/* * (Cg) Copyright 2007-2008 * Matthias Fuchs, esd gmbh, matthias.fuchs@esd-electronics.com. * Based on board/amcc/sequoia/sequoia.c * * (C) Copyright 2006 * Stefan Roese, DENX Software Engineering, sr@denx.de. * * (C) Copyright 2006 * Jacqueline Pira-Ferriol, AMCC/IBM, jpira-ferriol@fr.ibm.com * Alain Saurel, AMCC/IBM, alain.saurel@fr.ibm.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #include <libfdt.h> #include <fdt_support.h> #include <ppc440.h> #include <asm/processor.h> #include <asm/io.h> #include <asm/bitops.h> #include <command.h> #include <i2c.h> #ifdef CONFIG_RESET_PHY_R #include <miiphy.h> #endif #include <serial.h> #include "fpga.h" #include "pmc440.h" DECLARE_GLOBAL_DATA_PTR; extern flash_info_t flash_info[CONFIG_SYS_MAX_FLASH_BANKS]; /* info for FLASH chips */ extern void __ft_board_setup(void *blob, bd_t *bd); ulong flash_get_size(ulong base, int banknum); int pci_is_66mhz(void); int is_monarch(void); int bootstrap_eeprom_read(unsigned dev_addr, unsigned offset, uchar *buffer, unsigned cnt); struct serial_device *default_serial_console(void) { uchar buf[4]; ulong delay; int i; ulong val; /* * Use default console on P4 when strapping jumper * is installed (bootstrap option != 'H'). */ mfsdr(SDR0_PINSTP, val); if (((val & 0xf0000000) >> 29) != 7) return &serial1_device; ulong scratchreg = in_be32((void*)GPIO0_ISR3L); if (!(scratchreg & 0x80)) { /* mark scratchreg valid */ scratchreg = (scratchreg & 0xffffff00) | 0x80; i = bootstrap_eeprom_read(CONFIG_SYS_I2C_BOOT_EEPROM_ADDR, 0x10, buf, 4); if ((i != -1) && (buf[0] == 0x19) && (buf[1] == 0x75)) { scratchreg |= buf[2]; /* bringup delay for console */ for (delay=0; delay<(1000 * (ulong)buf[3]); delay++) { udelay(1000); } } else scratchreg |= 0x01; out_be32((void*)GPIO0_ISR3L, scratchreg); } if (scratchreg & 0x01) return &serial1_device; else return &serial0_device; } int board_early_init_f(void) { u32 sdr0_cust0; u32 sdr0_pfc1, sdr0_pfc2; u32 reg; /* general EBC configuration (disable EBC timeouts) */ mtdcr(EBC0_CFGADDR, EBC0_CFG); mtdcr(EBC0_CFGDATA, 0xf8400000); /* * Setup the GPIO pins * TODO: setup GPIOs via CONFIG_SYS_4xx_GPIO_TABLE in board's config file */ out_be32((void *)GPIO0_OR, 0x40000102); out_be32((void *)GPIO0_TCR, 0x4c90011f); out_be32((void *)GPIO0_OSRL, 0x28051400); out_be32((void *)GPIO0_OSRH, 0x55005000); out_be32((void *)GPIO0_TSRL, 0x08051400); out_be32((void *)GPIO0_TSRH, 0x55005000); out_be32((void *)GPIO0_ISR1L, 0x54000000); out_be32((void *)GPIO0_ISR1H, 0x00000000); out_be32((void *)GPIO0_ISR2L, 0x44000000); out_be32((void *)GPIO0_ISR2H, 0x00000100); out_be32((void *)GPIO0_ISR3L, 0x00000000); out_be32((void *)GPIO0_ISR3H, 0x00000000); out_be32((void *)GPIO1_OR, 0x80002408); out_be32((void *)GPIO1_TCR, 0xd6003c08); out_be32((void *)GPIO1_OSRL, 0x0a5a0000); out_be32((void *)GPIO1_OSRH, 0x00000000); out_be32((void *)GPIO1_TSRL, 0x00000000); out_be32((void *)GPIO1_TSRH, 0x00000000); out_be32((void *)GPIO1_ISR1L, 0x00005555); out_be32((void *)GPIO1_ISR1H, 0x40000000); out_be32((void *)GPIO1_ISR2L, 0x04010000); out_be32((void *)GPIO1_ISR2H, 0x00000000); out_be32((void *)GPIO1_ISR3L, 0x01400000); out_be32((void *)GPIO1_ISR3H, 0x00000000); /* patch PLB:PCI divider for 66MHz PCI */ mfcpr(CPR0_SPCID, reg); if (pci_is_66mhz() && (reg != 0x02000000)) { mtcpr(CPR0_SPCID, 0x02000000); /* 133MHZ : 2 for 66MHz PCI */ mfcpr(CPR0_ICFG, reg); reg |= CPR0_ICFG_RLI_MASK; mtcpr(CPR0_ICFG, reg); mtspr(SPRN_DBCR0, 0x20000000); /* do chip reset */ } /* * Setup the interrupt controller polarities, triggers, etc. */ mtdcr(UIC0SR, 0xffffffff); /* clear all */ mtdcr(UIC0ER, 0x00000000); /* disable all */ mtdcr(UIC0CR, 0x00000005); /* ATI & UIC1 crit are critical */ mtdcr(UIC0PR, 0xfffff7ef); mtdcr(UIC0TR, 0x00000000); mtdcr(UIC0VR, 0x00000000); /* int31 highest, base=0x000 */ mtdcr(UIC0SR, 0xffffffff); /* clear all */ mtdcr(UIC1SR, 0xffffffff); /* clear all */ mtdcr(UIC1ER, 0x00000000); /* disable all */ mtdcr(UIC1CR, 0x00000000); /* all non-critical */ mtdcr(UIC1PR, 0xffffc7f5); mtdcr(UIC1TR, 0x00000000); mtdcr(UIC1VR, 0x00000000); /* int31 highest, base=0x000 */ mtdcr(UIC1SR, 0xffffffff); /* clear all */ mtdcr(UIC2SR, 0xffffffff); /* clear all */ mtdcr(UIC2ER, 0x00000000); /* disable all */ mtdcr(UIC2CR, 0x00000000); /* all non-critical */ mtdcr(UIC2PR, 0x27ffffff); mtdcr(UIC2TR, 0x00000000); mtdcr(UIC2VR, 0x00000000); /* int31 highest, base=0x000 */ mtdcr(UIC2SR, 0xffffffff); /* clear all */ /* select Ethernet pins */ mfsdr(SDR0_PFC1, sdr0_pfc1); sdr0_pfc1 = (sdr0_pfc1 & ~SDR0_PFC1_SELECT_MASK) | SDR0_PFC1_SELECT_CONFIG_4; mfsdr(SDR0_PFC2, sdr0_pfc2); sdr0_pfc2 = (sdr0_pfc2 & ~SDR0_PFC2_SELECT_MASK) | SDR0_PFC2_SELECT_CONFIG_4; /* enable 2nd IIC */ sdr0_pfc1 = (sdr0_pfc1 & ~SDR0_PFC1_SIS_MASK) | SDR0_PFC1_SIS_IIC1_SEL; mtsdr(SDR0_PFC2, sdr0_pfc2); mtsdr(SDR0_PFC1, sdr0_pfc1); /* setup NAND FLASH */ mfsdr(SDR0_CUST0, sdr0_cust0); sdr0_cust0 = SDR0_CUST0_MUX_NDFC_SEL | SDR0_CUST0_NDFC_ENABLE | SDR0_CUST0_NDFC_BW_8_BIT | SDR0_CUST0_NDFC_ARE_MASK | (0x80000000 >> (28 + CONFIG_SYS_NAND_CS)); mtsdr(SDR0_CUST0, sdr0_cust0); return 0; } #if defined(CONFIG_MISC_INIT_F) int misc_init_f(void) { struct pci_controller hose; hose.first_busno = 0; hose.last_busno = 0; hose.region_count = 0; if (getenv("pciearly") && (!is_monarch())) { printf("PCI: early target init\n"); pci_setup_indirect(&hose, PCIL0_CFGADR, PCIL0_CFGDATA); pci_target_init(&hose); } return 0; } #endif /* * misc_init_r. */ int misc_init_r(void) { uint pbcr; int size_val = 0; u32 reg; unsigned long usb2d0cr = 0; unsigned long usb2phy0cr, usb2h0cr = 0; unsigned long sdr0_pfc1; unsigned long sdr0_srst0, sdr0_srst1; char *act = getenv("usbact"); /* * FLASH stuff... */ /* Re-do sizing to get full correct info */ /* adjust flash start and offset */ gd->bd->bi_flashstart = 0 - gd->bd->bi_flashsize; gd->bd->bi_flashoffset = 0; #if defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) mtdcr(EBC0_CFGADDR, PB2CR); #else mtdcr(EBC0_CFGADDR, PB0CR); #endif pbcr = mfdcr(EBC0_CFGDATA); size_val = ffs(gd->bd->bi_flashsize) - 21; pbcr = (pbcr & 0x0001ffff) | gd->bd->bi_flashstart | (size_val << 17); #if defined(CONFIG_NAND_U_BOOT) || defined(CONFIG_NAND_SPL) mtdcr(EBC0_CFGADDR, PB2CR); #else mtdcr(EBC0_CFGADDR, PB0CR); #endif mtdcr(EBC0_CFGDATA, pbcr); /* * Re-check to get correct base address */ flash_get_size(gd->bd->bi_flashstart, 0); #ifdef CONFIG_ENV_IS_IN_FLASH /* Monitor protection ON by default */ (void)flash_protect(FLAG_PROTECT_SET, -CONFIG_SYS_MONITOR_LEN, 0xffffffff, &flash_info[0]); /* Env protection ON by default */ (void)flash_protect(FLAG_PROTECT_SET, CONFIG_ENV_ADDR_REDUND, CONFIG_ENV_ADDR_REDUND + 2*CONFIG_ENV_SECT_SIZE - 1, &flash_info[0]); #endif /* * USB suff... */ if ((act == NULL || strcmp(act, "host") == 0) && !(in_be32((void*)GPIO0_IR) & GPIO0_USB_PRSNT)){ /* SDR Setting */ mfsdr(SDR0_PFC1, sdr0_pfc1); mfsdr(SDR0_USB2D0CR, usb2d0cr); mfsdr(SDR0_USB2PHY0CR, usb2phy0cr); mfsdr(SDR0_USB2H0CR, usb2h0cr); usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_XOCLK_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_XOCLK_EXTERNAL; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_WDINT_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_WDINT_16BIT_30MHZ; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_DVBUS_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_DVBUS_PURDIS; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_DWNSTR_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_DWNSTR_HOST; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_UTMICN_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_UTMICN_HOST; /* * An 8-bit/60MHz interface is the only possible alternative * when connecting the Device to the PHY */ usb2h0cr = usb2h0cr &~SDR0_USB2H0CR_WDINT_MASK; usb2h0cr = usb2h0cr | SDR0_USB2H0CR_WDINT_16BIT_30MHZ; usb2d0cr = usb2d0cr &~SDR0_USB2D0CR_USB2DEV_EBC_SEL_MASK; sdr0_pfc1 = sdr0_pfc1 &~SDR0_PFC1_UES_MASK; mtsdr(SDR0_PFC1, sdr0_pfc1); mtsdr(SDR0_USB2D0CR, usb2d0cr); mtsdr(SDR0_USB2PHY0CR, usb2phy0cr); mtsdr(SDR0_USB2H0CR, usb2h0cr); /* * Take USB out of reset: * -Initial status = all cores are in reset * -deassert reset to OPB1, P4OPB0, OPB2, PLB42OPB1 OPB2PLB40 cores * -wait 1 ms * -deassert reset to PHY * -wait 1 ms * -deassert reset to HOST * -wait 4 ms * -deassert all other resets */ mfsdr(SDR0_SRST1, sdr0_srst1); sdr0_srst1 &= ~(SDR0_SRST1_OPBA1 | \ SDR0_SRST1_P4OPB0 | \ SDR0_SRST1_OPBA2 | \ SDR0_SRST1_PLB42OPB1 | \ SDR0_SRST1_OPB2PLB40); mtsdr(SDR0_SRST1, sdr0_srst1); udelay(1000); mfsdr(SDR0_SRST1, sdr0_srst1); sdr0_srst1 &= ~SDR0_SRST1_USB20PHY; mtsdr(SDR0_SRST1, sdr0_srst1); udelay(1000); mfsdr(SDR0_SRST0, sdr0_srst0); sdr0_srst0 &= ~SDR0_SRST0_USB2H; mtsdr(SDR0_SRST0, sdr0_srst0); udelay(4000); /* finally all the other resets */ mtsdr(SDR0_SRST1, 0x00000000); mtsdr(SDR0_SRST0, 0x00000000); if (!(in_be32((void*)GPIO0_IR) & GPIO0_USB_PRSNT)) { /* enable power on USB socket */ out_be32((void*)GPIO1_OR, in_be32((void*)GPIO1_OR) & ~GPIO1_USB_PWR_N); } printf("USB: Host\n"); } else if ((strcmp(act, "dev") == 0) || (in_be32((void*)GPIO0_IR) & GPIO0_USB_PRSNT)) { mfsdr(SDR0_USB2PHY0CR, usb2phy0cr); usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_XOCLK_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_XOCLK_EXTERNAL; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_DVBUS_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_DVBUS_PURDIS; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_DWNSTR_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_DWNSTR_HOST; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_UTMICN_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_UTMICN_HOST; mtsdr(SDR0_USB2PHY0CR, usb2phy0cr); udelay (1000); mtsdr(SDR0_SRST1, 0x672c6000); udelay (1000); mtsdr(SDR0_SRST0, 0x00000080); udelay (1000); mtsdr(SDR0_SRST1, 0x60206000); *(unsigned int *)(0xe0000350) = 0x00000001; udelay (1000); mtsdr(SDR0_SRST1, 0x60306000); /* SDR Setting */ mfsdr(SDR0_USB2PHY0CR, usb2phy0cr); mfsdr(SDR0_USB2H0CR, usb2h0cr); mfsdr(SDR0_USB2D0CR, usb2d0cr); mfsdr(SDR0_PFC1, sdr0_pfc1); usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_XOCLK_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_XOCLK_EXTERNAL; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_WDINT_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_WDINT_8BIT_60MHZ; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_DVBUS_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_DVBUS_PUREN; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_DWNSTR_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_DWNSTR_DEV; usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_UTMICN_MASK; usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_UTMICN_DEV; usb2h0cr = usb2h0cr &~SDR0_USB2H0CR_WDINT_MASK; usb2h0cr = usb2h0cr | SDR0_USB2H0CR_WDINT_8BIT_60MHZ; usb2d0cr = usb2d0cr &~SDR0_USB2D0CR_USB2DEV_EBC_SEL_MASK; sdr0_pfc1 = sdr0_pfc1 &~SDR0_PFC1_UES_MASK; sdr0_pfc1 = sdr0_pfc1 | SDR0_PFC1_UES_EBCHR_SEL; mtsdr(SDR0_USB2H0CR, usb2h0cr); mtsdr(SDR0_USB2PHY0CR, usb2phy0cr); mtsdr(SDR0_USB2D0CR, usb2d0cr); mtsdr(SDR0_PFC1, sdr0_pfc1); /*clear resets*/ udelay(1000); mtsdr(SDR0_SRST1, 0x00000000); udelay(1000); mtsdr(SDR0_SRST0, 0x00000000); printf("USB: Device\n"); } /* * Clear PLB4A0_ACR[WRP] * This fix will make the MAL burst disabling patch for the Linux * EMAC driver obsolete. */ reg = mfdcr(PLB4_ACR) & ~PLB4_ACR_WRP; mtdcr(PLB4_ACR, reg); #ifdef CONFIG_FPGA pmc440_init_fpga(); #endif /* turn off POST LED */ out_be32((void*)GPIO1_OR, in_be32((void*)GPIO1_OR) & ~GPIO1_POST_N); /* turn on RUN LED */ out_be32((void*)GPIO0_OR, in_be32((void*)GPIO0_OR) & ~GPIO0_LED_RUN_N); return 0; } int is_monarch(void) { if (in_be32((void*)GPIO1_IR) & GPIO1_NONMONARCH) return 0; return 1; } int pci_is_66mhz(void) { if (in_be32((void*)GPIO1_IR) & GPIO1_M66EN) return 1; return 0; } int board_revision(void) { return (int)((in_be32((void*)GPIO1_IR) & GPIO1_HWID_MASK) >> 4); } int checkboard(void) { puts("Board: esd GmbH - PMC440"); gd->board_type = board_revision(); printf(", Rev 1.%ld, ", gd->board_type); if (!is_monarch()) { puts("non-"); } printf("monarch, PCI=%s MHz\n", pci_is_66mhz() ? "66" : "33"); return (0); } #if defined(CONFIG_PCI) && defined(CONFIG_PCI_PNP) /* * Assign interrupts to PCI devices. Some OSs rely on this. */ void pmc440_pci_fixup_irq(struct pci_controller *hose, pci_dev_t dev) { unsigned char int_line[] = {IRQ_PCIC, IRQ_PCID, IRQ_PCIA, IRQ_PCIB}; pci_hose_write_config_byte(hose, dev, PCI_INTERRUPT_LINE, int_line[PCI_DEV(dev) & 0x03]); } #endif /* * pci_pre_init * * This routine is called just prior to registering the hose and gives * the board the opportunity to check things. Returning a value of zero * indicates that things are bad & PCI initialization should be aborted. * * Different boards may wish to customize the pci controller structure * (add regions, override default access routines, etc) or perform * certain pre-initialization actions. */ #if defined(CONFIG_PCI) int pci_pre_init(struct pci_controller *hose) { unsigned long addr; /* * Set priority for all PLB3 devices to 0. * Set PLB3 arbiter to fair mode. */ mfsdr(SD0_AMP1, addr); mtsdr(SD0_AMP1, (addr & 0x000000FF) | 0x0000FF00); addr = mfdcr(PLB3_ACR); mtdcr(PLB3_ACR, addr | 0x80000000); /* * Set priority for all PLB4 devices to 0. */ mfsdr(SD0_AMP0, addr); mtsdr(SD0_AMP0, (addr & 0x000000FF) | 0x0000FF00); addr = mfdcr(PLB4_ACR) | 0xa0000000; /* Was 0x8---- */ mtdcr(PLB4_ACR, addr); /* * Set Nebula PLB4 arbiter to fair mode. */ /* Segment0 */ addr = (mfdcr(PLB0_ACR) & ~PLB0_ACR_PPM_MASK) | PLB0_ACR_PPM_FAIR; addr = (addr & ~PLB0_ACR_HBU_MASK) | PLB0_ACR_HBU_ENABLED; addr = (addr & ~PLB0_ACR_RDP_MASK) | PLB0_ACR_RDP_4DEEP; addr = (addr & ~PLB0_ACR_WRP_MASK) | PLB0_ACR_WRP_2DEEP; mtdcr(PLB0_ACR, addr); /* Segment1 */ addr = (mfdcr(PLB1_ACR) & ~PLB1_ACR_PPM_MASK) | PLB1_ACR_PPM_FAIR; addr = (addr & ~PLB1_ACR_HBU_MASK) | PLB1_ACR_HBU_ENABLED; addr = (addr & ~PLB1_ACR_RDP_MASK) | PLB1_ACR_RDP_4DEEP; addr = (addr & ~PLB1_ACR_WRP_MASK) | PLB1_ACR_WRP_2DEEP; mtdcr(PLB1_ACR, addr); #ifdef CONFIG_PCI_PNP hose->fixup_irq = pmc440_pci_fixup_irq; #endif return 1; } #endif /* defined(CONFIG_PCI) */ /* * pci_target_init * * The bootstrap configuration provides default settings for the pci * inbound map (PIM). But the bootstrap config choices are limited and * may not be sufficient for a given board. */ #if defined(CONFIG_PCI) && defined(CONFIG_SYS_PCI_TARGET_INIT) void pci_target_init(struct pci_controller *hose) { char *ptmla_str, *ptmms_str; /* * Set up Direct MMIO registers */ /* * PowerPC440EPX PCI Master configuration. * Map one 1Gig range of PLB/processor addresses to PCI memory space. * PLB address 0x80000000-0xBFFFFFFF * ==> PCI address 0x80000000-0xBFFFFFFF * Use byte reversed out routines to handle endianess. * Make this region non-prefetchable. */ out32r(PCIL0_PMM0MA, 0x00000000); /* PMM0 Mask/Attribute */ /* - disabled b4 setting */ out32r(PCIL0_PMM0LA, CONFIG_SYS_PCI_MEMBASE); /* PMM0 Local Address */ out32r(PCIL0_PMM0PCILA, CONFIG_SYS_PCI_MEMBASE); /* PMM0 PCI Low Address */ out32r(PCIL0_PMM0PCIHA, 0x00000000); /* PMM0 PCI High Address */ out32r(PCIL0_PMM0MA, 0xc0000001); /* 1G + No prefetching, */ /* and enable region */ if (!is_monarch()) { ptmla_str = getenv("ptm1la"); ptmms_str = getenv("ptm1ms"); if(NULL != ptmla_str && NULL != ptmms_str ) { out32r(PCIL0_PTM1MS, simple_strtoul(ptmms_str, NULL, 16)); out32r(PCIL0_PTM1LA, simple_strtoul(ptmla_str, NULL, 16)); } else { /* BAR1: default top 64MB of RAM */ out32r(PCIL0_PTM1MS, 0xfc000001); out32r(PCIL0_PTM1LA, 0x0c000000); } } else { /* BAR1: default: complete 256MB RAM */ out32r(PCIL0_PTM1MS, 0xf0000001); out32r(PCIL0_PTM1LA, 0x00000000); } ptmla_str = getenv("ptm2la"); /* Local Addr. Reg */ ptmms_str = getenv("ptm2ms"); /* Memory Size/Attribute */ if(NULL != ptmla_str && NULL != ptmms_str ) { out32r(PCIL0_PTM2MS, simple_strtoul(ptmms_str, NULL, 16)); out32r(PCIL0_PTM2LA, simple_strtoul(ptmla_str, NULL, 16)); } else { /* BAR2: default: 4MB FPGA */ out32r(PCIL0_PTM2MS, 0xffc00001); /* Memory Size/Attribute */ out32r(PCIL0_PTM2LA, 0xef000000); /* Local Addr. Reg */ } if (is_monarch()) { /* BAR2: map FPGA registers behind system memory at 1GB */ pci_hose_write_config_dword(hose, 0, PCI_BASE_ADDRESS_2, 0x40000008); } /* * Set up Configuration registers */ /* Program the board's vendor id */ pci_hose_write_config_word(hose, 0, PCI_SUBSYSTEM_VENDOR_ID, CONFIG_SYS_PCI_SUBSYS_VENDORID); /* disabled for PMC405 backward compatibility */ /* Configure command register as bus master */ /* pci_write_config_word(0, PCI_COMMAND, PCI_COMMAND_MASTER); */ /* 240nS PCI clock */ pci_hose_write_config_word(hose, 0, PCI_LATENCY_TIMER, 1); /* No error reporting */ pci_hose_write_config_word(hose, 0, PCI_ERREN, 0); pci_write_config_dword(0, PCI_BRDGOPT2, 0x00000101); if (!is_monarch()) { /* Program the board's subsystem id/classcode */ pci_hose_write_config_word(hose, 0, PCI_SUBSYSTEM_ID, CONFIG_SYS_PCI_SUBSYS_ID_NONMONARCH); pci_hose_write_config_word(hose, 0, PCI_CLASS_SUB_CODE, CONFIG_SYS_PCI_CLASSCODE_NONMONARCH); /* PCI configuration done: release ERREADY */ out_be32((void*)GPIO1_OR, in_be32((void*)GPIO1_OR) | GPIO1_PPC_EREADY); out_be32((void*)GPIO1_TCR, in_be32((void*)GPIO1_TCR) | GPIO1_PPC_EREADY); } else { /* Program the board's subsystem id/classcode */ pci_hose_write_config_word(hose, 0, PCI_SUBSYSTEM_ID, CONFIG_SYS_PCI_SUBSYS_ID_MONARCH); pci_hose_write_config_word(hose, 0, PCI_CLASS_SUB_CODE, CONFIG_SYS_PCI_CLASSCODE_MONARCH); } /* enable host configuration */ pci_hose_write_config_dword(hose, 0, PCI_BRDGOPT2, 0x00000101); } #endif /* defined(CONFIG_PCI) && defined(CONFIG_SYS_PCI_TARGET_INIT) */ /* * pci_master_init */ #if defined(CONFIG_PCI) && defined(CONFIG_SYS_PCI_MASTER_INIT) void pci_master_init(struct pci_controller *hose) { unsigned short temp_short; /* * Write the PowerPC440 EP PCI Configuration regs. * Enable PowerPC440 EP to be a master on the PCI bus (PMM). * Enable PowerPC440 EP to act as a PCI memory target (PTM). */ if (is_monarch()) { pci_read_config_word(0, PCI_COMMAND, &temp_short); pci_write_config_word(0, PCI_COMMAND, temp_short | PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY); } } #endif /* defined(CONFIG_PCI) && defined(CONFIG_SYS_PCI_MASTER_INIT) */ static void wait_for_pci_ready(void) { int i; char *s = getenv("pcidelay"); /* * We have our own handling of the pcidelay variable. * Using CONFIG_PCI_BOOTDELAY enables pausing for host * and adapter devices. For adapter devices we do not * want this. */ if (s) { int ms = simple_strtoul(s, NULL, 10); printf("PCI: Waiting for %d ms\n", ms); for (i=0; i<ms; i++) udelay(1000); } if (!(in_be32((void*)GPIO1_IR) & GPIO1_PPC_EREADY)) { printf("PCI: Waiting for EREADY (CTRL-C to skip) ... "); while (1) { if (ctrlc()) { puts("abort\n"); break; } if (in_be32((void*)GPIO1_IR) & GPIO1_PPC_EREADY) { printf("done\n"); break; } } } } /* * is_pci_host * * This routine is called to determine if a pci scan should be * performed. With various hardware environments (especially cPCI and * PPMC) it's insufficient to depend on the state of the arbiter enable * bit in the strap register, or generic host/adapter assumptions. * * Rather than hard-code a bad assumption in the general 440 code, the * 440 pci code requires the board to decide at runtime. * * Return 0 for adapter mode, non-zero for host (monarch) mode. */ #if defined(CONFIG_PCI) int is_pci_host(struct pci_controller *hose) { char *s = getenv("pciscan"); if (s == NULL) if (is_monarch()) { wait_for_pci_ready(); return 1; } else return 0; else if (!strcmp(s, "yes")) return 1; return 0; } #endif /* defined(CONFIG_PCI) */ #if defined(CONFIG_POST) /* * Returns 1 if keys pressed to start the power-on long-running tests * Called from board_init_f(). */ int post_hotkeys_pressed(void) { return 0; /* No hotkeys supported */ } #endif /* CONFIG_POST */ #ifdef CONFIG_RESET_PHY_R void reset_phy(void) { char *s; unsigned short val_method, val_behavior; /* special LED setup for NGCC/CANDES */ if ((s = getenv("bd_type")) && ((!strcmp(s, "ngcc")) || (!strcmp(s, "candes")))) { val_method = 0x0e0a; val_behavior = 0x0cf2; } else { /* PMC440 standard type */ val_method = 0x0e10; val_behavior = 0x0cf0; } if (miiphy_write("ppc_4xx_eth0", CONFIG_PHY_ADDR, 0x1f, 0x0001) == 0) { miiphy_write("ppc_4xx_eth0", CONFIG_PHY_ADDR, 0x11, 0x0010); miiphy_write("ppc_4xx_eth0", CONFIG_PHY_ADDR, 0x11, val_behavior); miiphy_write("ppc_4xx_eth0", CONFIG_PHY_ADDR, 0x10, val_method); miiphy_write("ppc_4xx_eth0", CONFIG_PHY_ADDR, 0x1f, 0x0000); } if (miiphy_write("ppc_4xx_eth1", CONFIG_PHY1_ADDR, 0x1f, 0x0001) == 0) { miiphy_write("ppc_4xx_eth1", CONFIG_PHY1_ADDR, 0x11, 0x0010); miiphy_write("ppc_4xx_eth1", CONFIG_PHY1_ADDR, 0x11, val_behavior); miiphy_write("ppc_4xx_eth1", CONFIG_PHY1_ADDR, 0x10, val_method); miiphy_write("ppc_4xx_eth1", CONFIG_PHY1_ADDR, 0x1f, 0x0000); } } #endif #if defined(CONFIG_SYS_EEPROM_WREN) /* * Input: <dev_addr> I2C address of EEPROM device to enable. * <state> -1: deliver current state * 0: disable write * 1: enable write * Returns: -1: wrong device address * 0: dis-/en- able done * 0/1: current state if <state> was -1. */ int eeprom_write_enable(unsigned dev_addr, int state) { if ((CONFIG_SYS_I2C_EEPROM_ADDR != dev_addr) && (CONFIG_SYS_I2C_BOOT_EEPROM_ADDR != dev_addr)) { return -1; } else { switch (state) { case 1: /* Enable write access, clear bit GPIO_SINT2. */ out_be32((void *)GPIO0_OR, in_be32((void *)GPIO0_OR) & ~GPIO0_EP_EEP); state = 0; break; case 0: /* Disable write access, set bit GPIO_SINT2. */ out_be32((void *)GPIO0_OR, in_be32((void *)GPIO0_OR) | GPIO0_EP_EEP); state = 0; break; default: /* Read current status back. */ state = (0 == (in_be32((void *)GPIO0_OR) & GPIO0_EP_EEP)); break; } } return state; } #endif /* #if defined(CONFIG_SYS_EEPROM_WREN) */ #define CONFIG_SYS_BOOT_EEPROM_PAGE_WRITE_BITS 3 int bootstrap_eeprom_write(unsigned dev_addr, unsigned offset, uchar *buffer, unsigned cnt) { unsigned end = offset + cnt; unsigned blk_off; int rcode = 0; #if defined(CONFIG_SYS_EEPROM_WREN) eeprom_write_enable(dev_addr, 1); #endif /* * Write data until done or would cross a write page boundary. * We must write the address again when changing pages * because the address counter only increments within a page. */ while (offset < end) { unsigned alen, len; unsigned maxlen; uchar addr[2]; blk_off = offset & 0xFF; /* block offset */ addr[0] = offset >> 8; /* block number */ addr[1] = blk_off; /* block offset */ alen = 2; addr[0] |= dev_addr; /* insert device address */ len = end - offset; #define BOOT_EEPROM_PAGE_SIZE (1 << CONFIG_SYS_BOOT_EEPROM_PAGE_WRITE_BITS) #define BOOT_EEPROM_PAGE_OFFSET(x) ((x) & (BOOT_EEPROM_PAGE_SIZE - 1)) maxlen = BOOT_EEPROM_PAGE_SIZE - BOOT_EEPROM_PAGE_OFFSET(blk_off); if (maxlen > I2C_RXTX_LEN) maxlen = I2C_RXTX_LEN; if (len > maxlen) len = maxlen; if (i2c_write (addr[0], offset, alen-1, buffer, len) != 0) rcode = 1; buffer += len; offset += len; #if defined(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS) udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000); #endif } #if defined(CONFIG_SYS_EEPROM_WREN) eeprom_write_enable(dev_addr, 0); #endif return rcode; } int bootstrap_eeprom_read (unsigned dev_addr, unsigned offset, uchar *buffer, unsigned cnt) { unsigned end = offset + cnt; unsigned blk_off; int rcode = 0; /* * Read data until done or would cross a page boundary. * We must write the address again when changing pages * because the next page may be in a different device. */ while (offset < end) { unsigned alen, len; unsigned maxlen; uchar addr[2]; blk_off = offset & 0xFF; /* block offset */ addr[0] = offset >> 8; /* block number */ addr[1] = blk_off; /* block offset */ alen = 2; addr[0] |= dev_addr; /* insert device address */ len = end - offset; maxlen = 0x100 - blk_off; if (maxlen > I2C_RXTX_LEN) maxlen = I2C_RXTX_LEN; if (len > maxlen) len = maxlen; if (i2c_read (addr[0], offset, alen-1, buffer, len) != 0) rcode = 1; buffer += len; offset += len; } return rcode; } #if defined(CONFIG_USB_OHCI_NEW) && defined(CONFIG_SYS_USB_OHCI_BOARD_INIT) int usb_board_init(void) { char *act = getenv("usbact"); int i; if ((act == NULL || strcmp(act, "host") == 0) && !(in_be32((void*)GPIO0_IR) & GPIO0_USB_PRSNT)) /* enable power on USB socket */ out_be32((void*)GPIO1_OR, in_be32((void*)GPIO1_OR) & ~GPIO1_USB_PWR_N); for (i=0; i<1000; i++) udelay(1000); return 0; } int usb_board_stop(void) { /* disable power on USB socket */ out_be32((void*)GPIO1_OR, in_be32((void*)GPIO1_OR) | GPIO1_USB_PWR_N); return 0; } int usb_board_init_fail(void) { usb_board_stop(); return 0; } #endif /* defined(CONFIG_USB_OHCI) && defined(CONFIG_SYS_USB_OHCI_BOARD_INIT) */ #if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_OF_BOARD_SETUP) void ft_board_setup(void *blob, bd_t *bd) { int rc; __ft_board_setup(blob, bd); /* * Disable PCI in non-monarch mode. */ if (!is_monarch()) { rc = fdt_find_and_setprop(blob, "/plb/pci@1ec000000", "status", "disabled", sizeof("disabled"), 1); if (rc) { printf("Unable to update property status in PCI node, err=%s\n", fdt_strerror(rc)); } } } #endif /* defined(CONFIG_OF_LIBFDT) && defined(CONFIG_OF_BOARD_SETUP) */