pads, sizeof(usdhc4_pads) / sizeof(usdhc4_pads[0])); break; default: printf("Warning: you configured more USDHC controllers" "(%d) then supported by the board (%d)\n", index+1, CONFIG_SYS_FSL_USDHC_NUM); return status; } status |= fsl_esdhc_initialize(bis, &usdhc_cfg[index]); } return status; } int board_mmc_init(bd_t *bis) { if (!usdhc_gpio_init(bis)) return 0; else return -1; } /* For DDR mode operation, provide target delay parameter for each SD port. * Use cfg->esdhc_base to distinguish the SD port #. The delay for each port * is dependent on signal layout for that particular port. If the following * CONFIG is not defined, then the default target delay value will be used. */ #ifdef CONFIG_GET_DDR_TARGET_DELAY u32 get_ddr_delay(struct fsl_esdhc_cfg *cfg) { /* No delay required on SABRESD board SD ports */ return 0; } #endif #endif #ifdef CONFIG_LCD void lcd_enable(void) { char *s; int ret; unsigned int reg; s = getenv("lvds_num"); di = simple_strtol(s, NULL, 10); /* * hw_rev 2: IPUV3DEX * hw_rev 3: IPUV3M * hw_rev 4: IPUV3H */ g_ipu_hw_rev = IPUV3_HW_REV_IPUV3H; #if defined CONFIG_MX6Q mxc_iomux_v3_setup_pad(MX6Q_PAD_SD1_DAT3__GPIO_1_21); #elif defined CONFIG_MX6DL mxc_iomux_v3_setup_pad(MX6DL_PAD_SD1_DAT3__GPIO_1_21); #endif reg = readl(GPIO1_BASE_ADDR + GPIO_GDIR); reg |= (1 << 21); writel(reg, GPIO1_BASE_ADDR + GPIO_GDIR); reg = readl(GPIO1_BASE_ADDR + GPIO_DR); reg |= (1 << 21); writel(reg, GPIO1_BASE_ADDR + GPIO_DR); /* Enable IPU clock */ if (di == 1) { reg = readl(CCM_BASE_ADDR + CLKCTL_CCGR3); reg |= 0xC033; writel(reg, CCM_BASE_ADDR + CLKCTL_CCGR3); } else { reg = readl(CCM_BASE_ADDR + CLKCTL_CCGR3); reg |= 0x300F; writel(reg, CCM_BASE_ADDR + CLKCTL_CCGR3); } ret = ipuv3_fb_init(&lvds_xga, di, IPU_PIX_FMT_RGB666, DI_PCLK_LDB, 65000000); if (ret) puts("LCD cannot be configured\n"); reg = readl(ANATOP_BASE_ADDR + 0xF0); reg &= ~0x00003F00; reg |= 0x00001300; writel(reg, ANATOP_BASE_ADDR + 0xF4); reg = readl(CCM_BASE_ADDR + CLKCTL_CS2CDR); reg &= ~0x00007E00; reg |= 0x00003600; writel(reg, CCM_BASE_ADDR + CLKCTL_CS2CDR); reg = readl(CCM_BASE_ADDR + CLKCTL_CSCMR2); reg |= 0x00000C00; writel(reg, CCM_BASE_ADDR + CLKCTL_CSCMR2); reg = 0x0002A953; writel(reg, CCM_BASE_ADDR + CLKCTL_CHSCCDR); if (di == 1) writel(0x40C, IOMUXC_BASE_ADDR + 0x8); else writel(0x201, IOMUXC_BASE_ADDR + 0x8); } #endif #ifdef CONFIG_VIDEO_MX5 void panel_info_init(void) { panel_info.vl_bpix = LCD_BPP; panel_info.vl_col = lvds_xga.xres; panel_info.vl_row = lvds_xga.yres; panel_info.cmap = colormap; } #endif #ifdef CONFIG_SPLASH_SCREEN void setup_splash_image(void) { char *s; ulong addr; s = getenv("splashimage"); if (s != NULL) { addr = simple_strtoul(s, NULL, 16); #if defined(CONFIG_ARCH_MMU) addr = ioremap_nocache(iomem_to_phys(addr), fsl_bmp_600x400_size); #endif memcpy((char *)addr, (char *)fsl_bmp_600x400, fsl_bmp_600x400_size); } } #endif int board_init(void) { /* need set Power Supply Glitch to 0x41736166 *and need clear Power supply Glitch Detect bit * when POR or reboot or power on Otherwise system *could not be power off anymore*/ u32 reg; writel(0x41736166, SNVS_BASE_ADDR + 0x64);/*set LPPGDR*/ udelay(10); reg = readl(SNVS_BASE_ADDR + 0x4c); reg |= (1 << 3); writel(reg, SNVS_BASE_ADDR + 0x4c);/*clear LPSR*/ mxc_iomux_v3_init((void *)IOMUXC_BASE_ADDR); #if defined CONFIG_MX6Q mxc_iomux_v3_setup_pad(MX6Q_PAD_NANDF_D6__GPIO_2_6); #elif defined CONFIG_MX6DL mxc_iomux_v3_setup_pad(MX6DL_PAD_NANDF_D6__GPIO_2_6); #endif gpio_direction_output(HDMIDONGLE_CHG_SYS_ON, 1); setup_boot_device(); fsl_set_system_rev(); /* board id for linux */ gd->bd->bi_arch_number = MACH_TYPE_MX6Q_HDMIDONGLE; /* address of boot parameters */ gd->bd->bi_boot_params = PHYS_SDRAM_1 + 0x100; setup_uart(); if (cpu_is_mx6q()) setup_sata(); #ifdef CONFIG_VIDEO_MX5 /* Enable lvds power */ setup_lvds_poweron(); panel_info_init(); gd->fb_base = CONFIG_FB_BASE; #ifdef CONFIG_ARCH_MMU gd->fb_base = ioremap_nocache(iomem_to_phys(gd->fb_base), 0); #endif #endif #ifdef CONFIG_NAND_GPMI setup_gpmi_nand(); #endif return 0; } #ifdef CONFIG_ANDROID_RECOVERY int check_recovery_cmd_file(void) { int button_pressed = 0; int recovery_mode = 0; recovery_mode = check_and_clean_recovery_flag(); /* Check Recovery Combo Button press or not. */ mxc_iomux_v3_setup_pad(MX6X_IOMUX(PAD_ENET_RXD0__GPIO_1_27)); gpio_direction_input(GPIO_REVB_POWER_KEY); if (gpio_get_value(GPIO_REVB_POWER_KEY) == 0) { /* VOL_DN key is low assert */ button_pressed = 1; printf("Recovery key pressed\n"); } return recovery_mode || button_pressed; } #endif int board_late_init(void) { #ifdef CONFIG_I2C_MXC setup_i2c(CONFIG_SYS_I2C_PORT); i2c_bus_recovery(); setup_pmic_voltages(); #endif return 0; } #ifdef CONFIG_MXC_FEC static int phy_read(char *devname, unsigned char addr, unsigned char reg, unsigned short *pdata) { int ret = miiphy_read(devname, addr, reg, pdata); if (ret) printf("Error reading from %s PHY addr=%02x reg=%02x\n", devname, addr, reg); return ret; } static int phy_write(char *devname, unsigned char addr, unsigned char reg, unsigned short value) { int ret = miiphy_write(devname, addr, reg, value); if (ret) printf("Error writing to %s PHY addr=%02x reg=%02x\n", devname, addr, reg); return ret; } int mx6_rgmii_rework(char *devname, int phy_addr) { unsigned short val; /* To enable AR8031 ouput a 125MHz clk from CLK_25M */ phy_write(devname, phy_addr, 0xd, 0x7); phy_write(devname, phy_addr, 0xe, 0x8016); phy_write(devname, phy_addr, 0xd, 0x4007); phy_read(devname, phy_addr, 0xe, &val); val &= 0xffe3; val |= 0x18; phy_write(devname, phy_addr, 0xe, val); /* introduce tx clock delay */ phy_write(devname, phy_addr, 0x1d, 0x5); phy_read(devname, phy_addr, 0x1e, &val); val |= 0x0100; phy_write(devname, phy_addr, 0x1e, val); return 0; } #if defined CONFIG_MX6Q iomux_v3_cfg_t enet_pads[] = { MX6Q_PAD_ENET_MDIO__ENET_MDIO, MX6Q_PAD_ENET_MDC__ENET_MDC, MX6Q_PAD_RGMII_TXC__ENET_RGMII_TXC, MX6Q_PAD_RGMII_TD0__ENET_RGMII_TD0, MX6Q_PAD_RGMII_TD1__ENET_RGMII_TD1, MX6Q_PAD_RGMII_TD2__ENET_RGMII_TD2, MX6Q_PAD_RGMII_TD3__ENET_RGMII_TD3, MX6Q_PAD_RGMII_TX_CTL__ENET_RGMII_TX_CTL, MX6Q_PAD_ENET_REF_CLK__ENET_TX_CLK, MX6Q_PAD_RGMII_RXC__ENET_RGMII_RXC, MX6Q_PAD_RGMII_RD0__ENET_RGMII_RD0, MX6Q_PAD_RGMII_RD1__ENET_RGMII_RD1, MX6Q_PAD_RGMII_RD2__ENET_RGMII_RD2, MX6Q_PAD_RGMII_RD3__ENET_RGMII_RD3, MX6Q_PAD_RGMII_RX_CTL__ENET_RGMII_RX_CTL, MX6Q_PAD_GPIO_0__CCM_CLKO, MX6Q_PAD_GPIO_3__CCM_CLKO2, }; #elif defined CONFIG_MX6DL iomux_v3_cfg_t enet_pads[] = { MX6DL_PAD_ENET_MDIO__ENET_MDIO, MX6DL_PAD_ENET_MDC__ENET_MDC, MX6DL_PAD_RGMII_TXC__ENET_RGMII_TXC, MX6DL_PAD_RGMII_TD0__ENET_RGMII_TD0, MX6DL_PAD_RGMII_TD1__ENET_RGMII_TD1, MX6DL_PAD_RGMII_TD2__ENET_RGMII_TD2, MX6DL_PAD_RGMII_TD3__ENET_RGMII_TD3, MX6DL_PAD_RGMII_TX_CTL__ENET_RGMII_TX_CTL, MX6DL_PAD_ENET_REF_CLK__ENET_TX_CLK, MX6DL_PAD_RGMII_RXC__ENET_RGMII_RXC, MX6DL_PAD_RGMII_RD0__ENET_RGMII_RD0, MX6DL_PAD_RGMII_RD1__ENET_RGMII_RD1, MX6DL_PAD_RGMII_RD2__ENET_RGMII_RD2, MX6DL_PAD_RGMII_RD3__ENET_RGMII_RD3, MX6DL_PAD_RGMII_RX_CTL__ENET_RGMII_RX_CTL, MX6DL_PAD_GPIO_0__CCM_CLKO, }; #endif void enet_board_init(void) { unsigned int reg; #if defined CONFIG_MX6Q iomux_v3_cfg_t enet_reset = (_MX6Q_PAD_ENET_CRS_DV__GPIO_1_25 & ~MUX_PAD_CTRL_MASK) | MUX_PAD_CTRL(0x88); #elif defined CONFIG_MX6DL iomux_v3_cfg_t enet_reset = (MX6DL_PAD_ENET_CRS_DV__GPIO_1_25 & ~MUX_PAD_CTRL_MASK) | MUX_PAD_CTRL(0x88); #endif mxc_iomux_v3_setup_multiple_pads(enet_pads, ARRAY_SIZE(enet_pads)); mxc_iomux_v3_setup_pad(enet_reset); /* phy reset: gpio1-25 */ reg = readl(GPIO1_BASE_ADDR + 0x0); reg &= ~0x2000000; writel(reg, GPIO1_BASE_ADDR + 0x0); reg = readl(GPIO1_BASE_ADDR + 0x4); reg |= 0x2000000; writel(reg, GPIO1_BASE_ADDR + 0x4); udelay(500); reg = readl(GPIO1_BASE_ADDR + 0x0); reg |= 0x2000000; writel(reg, GPIO1_BASE_ADDR + 0x0); } #endif int checkboard(void) { printf("Board: %s-HDMIDONGLE: %s Board: 0x%x [", mx6_chip_name(), mx6_board_rev_name(), fsl_system_rev); switch (__REG(SRC_BASE_ADDR + 0x8)) { case 0x0001: printf("POR"); break; case 0x0009: printf("RST"); break; case 0x0010: case 0x0011: printf("WDOG"); break; default: printf("unknown"); } printf(" ]\n"); printf("Boot Device: "); switch (get_boot_device()) { case WEIM_NOR_BOOT: printf("NOR\n"); break; case ONE_NAND_BOOT: printf("ONE NAND\n"); break; case PATA_BOOT: printf("PATA\n"); break; case SATA_BOOT: printf("SATA\n"); break; case I2C_BOOT: printf("I2C\n"); break; case SPI_NOR_BOOT: printf("SPI NOR\n"); break; case SD_BOOT: printf("SD\n"); break; case MMC_BOOT: printf("MMC\n"); break; case NAND_BOOT: printf("NAND\n"); break; case UNKNOWN_BOOT: default: printf("UNKNOWN\n"); break; } return 0; } #ifdef CONFIG_IMX_UDC void udc_pins_setting(void) { mxc_iomux_v3_setup_pad(MX6X_IOMUX(PAD_GPIO_1__USBOTG_ID)); mxc_iomux_v3_setup_pad(MX6X_IOMUX(PAD_KEY_ROW4__GPIO_4_15)); if (mx6_board_is_reva()) mxc_iomux_v3_setup_pad(MX6X_IOMUX(PAD_KEY_COL4__GPIO_4_14)); /* set USB_OTG_PWR to 0 */ gpio_direction_output(USB_OTG_PWR, 0); /* set USB_H1_POWER to 1 */ if (mx6_board_is_reva()) gpio_direction_output(USB_H1_POWER, 1); mxc_iomux_set_gpr_register(1, 13, 1, 0); } #endif