/* * (C) Copyright 2000 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #include <mpc824x.h> #include <asm/processor.h> #include <asm/pci_io.h> #define ROM_CS0_START 0xFF800000 #define ROM_CS1_START 0xFF000000 flash_info_t flash_info[CFG_MAX_FLASH_BANKS]; /* info for FLASH chips */ #if defined(CFG_ENV_IS_IN_FLASH) # ifndef CFG_ENV_ADDR # define CFG_ENV_ADDR (CFG_FLASH_BASE + CFG_ENV_OFFSET) # endif # ifndef CFG_ENV_SIZE # define CFG_ENV_SIZE CFG_ENV_SECT_SIZE # endif # ifndef CFG_ENV_SECT_SIZE # define CFG_ENV_SECT_SIZE CFG_ENV_SIZE # endif #endif /*----------------------------------------------------------------------- * Functions */ static int write_word (flash_info_t * info, ulong dest, ulong data); #if 0 static void flash_get_offsets (ulong base, flash_info_t * info); #endif /* 0 */ /*flash command address offsets*/ #if 0 #define ADDR0 (0x555) #define ADDR1 (0x2AA) #define ADDR3 (0x001) #else #define ADDR0 (0xAAA) #define ADDR1 (0x555) #define ADDR3 (0x001) #endif #define FLASH_WORD_SIZE unsigned char /*----------------------------------------------------------------------- */ #if 0 static int byte_parity_odd (unsigned char x) __attribute__ ((const)); #endif /* 0 */ static unsigned long flash_id (unsigned char mfct, unsigned char chip) __attribute__ ((const)); typedef struct { FLASH_WORD_SIZE extval; unsigned short intval; } map_entry; #if 0 static int byte_parity_odd (unsigned char x) { x ^= x >> 4; x ^= x >> 2; x ^= x >> 1; return (x & 0x1) != 0; } #endif /* 0 */ static unsigned long flash_id (unsigned char mfct, unsigned char chip) { static const map_entry mfct_map[] = { {(FLASH_WORD_SIZE) AMD_MANUFACT, (unsigned short) ((unsigned long) FLASH_MAN_AMD >> 16)}, {(FLASH_WORD_SIZE) FUJ_MANUFACT, (unsigned short) ((unsigned long) FLASH_MAN_FUJ >> 16)}, {(FLASH_WORD_SIZE) STM_MANUFACT, (unsigned short) ((unsigned long) FLASH_MAN_STM >> 16)}, {(FLASH_WORD_SIZE) MT_MANUFACT, (unsigned short) ((unsigned long) FLASH_MAN_MT >> 16)}, {(FLASH_WORD_SIZE) INTEL_MANUFACT, (unsigned short) ((unsigned long) FLASH_MAN_INTEL >> 16)}, {(FLASH_WORD_SIZE) INTEL_ALT_MANU, (unsigned short) ((unsigned long) FLASH_MAN_INTEL >> 16)} }; static const map_entry chip_map[] = { {AMD_ID_F040B, FLASH_AM040}, {(FLASH_WORD_SIZE) STM_ID_x800AB, FLASH_STM800AB} }; const map_entry *p; unsigned long result = FLASH_UNKNOWN; /* find chip id */ for (p = &chip_map[0]; p < &chip_map[sizeof chip_map / sizeof chip_map[0]]; p++) if (p->extval == chip) { result = FLASH_VENDMASK | p->intval; break; } /* find vendor id */ for (p = &mfct_map[0]; p < &mfct_map[sizeof mfct_map / sizeof mfct_map[0]]; p++) if (p->extval == mfct) { result &= ~FLASH_VENDMASK; result |= (unsigned long) p->intval << 16; break; } return result; } unsigned long flash_init (void) { unsigned long i; unsigned char j; static const ulong flash_banks[] = CFG_FLASH_BANKS; /* Init: no FLASHes known */ for (i = 0; i < CFG_MAX_FLASH_BANKS; i++) { flash_info_t *const pflinfo = &flash_info[i]; pflinfo->flash_id = FLASH_UNKNOWN; pflinfo->size = 0; pflinfo->sector_count = 0; } for (i = 0; i < sizeof flash_banks / sizeof flash_banks[0]; i++) { flash_info_t *const pflinfo = &flash_info[i]; const unsigned long base_address = flash_banks[i]; volatile FLASH_WORD_SIZE *const flash = (FLASH_WORD_SIZE *) base_address; #if 0 volatile FLASH_WORD_SIZE *addr2; #endif #if 0 /* write autoselect sequence */ flash[0x5555] = 0xaa; flash[0x2aaa] = 0x55; flash[0x5555] = 0x90; #else flash[0xAAA << (3 * i)] = 0xaa; flash[0x555 << (3 * i)] = 0x55; flash[0xAAA << (3 * i)] = 0x90; #endif __asm__ __volatile__ ("sync"); #if 0 pflinfo->flash_id = flash_id (flash[0x0], flash[0x1]); #else pflinfo->flash_id = flash_id (flash[0x0], flash[0x2 + 14 * i]); #endif switch (pflinfo->flash_id & FLASH_TYPEMASK) { case FLASH_AM040: pflinfo->size = 0x00080000; pflinfo->sector_count = 8; for (j = 0; j < 8; j++) { pflinfo->start[j] = base_address + 0x00010000 * j; pflinfo->protect[j] = flash[(j << 16) | 0x2]; } break; case FLASH_STM800AB: pflinfo->size = 0x00100000; pflinfo->sector_count = 19; pflinfo->start[0] = base_address; pflinfo->start[1] = base_address + 0x4000; pflinfo->start[2] = base_address + 0x6000; pflinfo->start[3] = base_address + 0x8000; for (j = 1; j < 16; j++) { pflinfo->start[j + 3] = base_address + 0x00010000 * j; } #if 0 /* check for protected sectors */ for (j = 0; j < pflinfo->sector_count; j++) { /* read sector protection at sector address, (A7 .. A0) = 0x02 */ /* D0 = 1 if protected */ addr2 = (volatile FLASH_WORD_SIZE *) (pflinfo->start[j]); if (pflinfo->flash_id & FLASH_MAN_SST) pflinfo->protect[j] = 0; else pflinfo->protect[j] = addr2[2] & 1; } #endif break; } /* Protect monitor and environment sectors */ #if CFG_MONITOR_BASE >= CFG_FLASH_BASE flash_protect (FLAG_PROTECT_SET, CFG_MONITOR_BASE, CFG_MONITOR_BASE + monitor_flash_len - 1, &flash_info[0]); #endif #if (CFG_ENV_IS_IN_FLASH == 1) && defined(CFG_ENV_ADDR) flash_protect (FLAG_PROTECT_SET, CFG_ENV_ADDR, CFG_ENV_ADDR + CFG_ENV_SIZE - 1, &flash_info[0]); #endif /* reset device to read mode */ flash[0x0000] = 0xf0; __asm__ __volatile__ ("sync"); } return flash_info[0].size + flash_info[1].size; } #if 0 static void flash_get_offsets (ulong base, flash_info_t * info) { int i; /* set up sector start address table */ if (info->flash_id & FLASH_MAN_SST) { for (i = 0; i < info->sector_count; i++) info->start[i] = base + (i * 0x00010000); } else if (info->flash_id & FLASH_BTYPE) { /* set sector offsets for bottom boot block type */ info->start[0] = base + 0x00000000; info->start[1] = base + 0x00004000; info->start[2] = base + 0x00006000; info->start[3] = base + 0x00008000; for (i = 4; i < info->sector_count; i++) { info->start[i] = base + (i * 0x00010000) - 0x00030000; } } else { /* set sector offsets for top boot block type */ i = info->sector_count - 1; info->start[i--] = base + info->size - 0x00004000; info->start[i--] = base + info->size - 0x00006000; info->start[i--] = base + info->size - 0x00008000; for (; i >= 0; i--) { info->start[i] = base + i * 0x00010000; } } } #endif /* 0 */ /*----------------------------------------------------------------------- */ void flash_print_info (flash_info_t * info) { static const char unk[] = "Unknown"; const char *mfct = unk, *type = unk; unsigned int i; if (info->flash_id != FLASH_UNKNOWN) { switch (info->flash_id & FLASH_VENDMASK) { case FLASH_MAN_AMD: mfct = "AMD"; break; case FLASH_MAN_FUJ: mfct = "FUJITSU"; break; case FLASH_MAN_STM: mfct = "STM"; break; case FLASH_MAN_SST: mfct = "SST"; break; case FLASH_MAN_BM: mfct = "Bright Microelectonics"; break; case FLASH_MAN_INTEL: mfct = "Intel"; break; } switch (info->flash_id & FLASH_TYPEMASK) { case FLASH_AM040: type = "AM29F040B (512K * 8, uniform sector size)"; break; case FLASH_AM400B: type = "AM29LV400B (4 Mbit, bottom boot sect)"; break; case FLASH_AM400T: type = "AM29LV400T (4 Mbit, top boot sector)"; break; case FLASH_AM800B: type = "AM29LV800B (8 Mbit, bottom boot sect)"; break; case FLASH_AM800T: type = "AM29LV800T (8 Mbit, top boot sector)"; break; case FLASH_AM160T: type = "AM29LV160T (16 Mbit, top boot sector)"; break; case FLASH_AM320B: type = "AM29LV320B (32 Mbit, bottom boot sect)"; break; case FLASH_AM320T: type = "AM29LV320T (32 Mbit, top boot sector)"; break; case FLASH_STM800AB: type = "M29W800AB (8 Mbit, bottom boot sect)"; break; case FLASH_SST800A: type = "SST39LF/VF800 (8 Mbit, uniform sector size)"; break; case FLASH_SST160A: type = "SST39LF/VF160 (16 Mbit, uniform sector size)"; break; } } printf ("\n Brand: %s Type: %s\n" " Size: %lu KB in %d Sectors\n", mfct, type, info->size >> 10, info->sector_count); printf (" Sector Start Addresses:"); for (i = 0; i < info->sector_count; i++) { unsigned long size; unsigned int erased; unsigned long *flash = (unsigned long *) info->start[i]; /* * Check if whole sector is erased */ size = (i != (info->sector_count - 1)) ? (info->start[i + 1] - info->start[i]) >> 2 : (info->start[0] + info->size - info->start[i]) >> 2; for (flash = (unsigned long *) info->start[i], erased = 1; (flash != (unsigned long *) info->start[i] + size) && erased; flash++) erased = *flash == ~0x0UL; printf ("%s %08lX %s %s", (i % 5) ? "" : "\n ", info->start[i], erased ? "E" : " ", info->protect[i] ? "RO" : " "); } puts ("\n"); return; } #if 0 /* * The following code cannot be run from FLASH! */ ulong flash_get_size (vu_long * addr, flash_info_t * info) { short i; FLASH_WORD_SIZE value; ulong base = (ulong) addr; volatile FLASH_WORD_SIZE *addr2 = (FLASH_WORD_SIZE *) addr; printf ("flash_get_size: \n"); /* Write auto select command: read Manufacturer ID */ eieio (); addr2[ADDR0] = (FLASH_WORD_SIZE) 0xAA; addr2[ADDR1] = (FLASH_WORD_SIZE) 0x55; addr2[ADDR0] = (FLASH_WORD_SIZE) 0x90; value = addr2[0]; switch (value) { case (FLASH_WORD_SIZE) AMD_MANUFACT: info->flash_id = FLASH_MAN_AMD; break; case (FLASH_WORD_SIZE) FUJ_MANUFACT: info->flash_id = FLASH_MAN_FUJ; break; case (FLASH_WORD_SIZE) SST_MANUFACT: info->flash_id = FLASH_MAN_SST; break; default: info->flash_id = FLASH_UNKNOWN; info->sector_count = 0; info->size = 0; return (0); /* no or unknown flash */ } printf ("recognised manufacturer"); value = addr2[ADDR3]; /* device ID */ debug ("\ndev_code=%x\n", value); switch (value) { case (FLASH_WORD_SIZE) AMD_ID_LV400T: info->flash_id += FLASH_AM400T; info->sector_count = 11; info->size = 0x00080000; break; /* => 0.5 MB */ case (FLASH_WORD_SIZE) AMD_ID_LV400B: info->flash_id += FLASH_AM400B; info->sector_count = 11; info->size = 0x00080000; break; /* => 0.5 MB */ case (FLASH_WORD_SIZE) AMD_ID_LV800T: info->flash_id += FLASH_AM800T; info->sector_count = 19; info->size = 0x00100000; break; /* => 1 MB */ case (FLASH_WORD_SIZE) AMD_ID_LV800B: info->flash_id += FLASH_AM800B; info->sector_count = 19; info->size = 0x00100000; break; /* => 1 MB */ case (FLASH_WORD_SIZE) AMD_ID_LV160T: info->flash_id += FLASH_AM160T; info->sector_count = 35; info->size = 0x00200000; break; /* => 2 MB */ case (FLASH_WORD_SIZE) AMD_ID_LV160B: info->flash_id += FLASH_AM160B; info->sector_count = 35; info->size = 0x00200000; break; /* => 2 MB */ case (FLASH_WORD_SIZE) SST_ID_xF800A: info->flash_id += FLASH_SST800A; info->sector_count = 16; info->size = 0x00100000; break; /* => 1 MB */ case (FLASH_WORD_SIZE) SST_ID_xF160A: info->flash_id += FLASH_SST160A; info->sector_count = 32; info->size = 0x00200000; break; /* => 2 MB */ case (FLASH_WORD_SIZE) AMD_ID_F040B: info->flash_id += FLASH_AM040; info->sector_count = 8; info->size = 0x00080000; break; /* => 0.5 MB */ default: info->flash_id = FLASH_UNKNOWN; return (0); /* => no or unknown flash */ } printf ("flash id %lx; sector count %x, size %lx\n", info->flash_id, info->sector_count, info->size); /* set up sector start address table */ if (info->flash_id & FLASH_MAN_SST) { for (i = 0; i < info->sector_count; i++) info->start[i] = base + (i * 0x00010000); } else if (info->flash_id & FLASH_BTYPE) { /* set sector offsets for bottom boot block type */ info->start[0] = base + 0x00000000; info->start[1] = base + 0x00004000; info->start[2] = base + 0x00006000; info->start[3] = base + 0x00008000; for (i = 4; i < info->sector_count; i++) { info->start[i] = base + (i * 0x00010000) - 0x00030000; } } else { /* set sector offsets for top boot block type */ i = info->sector_count - 1; info->start[i--] = base + info->size - 0x00004000; info->start[i--] = base + info->size - 0x00006000; info->start[i--] = base + info->size - 0x00008000; for (; i >= 0; i--) { info->start[i] = base + i * 0x00010000; } } /* check for protected sectors */ for (i = 0; i < info->sector_count; i++) { /* read sector protection at sector address, (A7 .. A0) = 0x02 */ /* D0 = 1 if protected */ addr2 = (volatile FLASH_WORD_SIZE *) (info->start[i]); if (info->flash_id & FLASH_MAN_SST) info->protect[i] = 0; else info->protect[i] = addr2[2] & 1; } /* * Prevent writes to uninitialized FLASH. */ if (info->flash_id != FLASH_UNKNOWN) { addr2 = (FLASH_WORD_SIZE *) info->start[0]; *addr2 = (FLASH_WORD_SIZE) 0x00F000F0; /* reset bank */ } return (info->size); } #endif int flash_erase (flash_info_t * info, int s_first, int s_last) { volatile FLASH_WORD_SIZE *addr = (FLASH_WORD_SIZE *) (info->start[0]); int flag, prot, sect, l_sect; ulong start, now, last; unsigned char sh8b; if ((s_first < 0) || (s_first > s_last)) { if (info->flash_id == FLASH_UNKNOWN) { printf ("- missing\n"); } else { printf ("- no sectors to erase\n"); } return 1; } if ((info->flash_id == FLASH_UNKNOWN) || (info->flash_id > (FLASH_MAN_STM | FLASH_AMD_COMP))) { printf ("Can't erase unknown flash type - aborted\n"); return 1; } prot = 0; for (sect = s_first; sect <= s_last; ++sect) { if (info->protect[sect]) { prot++; } } if (prot) { printf ("- Warning: %d protected sectors will not be erased!\n", prot); } else { printf ("\n"); } l_sect = -1; /* Check the ROM CS */ if ((info->start[0] >= ROM_CS1_START) && (info->start[0] < ROM_CS0_START)) sh8b = 3; else sh8b = 0; /* Disable interrupts which might cause a timeout here */ flag = disable_interrupts (); addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE) 0x00AA00AA; addr[ADDR1 << sh8b] = (FLASH_WORD_SIZE) 0x00550055; addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE) 0x00800080; addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE) 0x00AA00AA; addr[ADDR1 << sh8b] = (FLASH_WORD_SIZE) 0x00550055; /* Start erase on unprotected sectors */ for (sect = s_first; sect <= s_last; sect++) { if (info->protect[sect] == 0) { /* not protected */ addr = (FLASH_WORD_SIZE *) (info->start[0] + ((info-> start [sect] - info-> start [0]) << sh8b)); if (info->flash_id & FLASH_MAN_SST) { addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE) 0x00AA00AA; addr[ADDR1 << sh8b] = (FLASH_WORD_SIZE) 0x00550055; addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE) 0x00800080; addr[ADDR0 << sh8b] = (FLASH_WORD_SIZE) 0x00AA00AA; addr[ADDR1 << sh8b] = (FLASH_WORD_SIZE) 0x00550055; addr[0] = (FLASH_WORD_SIZE) 0x00500050; /* block erase */ udelay (30000); /* wait 30 ms */ } else addr[0] = (FLASH_WORD_SIZE) 0x00300030; /* sector erase */ l_sect = sect; } } /* re-enable interrupts if necessary */ if (flag) enable_interrupts (); /* wait at least 80us - let's wait 1 ms */ udelay (1000); /* * We wait for the last triggered sector */ if (l_sect < 0) goto DONE; start = get_timer (0); last = start; addr = (FLASH_WORD_SIZE *) (info->start[0] + ((info->start[l_sect] - info-> start[0]) << sh8b)); while ((addr[0] & (FLASH_WORD_SIZE) 0x00800080) != (FLASH_WORD_SIZE) 0x00800080) { if ((now = get_timer (start)) > CFG_FLASH_ERASE_TOUT) { printf ("Timeout\n"); return 1; } /* show that we're waiting */ if ((now - last) > 1000) { /* every second */ serial_putc ('.'); last = now; } } DONE: /* reset to read mode */ addr = (FLASH_WORD_SIZE *) info->start[0]; addr[0] = (FLASH_WORD_SIZE) 0x00F000F0; /* reset bank */ printf (" done\n"); return 0; } /*----------------------------------------------------------------------- * Copy memory to flash, returns: * 0 - OK * 1 - write timeout * 2 - Flash not erased */ int write_buff (flash_info_t * info, uchar * src, ulong addr, ulong cnt) { ulong cp, wp, data; int i, l, rc; wp = (addr & ~3); /* get lower word aligned address */ /* * handle unaligned start bytes */ if ((l = addr - wp) != 0) { data = 0; for (i = 0, cp = wp; i < l; ++i, ++cp) { data = (data << 8) | (*(uchar *) cp); } for (; i < 4 && cnt > 0; ++i) { data = (data << 8) | *src++; --cnt; ++cp; } for (; cnt == 0 && i < 4; ++i, ++cp) { data = (data << 8) | (*(uchar *) cp); } if ((rc = write_word (info, wp, data)) != 0) { return (rc); } wp += 4; } /* * handle word aligned part */ while (cnt >= 4) { data = 0; for (i = 0; i < 4; ++i) { data = (data << 8) | *src++; } if ((rc = write_word (info, wp, data)) != 0) { return (rc); } wp += 4; cnt -= 4; } if (cnt == 0) { return (0); } /* * handle unaligned tail bytes */ data = 0; for (i = 0, cp = wp; i < 4 && cnt > 0; ++i, ++cp) { data = (data << 8) | *src++; --cnt; } for (; i < 4; ++i, ++cp) { data = (data << 8) | (*(uchar *) cp); } return (write_word (info, wp, data)); } /*----------------------------------------------------------------------- * Write a word to Flash, returns: * 0 - OK * 1 - write timeout * 2 - Flash not erased */ static int write_word (flash_info_t * info, ulong dest, ulong data) { volatile FLASH_WORD_SIZE *addr2 = (FLASH_WORD_SIZE *) info->start[0]; volatile FLASH_WORD_SIZE *dest2; volatile FLASH_WORD_SIZE *data2 = (FLASH_WORD_SIZE *) & data; ulong start; int flag; int i; unsigned char sh8b; /* Check the ROM CS */ if ((info->start[0] >= ROM_CS1_START) && (info->start[0] < ROM_CS0_START)) sh8b = 3; else sh8b = 0; dest2 = (FLASH_WORD_SIZE *) (((dest - info->start[0]) << sh8b) + info->start[0]); /* Check if Flash is (sufficiently) erased */ if ((*dest2 & (FLASH_WORD_SIZE) data) != (FLASH_WORD_SIZE) data) { return (2); } /* Disable interrupts which might cause a timeout here */ flag = disable_interrupts (); for (i = 0; i < 4 / sizeof (FLASH_WORD_SIZE); i++) { addr2[ADDR0 << sh8b] = (FLASH_WORD_SIZE) 0x00AA00AA; addr2[ADDR1 << sh8b] = (FLASH_WORD_SIZE) 0x00550055; addr2[ADDR0 << sh8b] = (FLASH_WORD_SIZE) 0x00A000A0; dest2[i << sh8b] = data2[i]; /* re-enable interrupts if necessary */ if (flag) enable_interrupts (); /* data polling for D7 */ start = get_timer (0); while ((dest2[i << sh8b] & (FLASH_WORD_SIZE) 0x00800080) != (data2[i] & (FLASH_WORD_SIZE) 0x00800080)) { if (get_timer (start) > CFG_FLASH_WRITE_TOUT) { return (1); } } } return (0); } /*----------------------------------------------------------------------- */