/*
 * (C) Copyright 2001
 * Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc.
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

/*************************************************************************
 * adaption for the Marvell DB64460 Board
 * Ingo Assmus (ingo.assmus@keymile.com)
  ************************************************************************/


/* sdram_init.c - automatic memory sizing */

#include <common.h>
#include <74xx_7xx.h>
#include "../include/memory.h"
#include "../include/pci.h"
#include "../include/mv_gen_reg.h"
#include <net.h>

#include "eth.h"
#include "mpsc.h"
#include "../common/i2c.h"
#include "64460.h"
#include "mv_regs.h"

DECLARE_GLOBAL_DATA_PTR;

#define	MAP_PCI

int set_dfcdlInit (void);	/* setup delay line of Mv64460 */
int mvDmaIsChannelActive (int);
int mvDmaSetMemorySpace (ulong, ulong, ulong, ulong, ulong);
int mvDmaTransfer (int, ulong, ulong, ulong, ulong);

/* ------------------------------------------------------------------------- */

int
memory_map_bank (unsigned int bankNo,
		 unsigned int bankBase, unsigned int bankLength)
{
#ifdef MAP_PCI
	PCI_HOST host;
#endif


	if (bankLength > 0) {
		debug("mapping bank %d at %08x - %08x\n",
			bankNo, bankBase, bankBase + bankLength - 1);
	} else {
		debug("unmapping bank %d\n", bankNo);
	}

	memoryMapBank (bankNo, bankBase, bankLength);

#ifdef MAP_PCI
	for (host = PCI_HOST0; host <= PCI_HOST1; host++) {
		const int features =
			PREFETCH_ENABLE |
			DELAYED_READ_ENABLE |
			AGGRESSIVE_PREFETCH |
			READ_LINE_AGGRESSIVE_PREFETCH |
			READ_MULTI_AGGRESSIVE_PREFETCH |
			MAX_BURST_4 | PCI_NO_SWAP;

		pciMapMemoryBank (host, bankNo, bankBase, bankLength);

		pciSetRegionSnoopMode (host, bankNo, PCI_SNOOP_WB, bankBase,
				       bankLength);

		pciSetRegionFeatures (host, bankNo, features, bankBase,
				      bankLength);
	}
#endif
	return 0;
}

#define GB         (1 << 30)

/* much of this code is based on (or is) the code in the pip405 port */
/* thanks go to the authors of said port - Josh */

/* structure to store the relevant information about an sdram bank */
typedef struct sdram_info {
	uchar drb_size;
	uchar registered, ecc;
	uchar tpar;
	uchar tras_clocks;
	uchar burst_len;
	uchar banks, slot;
} sdram_info_t;

/* Typedefs for 'gtAuxilGetDIMMinfo' function */

typedef enum _memoryType { SDRAM, DDR } MEMORY_TYPE;

typedef enum _voltageInterface { TTL_5V_TOLERANT, LVTTL, HSTL_1_5V,
	SSTL_3_3V, SSTL_2_5V, VOLTAGE_UNKNOWN,
} VOLTAGE_INTERFACE;

typedef enum _max_CL_supported_DDR { DDR_CL_1 = 1, DDR_CL_1_5 = 2, DDR_CL_2 =
		4, DDR_CL_2_5 = 8, DDR_CL_3 = 16, DDR_CL_3_5 =
		32, DDR_CL_FAULT } MAX_CL_SUPPORTED_DDR;
typedef enum _max_CL_supported_SD { SD_CL_1 =
		1, SD_CL_2, SD_CL_3, SD_CL_4, SD_CL_5, SD_CL_6, SD_CL_7,
		SD_FAULT } MAX_CL_SUPPORTED_SD;


/* SDRAM/DDR information struct */
typedef struct _gtMemoryDimmInfo {
	MEMORY_TYPE memoryType;
	unsigned int numOfRowAddresses;
	unsigned int numOfColAddresses;
	unsigned int numOfModuleBanks;
	unsigned int dataWidth;
	VOLTAGE_INTERFACE voltageInterface;
	unsigned int errorCheckType;	/* ECC , PARITY.. */
	unsigned int sdramWidth; /* 4,8,16 or 32 */ ;
	unsigned int errorCheckDataWidth;	/* 0 - no, 1 - Yes */
	unsigned int minClkDelay;
	unsigned int burstLengthSupported;
	unsigned int numOfBanksOnEachDevice;
	unsigned int suportedCasLatencies;
	unsigned int RefreshInterval;
	unsigned int maxCASlatencySupported_LoP;	/* LoP left of point (measured in ns) */
	unsigned int maxCASlatencySupported_RoP;	/* RoP right of point (measured in ns) */
	MAX_CL_SUPPORTED_DDR maxClSupported_DDR;
	MAX_CL_SUPPORTED_SD maxClSupported_SD;
	unsigned int moduleBankDensity;
	/* module attributes (true for yes) */
	bool bufferedAddrAndControlInputs;
	bool registeredAddrAndControlInputs;
	bool onCardPLL;
	bool bufferedDQMBinputs;
	bool registeredDQMBinputs;
	bool differentialClockInput;
	bool redundantRowAddressing;

	/* module general attributes */
	bool suportedAutoPreCharge;
	bool suportedPreChargeAll;
	bool suportedEarlyRasPreCharge;
	bool suportedWrite1ReadBurst;
	bool suported5PercentLowVCC;
	bool suported5PercentUpperVCC;
	/* module timing parameters */
	unsigned int minRasToCasDelay;
	unsigned int minRowActiveRowActiveDelay;
	unsigned int minRasPulseWidth;
	unsigned int minRowPrechargeTime;	/* measured in ns */

	int addrAndCommandHoldTime;	/* LoP left of point (measured in ns) */
	int addrAndCommandSetupTime;	/* (measured in ns/100) */
	int dataInputSetupTime;	/* LoP left of point (measured in ns) */
	int dataInputHoldTime;	/* LoP left of point (measured in ns) */
/* tAC times for highest 2nd and 3rd highest CAS Latency values */
	unsigned int clockToDataOut_LoP;	/* LoP left of point (measured in ns) */
	unsigned int clockToDataOut_RoP;	/* RoP right of point (measured in ns) */
	unsigned int clockToDataOutMinus1_LoP;	/* LoP left of point (measured in ns) */
	unsigned int clockToDataOutMinus1_RoP;	/* RoP right of point (measured in ns) */
	unsigned int clockToDataOutMinus2_LoP;	/* LoP left of point (measured in ns) */
	unsigned int clockToDataOutMinus2_RoP;	/* RoP right of point (measured in ns) */

	unsigned int minimumCycleTimeAtMaxCasLatancy_LoP;	/* LoP left of point (measured in ns) */
	unsigned int minimumCycleTimeAtMaxCasLatancy_RoP;	/* RoP right of point (measured in ns) */

	unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_LoP;	/* LoP left of point (measured in ns) */
	unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_RoP;	/* RoP right of point (measured in ns) */

	unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_LoP;	/* LoP left of point (measured in ns) */
	unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_RoP;	/* RoP right of point (measured in ns) */

	/* Parameters calculated from
	   the extracted DIMM information */
	unsigned int size;
	unsigned int deviceDensity;	/* 16,64,128,256 or 512 Mbit */
	unsigned int numberOfDevices;
	uchar drb_size;		/* DRAM size in n*64Mbit */
	uchar slot;		/* Slot Number this module is inserted in */
	uchar spd_raw_data[128];	/* Content of SPD-EEPROM copied 1:1 */
#ifdef DEBUG
	uchar manufactura[8];	/* Content of SPD-EEPROM Byte 64-71 */
	uchar modul_id[18];	/* Content of SPD-EEPROM Byte 73-90 */
	uchar vendor_data[27];	/* Content of SPD-EEPROM Byte 99-125 */
	unsigned long modul_serial_no;	/* Content of SPD-EEPROM Byte 95-98 */
	unsigned int manufac_date;	/* Content of SPD-EEPROM Byte 93-94 */
	unsigned int modul_revision;	/* Content of SPD-EEPROM Byte 91-92 */
	uchar manufac_place;	/* Content of SPD-EEPROM Byte 72 */

#endif
} AUX_MEM_DIMM_INFO;


/*
 * translate ns.ns/10 coding of SPD timing values
 * into 10 ps unit values
 */
static inline unsigned short NS10to10PS (unsigned char spd_byte)
{
	unsigned short ns, ns10;

	/* isolate upper nibble */
	ns = (spd_byte >> 4) & 0x0F;
	/* isolate lower nibble */
	ns10 = (spd_byte & 0x0F);

	return (ns * 100 + ns10 * 10);
}

/*
 * translate ns coding of SPD timing values
 * into 10 ps unit values
 */
static inline unsigned short NSto10PS (unsigned char spd_byte)
{
	return (spd_byte * 100);
}

/* This code reads the SPD chip on the sdram and populates
 * the array which is passed in with the relevant information */
/* static int check_dimm(uchar slot, AUX_MEM_DIMM_INFO *info) */
static int check_dimm (uchar slot, AUX_MEM_DIMM_INFO * dimmInfo)
{
	unsigned long spd_checksum;

#ifdef ZUMA_NTL
	/* zero all the values */
	memset (info, 0, sizeof (*info));

/*
	if (!slot) {
	    info->slot = 0;
	    info->banks = 1;
	    info->registered = 0;
		    info->drb_size = 16;*/ /* 16 - 256MBit, 32 - 512MBit */
/*	    info->tpar = 3;
	    info->tras_clocks = 5;
	    info->burst_len = 4;
*/
#ifdef CONFIG_MV64460_ECC
	/* check for ECC/parity [0 = none, 1 = parity, 2 = ecc] */
	dimmInfo->errorCheckType = 2;
/*	    info->ecc = 2;*/
#endif
}

return 0;

#else
	uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR;
	int ret;
	unsigned int i, j, density = 1;

#ifdef DEBUG
	unsigned int k;
#endif
	unsigned int rightOfPoint = 0, leftOfPoint = 0, mult, div, time_tmp;
	int sign = 1, shift, maskLeftOfPoint, maskRightOfPoint;
	uchar supp_cal, cal_val;
	ulong memclk, tmemclk;
	ulong tmp;
	uchar trp_clocks = 0, tras_clocks;
	uchar data[128];

	memclk = gd->bus_clk;
	tmemclk = 1000000000 / (memclk / 100);	/* in 10 ps units */

	debug("before i2c read\n");

	ret = i2c_read (addr, 0, 1, data, 128);

	debug("after i2c read\n");

	/* zero all the values */
	memset (dimmInfo, 0, sizeof (*dimmInfo));

	/* copy the SPD content 1:1 into the dimmInfo structure */
	for (i = 0; i <= 127; i++) {
		dimmInfo->spd_raw_data[i] = data[i];
	}

	if (ret) {
		debug("No DIMM in slot %d [err = %x]\n", slot, ret);
		return 0;
	} else
		dimmInfo->slot = slot;	/* start to fill up dimminfo for this "slot" */

#ifdef CONFIG_SYS_DISPLAY_DIMM_SPD_CONTENT

	for (i = 0; i <= 127; i++) {
		printf ("SPD-EEPROM Byte %3d = %3x (%3d)\n", i, data[i],
			data[i]);
	}

#endif
#ifdef DEBUG
/* find Manufactura of Dimm Module */
	for (i = 0; i < sizeof (dimmInfo->manufactura); i++) {
		dimmInfo->manufactura[i] = data[64 + i];
	}
	printf ("\nThis RAM-Module is produced by: 		%s\n",
		dimmInfo->manufactura);

/* find Manul-ID of Dimm Module */
	for (i = 0; i < sizeof (dimmInfo->modul_id); i++) {
		dimmInfo->modul_id[i] = data[73 + i];
	}
	printf ("The Module-ID of this RAM-Module is: 		%s\n",
		dimmInfo->modul_id);

/* find Vendor-Data of Dimm Module */
	for (i = 0; i < sizeof (dimmInfo->vendor_data); i++) {
		dimmInfo->vendor_data[i] = data[99 + i];
	}
	printf ("Vendor Data of this RAM-Module is: 		%s\n",
		dimmInfo->vendor_data);

/* find modul_serial_no of Dimm Module */
	dimmInfo->modul_serial_no = (*((unsigned long *) (&data[95])));
	printf ("Serial No. of this RAM-Module is: 		%ld (%lx)\n",
		dimmInfo->modul_serial_no, dimmInfo->modul_serial_no);

/* find Manufac-Data of Dimm Module */
	dimmInfo->manufac_date = (*((unsigned int *) (&data[93])));
	printf ("Manufactoring Date of this RAM-Module is: 	%d.%d\n", data[93], data[94]);	/*dimmInfo->manufac_date */

/* find modul_revision of Dimm Module */
	dimmInfo->modul_revision = (*((unsigned int *) (&data[91])));
	printf ("Module Revision of this RAM-Module is: 		%d.%d\n", data[91], data[92]);	/* dimmInfo->modul_revision */

/* find manufac_place of Dimm Module */
	dimmInfo->manufac_place = (*((unsigned char *) (&data[72])));
	printf ("manufac_place of this RAM-Module is: 		%d\n",
		dimmInfo->manufac_place);

#endif

/*------------------------------------------------------------------------------------------------------------------------------*/
/* calculate SPD checksum */
/*------------------------------------------------------------------------------------------------------------------------------*/
	spd_checksum = 0;

	for (i = 0; i <= 62; i++) {
		spd_checksum += data[i];
	}

	if ((spd_checksum & 0xff) != data[63]) {
		printf ("### Error in SPD Checksum !!! Is_value: %2x should value %2x\n", (unsigned int) (spd_checksum & 0xff), data[63]);
		hang ();
	}

	else
		printf ("SPD Checksum ok!\n");


/*------------------------------------------------------------------------------------------------------------------------------*/
	for (i = 2; i <= 35; i++) {
		switch (i) {
		case 2:	/* Memory type (DDR / SDRAM) */
			dimmInfo->memoryType = (data[i] == 0x7) ? DDR : SDRAM;
#ifdef DEBUG
			if (dimmInfo->memoryType == 0)
				debug
				    ("Dram_type in slot %d is: 			SDRAM\n",
				     dimmInfo->slot);
			if (dimmInfo->memoryType == 1)
				debug
				    ("Dram_type in slot %d is: 			DDRAM\n",
				     dimmInfo->slot);
#endif
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 3:	/* Number Of Row Addresses */
			dimmInfo->numOfRowAddresses = data[i];
			debug
			    ("Module Number of row addresses: 		%d\n",
			     dimmInfo->numOfRowAddresses);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 4:	/* Number Of Column Addresses */
			dimmInfo->numOfColAddresses = data[i];
			debug
			    ("Module Number of col addresses: 		%d\n",
			     dimmInfo->numOfColAddresses);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 5:	/* Number Of Module Banks */
			dimmInfo->numOfModuleBanks = data[i];
			debug
			    ("Number of Banks on Mod. : 				%d\n",
			     dimmInfo->numOfModuleBanks);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 6:	/* Data Width */
			dimmInfo->dataWidth = data[i];
			debug
			    ("Module Data Width: 				%d\n",
			     dimmInfo->dataWidth);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 8:	/* Voltage Interface */
			switch (data[i]) {
			case 0x0:
				dimmInfo->voltageInterface = TTL_5V_TOLERANT;
				debug
				    ("Module is 					TTL_5V_TOLERANT\n");
				break;
			case 0x1:
				dimmInfo->voltageInterface = LVTTL;
				debug
				    ("Module is 					LVTTL\n");
				break;
			case 0x2:
				dimmInfo->voltageInterface = HSTL_1_5V;
				debug
				    ("Module is 					TTL_5V_TOLERANT\n");
				break;
			case 0x3:
				dimmInfo->voltageInterface = SSTL_3_3V;
				debug
				    ("Module is 					HSTL_1_5V\n");
				break;
			case 0x4:
				dimmInfo->voltageInterface = SSTL_2_5V;
				debug
				    ("Module is 					SSTL_2_5V\n");
				break;
			default:
				dimmInfo->voltageInterface = VOLTAGE_UNKNOWN;
				debug
				    ("Module is 					VOLTAGE_UNKNOWN\n");
				break;
			}
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 9:	/* Minimum Cycle Time At Max CasLatancy */
			shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
			mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
			maskLeftOfPoint =
				(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
			maskRightOfPoint =
				(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
			leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
			rightOfPoint = (data[i] & maskRightOfPoint) * mult;
			dimmInfo->minimumCycleTimeAtMaxCasLatancy_LoP =
				leftOfPoint;
			dimmInfo->minimumCycleTimeAtMaxCasLatancy_RoP =
				rightOfPoint;
			debug
			    ("Minimum Cycle Time At Max CasLatancy: 		%d.%d [ns]\n",
			     leftOfPoint, rightOfPoint);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 10:	/* Clock To Data Out */
			div = (dimmInfo->memoryType == DDR) ? 100 : 10;
			time_tmp =
				(((data[i] & 0xf0) >> 4) * 10) +
				((data[i] & 0x0f));
			leftOfPoint = time_tmp / div;
			rightOfPoint = time_tmp % div;
			dimmInfo->clockToDataOut_LoP = leftOfPoint;
			dimmInfo->clockToDataOut_RoP = rightOfPoint;
			debug("Clock To Data Out: 				%d.%2d [ns]\n", leftOfPoint, rightOfPoint);	/*dimmInfo->clockToDataOut */
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

/*#ifdef CONFIG_ECC */
		case 11:	/* Error Check Type */
			dimmInfo->errorCheckType = data[i];
			debug
			    ("Error Check Type (0=NONE): 			%d\n",
			     dimmInfo->errorCheckType);
			break;
/* #endif */
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 12:	/* Refresh Interval */
			dimmInfo->RefreshInterval = data[i];
			debug
			    ("RefreshInterval (80= Self refresh Normal, 15.625us) : %x\n",
			     dimmInfo->RefreshInterval);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 13:	/* Sdram Width */
			dimmInfo->sdramWidth = data[i];
			debug
			    ("Sdram Width: 					%d\n",
			     dimmInfo->sdramWidth);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 14:	/* Error Check Data Width */
			dimmInfo->errorCheckDataWidth = data[i];
			debug
			    ("Error Check Data Width: 			%d\n",
			     dimmInfo->errorCheckDataWidth);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 15:	/* Minimum Clock Delay */
			dimmInfo->minClkDelay = data[i];
			debug
			    ("Minimum Clock Delay: 				%d\n",
			     dimmInfo->minClkDelay);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 16:	/* Burst Length Supported */
			   /******-******-******-*******
			   * bit3 | bit2 | bit1 | bit0 *
			   *******-******-******-*******
	    burst length = *  8   |  4   |   2  |   1  *
			   *****************************

	    If for example bit0 and bit2 are set, the burst
	    length supported are 1 and 4. */

			dimmInfo->burstLengthSupported = data[i];
#ifdef DEBUG
			debug
			    ("Burst Length Supported: 			");
			if (dimmInfo->burstLengthSupported & 0x01)
				debug("1, ");
			if (dimmInfo->burstLengthSupported & 0x02)
				debug("2, ");
			if (dimmInfo->burstLengthSupported & 0x04)
				debug("4, ");
			if (dimmInfo->burstLengthSupported & 0x08)
				debug("8, ");
			debug(" Bit \n");
#endif
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 17:	/* Number Of Banks On Each Device */
			dimmInfo->numOfBanksOnEachDevice = data[i];
			debug
			    ("Number Of Banks On Each Chip: 			%d\n",
			     dimmInfo->numOfBanksOnEachDevice);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 18:	/* Suported Cas Latencies */

			/*     DDR:
			 *******-******-******-******-******-******-******-*******
			 * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
			 *******-******-******-******-******-******-******-*******
			 CAS =   * TBD  | TBD  | 3.5  |   3  | 2.5  |  2   | 1.5  |   1  *
			 *********************************************************
			 SDRAM:
			 *******-******-******-******-******-******-******-*******
			 * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
			 *******-******-******-******-******-******-******-*******
			 CAS =   * TBD  |  7   |  6   |  5   |  4   |  3   |   2  |   1  *
			 ********************************************************/
			dimmInfo->suportedCasLatencies = data[i];
#ifdef DEBUG
			debug
			    ("Suported Cas Latencies: (CL) 			");
			if (dimmInfo->memoryType == 0) {	/* SDRAM */
				for (k = 0; k <= 7; k++) {
					if (dimmInfo->
					    suportedCasLatencies & (1 << k))
						debug
						    ("%d, 			",
						     k + 1);
				}

			} else {	/* DDR-RAM */

				if (dimmInfo->suportedCasLatencies & 1)
					debug("1, ");
				if (dimmInfo->suportedCasLatencies & 2)
					debug("1.5, ");
				if (dimmInfo->suportedCasLatencies & 4)
					debug("2, ");
				if (dimmInfo->suportedCasLatencies & 8)
					debug("2.5, ");
				if (dimmInfo->suportedCasLatencies & 16)
					debug("3, ");
				if (dimmInfo->suportedCasLatencies & 32)
					debug("3.5, ");

			}
			debug("\n");
#endif
			/* Calculating MAX CAS latency */
			for (j = 7; j > 0; j--) {
				if (((dimmInfo->
				      suportedCasLatencies >> j) & 0x1) ==
				    1) {
					switch (dimmInfo->memoryType) {
					case DDR:
						/* CAS latency 1, 1.5, 2, 2.5, 3, 3.5 */
						switch (j) {
						case 7:
							debug
							    ("Max. Cas Latencies (DDR): 			ERROR !!!\n");
							dimmInfo->
								maxClSupported_DDR
								=
								DDR_CL_FAULT;
							hang ();
							break;
						case 6:
							debug
							    ("Max. Cas Latencies (DDR): 			ERROR !!!\n");
							dimmInfo->
								maxClSupported_DDR
								=
								DDR_CL_FAULT;
							hang ();
							break;
						case 5:
							debug
							    ("Max. Cas Latencies (DDR): 			3.5 clk's\n");
							dimmInfo->
								maxClSupported_DDR
								= DDR_CL_3_5;
							break;
						case 4:
							debug
							    ("Max. Cas Latencies (DDR): 			3 clk's \n");
							dimmInfo->
								maxClSupported_DDR
								= DDR_CL_3;
							break;
						case 3:
							debug
							    ("Max. Cas Latencies (DDR): 			2.5 clk's \n");
							dimmInfo->
								maxClSupported_DDR
								= DDR_CL_2_5;
							break;
						case 2:
							debug
							    ("Max. Cas Latencies (DDR): 			2 clk's \n");
							dimmInfo->
								maxClSupported_DDR
								= DDR_CL_2;
							break;
						case 1:
							debug
							    ("Max. Cas Latencies (DDR): 			1.5 clk's \n");
							dimmInfo->
								maxClSupported_DDR
								= DDR_CL_1_5;
							break;
						}

						/* ronen - in case we have a DIMM with minimumCycleTimeAtMaxCasLatancy
						   lower then our SDRAM cycle count, we won't be able to support this CAL
						   and we will have to use lower CAL. (minus - means from 3.0 to 2.5) */
						if ((dimmInfo->
						     minimumCycleTimeAtMaxCasLatancy_LoP
						     <
						     CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
						    ||
						    ((dimmInfo->
						      minimumCycleTimeAtMaxCasLatancy_LoP
						      ==
						      CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
						     && (dimmInfo->
							 minimumCycleTimeAtMaxCasLatancy_RoP
							 <
							 CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_ROP)))
						{
							dimmInfo->
								maxClSupported_DDR
								=
								dimmInfo->
								maxClSupported_DDR
								>> 1;
							debug
							    ("*** Change actual Cas Latencies cause of minimumCycleTime n");
						}
						/* ronen - checkif the Dimm frequency compared to the Sysclock. */
						if ((dimmInfo->
						     minimumCycleTimeAtMaxCasLatancy_LoP
						     >
						     CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
						    ||
						    ((dimmInfo->
						      minimumCycleTimeAtMaxCasLatancy_LoP
						      ==
						      CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
						     && (dimmInfo->
							 minimumCycleTimeAtMaxCasLatancy_RoP
							 >
							 CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_ROP)))
						{
							printf ("*********************************************************\n");
							printf ("*** sysClock is higher than SDRAM's allowed frequency ***\n");
							printf ("*********************************************************\n");
							hang ();
						}

						dimmInfo->
							maxCASlatencySupported_LoP
							=
							1 +
							(int) (5 * j / 10);
						if (((5 * j) % 10) != 0)
							dimmInfo->
								maxCASlatencySupported_RoP
								= 5;
						else
							dimmInfo->
								maxCASlatencySupported_RoP
								= 0;
						debug
						    ("Max. Cas Latencies (DDR LoP.RoP Notation): 	%d.%d \n",
						     dimmInfo->
						     maxCASlatencySupported_LoP,
						     dimmInfo->
						     maxCASlatencySupported_RoP);
						break;
					case SDRAM:
						/* CAS latency 1, 2, 3, 4, 5, 6, 7 */
						dimmInfo->maxClSupported_SD = j;	/*  Cas Latency DDR-RAM Coded                   */
						debug
						    ("Max. Cas Latencies (SD): %d\n",
						     dimmInfo->
						     maxClSupported_SD);
						dimmInfo->
							maxCASlatencySupported_LoP
							= j;
						dimmInfo->
							maxCASlatencySupported_RoP
							= 0;
						debug
						    ("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n",
						     dimmInfo->
						     maxCASlatencySupported_LoP,
						     dimmInfo->
						     maxCASlatencySupported_RoP);
						break;
					}
					break;
				}
			}
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 21:	/* Buffered Address And Control Inputs */
			debug("\nModul Attributes (SPD Byte 21): \n");
			dimmInfo->bufferedAddrAndControlInputs =
				data[i] & BIT0;
			dimmInfo->registeredAddrAndControlInputs =
				(data[i] & BIT1) >> 1;
			dimmInfo->onCardPLL = (data[i] & BIT2) >> 2;
			dimmInfo->bufferedDQMBinputs = (data[i] & BIT3) >> 3;
			dimmInfo->registeredDQMBinputs =
				(data[i] & BIT4) >> 4;
			dimmInfo->differentialClockInput =
				(data[i] & BIT5) >> 5;
			dimmInfo->redundantRowAddressing =
				(data[i] & BIT6) >> 6;
#ifdef DEBUG
			if (dimmInfo->bufferedAddrAndControlInputs == 1)
				debug
				    (" - Buffered Address/Control Input:		Yes \n");
			else
				debug
				    (" - Buffered Address/Control Input:		No \n");

			if (dimmInfo->registeredAddrAndControlInputs == 1)
				debug
				    (" - Registered Address/Control Input:		Yes \n");
			else
				debug
				    (" - Registered Address/Control Input:		No \n");

			if (dimmInfo->onCardPLL == 1)
				debug
				    (" - On-Card PLL (clock):				Yes \n");
			else
				debug
				    (" - On-Card PLL (clock):				No \n");

			if (dimmInfo->bufferedDQMBinputs == 1)
				debug
				    (" - Bufferd DQMB Inputs:				Yes \n");
			else
				debug
				    (" - Bufferd DQMB Inputs:				No \n");

			if (dimmInfo->registeredDQMBinputs == 1)
				debug
				    (" - Registered DQMB Inputs:			Yes \n");
			else
				debug
				    (" - Registered DQMB Inputs:			No \n");

			if (dimmInfo->differentialClockInput == 1)
				debug
				    (" - Differential Clock Input:			Yes \n");
			else
				debug
				    (" - Differential Clock Input:			No \n");

			if (dimmInfo->redundantRowAddressing == 1)
				debug
				    (" - redundant Row Addressing:			Yes \n");
			else
				debug
				    (" - redundant Row Addressing:			No \n");

#endif
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 22:	/* Suported AutoPreCharge */
			debug("\nModul Attributes (SPD Byte 22): \n");
			dimmInfo->suportedEarlyRasPreCharge = data[i] & BIT0;
			dimmInfo->suportedAutoPreCharge =
				(data[i] & BIT1) >> 1;
			dimmInfo->suportedPreChargeAll =
				(data[i] & BIT2) >> 2;
			dimmInfo->suportedWrite1ReadBurst =
				(data[i] & BIT3) >> 3;
			dimmInfo->suported5PercentLowVCC =
				(data[i] & BIT4) >> 4;
			dimmInfo->suported5PercentUpperVCC =
				(data[i] & BIT5) >> 5;
#ifdef DEBUG
			if (dimmInfo->suportedEarlyRasPreCharge == 1)
				debug
				    (" - Early Ras Precharge:			Yes \n");
			else
				debug
				    (" -  Early Ras Precharge:			No \n");

			if (dimmInfo->suportedAutoPreCharge == 1)
				debug
				    (" - AutoPreCharge:				Yes \n");
			else
				debug
				    (" -  AutoPreCharge:				No \n");

			if (dimmInfo->suportedPreChargeAll == 1)
				debug
				    (" - Precharge All:				Yes \n");
			else
				debug
				    (" -  Precharge All:				No \n");

			if (dimmInfo->suportedWrite1ReadBurst == 1)
				debug
				    (" - Write 1/ReadBurst:				Yes \n");
			else
				debug
				    (" -  Write 1/ReadBurst:				No \n");

			if (dimmInfo->suported5PercentLowVCC == 1)
				debug
				    (" - lower VCC tolerance:			5 Percent \n");
			else
				debug
				    ("  - lower VCC tolerance:			10 Percent \n");

			if (dimmInfo->suported5PercentUpperVCC == 1)
				debug
				    (" - upper VCC tolerance:			5 Percent \n");
			else
				debug
				    (" -  upper VCC tolerance:			10 Percent \n");

#endif
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 23:	/* Minimum Cycle Time At Maximum Cas Latancy Minus 1 (2nd highest CL) */
			shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
			mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
			maskLeftOfPoint =
				(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
			maskRightOfPoint =
				(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
			leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
			rightOfPoint = (data[i] & maskRightOfPoint) * mult;
			dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_LoP =
				leftOfPoint;
			dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_RoP =
				rightOfPoint;
			debug("Minimum Cycle Time At 2nd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", leftOfPoint, rightOfPoint);	/*dimmInfo->minimumCycleTimeAtMaxCasLatancy */
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 24:	/* Clock To Data Out 2nd highest Cas Latency Value */
			div = (dimmInfo->memoryType == DDR) ? 100 : 10;
			time_tmp =
				(((data[i] & 0xf0) >> 4) * 10) +
				((data[i] & 0x0f));
			leftOfPoint = time_tmp / div;
			rightOfPoint = time_tmp % div;
			dimmInfo->clockToDataOutMinus1_LoP = leftOfPoint;
			dimmInfo->clockToDataOutMinus1_RoP = rightOfPoint;
			debug
			    ("Clock To Data Out (2nd CL value): 		%d.%2d [ns]\n",
			     leftOfPoint, rightOfPoint);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 25:	/* Minimum Cycle Time At Maximum Cas Latancy Minus 2 (3rd highest CL) */
			shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
			mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
			maskLeftOfPoint =
				(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
			maskRightOfPoint =
				(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
			leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
			rightOfPoint = (data[i] & maskRightOfPoint) * mult;
			dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_LoP =
				leftOfPoint;
			dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_RoP =
				rightOfPoint;
			debug("Minimum Cycle Time At 3rd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", leftOfPoint, rightOfPoint);	/*dimmInfo->minimumCycleTimeAtMaxCasLatancy */
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 26:	/* Clock To Data Out 3rd highest Cas Latency Value */
			div = (dimmInfo->memoryType == DDR) ? 100 : 10;
			time_tmp =
				(((data[i] & 0xf0) >> 4) * 10) +
				((data[i] & 0x0f));
			leftOfPoint = time_tmp / div;
			rightOfPoint = time_tmp % div;
			dimmInfo->clockToDataOutMinus2_LoP = leftOfPoint;
			dimmInfo->clockToDataOutMinus2_RoP = rightOfPoint;
			debug
			    ("Clock To Data Out (3rd CL value): 		%d.%2d [ns]\n",
			     leftOfPoint, rightOfPoint);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 27:	/* Minimum Row Precharge Time */
			shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
			maskLeftOfPoint =
				(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
			maskRightOfPoint =
				(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
			leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
			rightOfPoint = (data[i] & maskRightOfPoint) * 25;

			dimmInfo->minRowPrechargeTime = ((leftOfPoint * 100) + rightOfPoint);	/* measured in n times 10ps Intervals */
			trp_clocks =
				(dimmInfo->minRowPrechargeTime +
				 (tmemclk - 1)) / tmemclk;
			debug
			    ("*** 1 clock cycle = %ld  10ps intervalls = %ld.%ld ns****\n",
			     tmemclk, tmemclk / 100, tmemclk % 100);
			debug
			    ("Minimum Row Precharge Time [ns]: 		%d.%2d = in Clk cycles %d\n",
			     leftOfPoint, rightOfPoint, trp_clocks);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 28:	/* Minimum Row Active to Row Active Time */
			shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
			maskLeftOfPoint =
				(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
			maskRightOfPoint =
				(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
			leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
			rightOfPoint = (data[i] & maskRightOfPoint) * 25;

			dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint);	/* measured in 100ns Intervals */
			debug
			    ("Minimum Row Active -To- Row Active Delay [ns]: 	%d.%2d = in Clk cycles %d\n",
			     leftOfPoint, rightOfPoint, trp_clocks);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 29:	/* Minimum Ras-To-Cas Delay */
			shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
			maskLeftOfPoint =
				(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
			maskRightOfPoint =
				(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
			leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
			rightOfPoint = (data[i] & maskRightOfPoint) * 25;

			dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint);	/* measured in 100ns Intervals */
			debug
			    ("Minimum Ras-To-Cas Delay [ns]: 			%d.%2d = in Clk cycles %d\n",
			     leftOfPoint, rightOfPoint, trp_clocks);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 30:	/* Minimum Ras Pulse Width */
			dimmInfo->minRasPulseWidth = data[i];
			tras_clocks =
				(NSto10PS (data[i]) +
				 (tmemclk - 1)) / tmemclk;
			debug
			    ("Minimum Ras Pulse Width [ns]: 			%d = in Clk cycles %d\n",
			     dimmInfo->minRasPulseWidth, tras_clocks);

			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 31:	/* Module Bank Density */
			dimmInfo->moduleBankDensity = data[i];
			debug
			    ("Module Bank Density: 				%d\n",
			     dimmInfo->moduleBankDensity);
#ifdef DEBUG
			debug
			    ("*** Offered Densities (more than 1 = Multisize-Module): ");
			{
				if (dimmInfo->moduleBankDensity & 1)
					debug("4MB, ");
				if (dimmInfo->moduleBankDensity & 2)
					debug("8MB, ");
				if (dimmInfo->moduleBankDensity & 4)
					debug("16MB, ");
				if (dimmInfo->moduleBankDensity & 8)
					debug("32MB, ");
				if (dimmInfo->moduleBankDensity & 16)
					debug("64MB, ");
				if (dimmInfo->moduleBankDensity & 32)
					debug("128MB, ");
				if ((dimmInfo->moduleBankDensity & 64)
				    || (dimmInfo->moduleBankDensity & 128)) {
					debug("ERROR, ");
					hang ();
				}
			}
			debug("\n");
#endif
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 32:	/* Address And Command Setup Time (measured in ns/1000) */
			sign = 1;
			switch (dimmInfo->memoryType) {
			case DDR:
				time_tmp =
					(((data[i] & 0xf0) >> 4) * 10) +
					((data[i] & 0x0f));
				leftOfPoint = time_tmp / 100;
				rightOfPoint = time_tmp % 100;
				break;
			case SDRAM:
				leftOfPoint = (data[i] & 0xf0) >> 4;
				if (leftOfPoint > 7) {
					leftOfPoint = data[i] & 0x70 >> 4;
					sign = -1;
				}
				rightOfPoint = (data[i] & 0x0f);
				break;
			}
			dimmInfo->addrAndCommandSetupTime =
				(leftOfPoint * 100 + rightOfPoint) * sign;
			debug
			    ("Address And Command Setup Time [ns]: 		%d.%d\n",
			     sign * leftOfPoint, rightOfPoint);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 33:	/* Address And Command Hold Time */
			sign = 1;
			switch (dimmInfo->memoryType) {
			case DDR:
				time_tmp =
					(((data[i] & 0xf0) >> 4) * 10) +
					((data[i] & 0x0f));
				leftOfPoint = time_tmp / 100;
				rightOfPoint = time_tmp % 100;
				break;
			case SDRAM:
				leftOfPoint = (data[i] & 0xf0) >> 4;
				if (leftOfPoint > 7) {
					leftOfPoint = data[i] & 0x70 >> 4;
					sign = -1;
				}
				rightOfPoint = (data[i] & 0x0f);
				break;
			}
			dimmInfo->addrAndCommandHoldTime =
				(leftOfPoint * 100 + rightOfPoint) * sign;
			debug
			    ("Address And Command Hold Time [ns]: 		%d.%d\n",
			     sign * leftOfPoint, rightOfPoint);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 34:	/* Data Input Setup Time */
			sign = 1;
			switch (dimmInfo->memoryType) {
			case DDR:
				time_tmp =
					(((data[i] & 0xf0) >> 4) * 10) +
					((data[i] & 0x0f));
				leftOfPoint = time_tmp / 100;
				rightOfPoint = time_tmp % 100;
				break;
			case SDRAM:
				leftOfPoint = (data[i] & 0xf0) >> 4;
				if (leftOfPoint > 7) {
					leftOfPoint = data[i] & 0x70 >> 4;
					sign = -1;
				}
				rightOfPoint = (data[i] & 0x0f);
				break;
			}
			dimmInfo->dataInputSetupTime =
				(leftOfPoint * 100 + rightOfPoint) * sign;
			debug
			    ("Data Input Setup Time [ns]: 			%d.%d\n",
			     sign * leftOfPoint, rightOfPoint);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/

		case 35:	/* Data Input Hold Time */
			sign = 1;
			switch (dimmInfo->memoryType) {
			case DDR:
				time_tmp =
					(((data[i] & 0xf0) >> 4) * 10) +
					((data[i] & 0x0f));
				leftOfPoint = time_tmp / 100;
				rightOfPoint = time_tmp % 100;
				break;
			case SDRAM:
				leftOfPoint = (data[i] & 0xf0) >> 4;
				if (leftOfPoint > 7) {
					leftOfPoint = data[i] & 0x70 >> 4;
					sign = -1;
				}
				rightOfPoint = (data[i] & 0x0f);
				break;
			}
			dimmInfo->dataInputHoldTime =
				(leftOfPoint * 100 + rightOfPoint) * sign;
			debug
			    ("Data Input Hold Time [ns]: 			%d.%d\n\n",
			     sign * leftOfPoint, rightOfPoint);
			break;
/*------------------------------------------------------------------------------------------------------------------------------*/
		}
	}
	/* calculating the sdram density */
	for (i = 0;
	     i < dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses;
	     i++) {
		density = density * 2;
	}
	dimmInfo->deviceDensity = density * dimmInfo->numOfBanksOnEachDevice *
		dimmInfo->sdramWidth;
	dimmInfo->numberOfDevices =
		(dimmInfo->dataWidth / dimmInfo->sdramWidth) *
		dimmInfo->numOfModuleBanks;
	if ((dimmInfo->errorCheckType == 0x1)
	    || (dimmInfo->errorCheckType == 0x2)
	    || (dimmInfo->errorCheckType == 0x3)) {
		dimmInfo->size =
			(dimmInfo->deviceDensity / 8) *
			(dimmInfo->numberOfDevices -
			 /* ronen on the 1G dimm we get wrong value. (was devicesForErrCheck) */
			 dimmInfo->numberOfDevices / 8);
	} else {
		dimmInfo->size =
			(dimmInfo->deviceDensity / 8) *
			dimmInfo->numberOfDevices;
	}

	/* compute the module DRB size */
	tmp = (1 <<
	       (dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses));
	tmp *= dimmInfo->numOfModuleBanks;
	tmp *= dimmInfo->sdramWidth;
	tmp = tmp >> 24;	/* div by 0x4000000 (64M)       */
	dimmInfo->drb_size = (uchar) tmp;
	debug("Module DRB size (n*64Mbit): %d\n", dimmInfo->drb_size);

	/* try a CAS latency of 3 first... */

	/* bit 1 is CL2, bit 2 is CL3 */
	supp_cal = (dimmInfo->suportedCasLatencies & 0x6) >> 1;

	cal_val = 0;
	if (supp_cal & 3) {
		if (NS10to10PS (data[9]) <= tmemclk)
			cal_val = 3;
	}

	/* then 2... */
	if (supp_cal & 2) {
		if (NS10to10PS (data[23]) <= tmemclk)
			cal_val = 2;
	}

	debug("cal_val = %d\n", cal_val);

	/* bummer, did't work... */
	if (cal_val == 0) {
		debug("Couldn't find a good CAS latency\n");
		hang ();
		return 0;
	}

	return true;
#endif
}

/* sets up the GT properly with information passed in */
int setup_sdram (AUX_MEM_DIMM_INFO * info)
{
	ulong tmp, check;
	ulong tmp_sdram_mode = 0;	/* 0x141c */
	ulong tmp_dunit_control_low = 0;	/* 0x1404 */
	int i;

	/* added 8/21/2003 P. Marchese */
	unsigned int sdram_config_reg;

	/* added 10/10/2003 P. Marchese */
	ulong sdram_chip_size;

	/* sanity checking */
	if (!info->numOfModuleBanks) {
		printf ("setup_sdram called with 0 banks\n");
		return 1;
	}

	/* delay line */
	set_dfcdlInit ();	/* may be its not needed */
	debug("Delay line set done\n");

	/* set SDRAM mode NOP */ /* To_do check it */
	GT_REG_WRITE (SDRAM_OPERATION, 0x5);
	while (GTREGREAD (SDRAM_OPERATION) != 0) {
		debug
		    ("\n*** SDRAM_OPERATION 1418: Module still busy ... please wait... ***\n");
	}

	/* SDRAM configuration */
/* added 8/21/2003 P. Marchese */
/* code allows usage of registered DIMMS */

	/* figure out the memory refresh internal */
	switch (info->RefreshInterval) {
	case 0x0:
	case 0x80:		/* refresh period is 15.625 usec */
		sdram_config_reg =
			(unsigned int) (((float) 15.625 * (float) CONFIG_SYS_BUS_CLK)
					/ (float) 1000000.0);
		break;
	case 0x1:
	case 0x81:		/* refresh period is 3.9 usec */
		sdram_config_reg =
			(unsigned int) (((float) 3.9 * (float) CONFIG_SYS_BUS_CLK) /
					(float) 1000000.0);
		break;
	case 0x2:
	case 0x82:		/* refresh period is 7.8 usec */
		sdram_config_reg =
			(unsigned int) (((float) 7.8 * (float) CONFIG_SYS_BUS_CLK) /
					(float) 1000000.0);
		break;
	case 0x3:
	case 0x83:		/* refresh period is 31.3 usec */
		sdram_config_reg =
			(unsigned int) (((float) 31.3 * (float) CONFIG_SYS_BUS_CLK) /
					(float) 1000000.0);
		break;
	case 0x4:
	case 0x84:		/* refresh period is 62.5 usec */
		sdram_config_reg =
			(unsigned int) (((float) 62.5 * (float) CONFIG_SYS_BUS_CLK) /
					(float) 1000000.0);
		break;
	case 0x5:
	case 0x85:		/* refresh period is 125 usec */
		sdram_config_reg =
			(unsigned int) (((float) 125 * (float) CONFIG_SYS_BUS_CLK) /
					(float) 1000000.0);
		break;
	default:		/* refresh period undefined */
		printf ("DRAM refresh period is unknown!\n");
		printf ("Aborting DRAM setup with an error\n");
		hang ();
		break;
	}
	debug("calculated refresh interval %0x\n", sdram_config_reg);

	/* make sure the refresh value is only 14 bits */
	if (sdram_config_reg > 0x1fff)
		sdram_config_reg = 0x1fff;
	debug("adjusted refresh interval %0x\n", sdram_config_reg);

	/* we want physical bank interleaving and */
	/* virtual bank interleaving enabled so do nothing */
	/* since these bits need to be zero to enable the interleaving */

	/*  registered DRAM ? */
	if (info->registeredAddrAndControlInputs == 1) {
		/* it's registered DRAM, so set the reg. DRAM bit */
		sdram_config_reg = sdram_config_reg | BIT17;
		debug("Enabling registered DRAM bit\n");
	}
	/* turn on DRAM ECC? */
#ifdef CONFIG_MV64460_ECC
	if (info->errorCheckType == 0x2) {
		/* DRAM has ECC, so turn it on */
		sdram_config_reg = sdram_config_reg | BIT18;
		debug("Enabling ECC\n");
	}
#endif
	/* set the data DQS pin configuration */
	switch (info->sdramWidth) {
	case 0x4:		/* memory is x4 */
		sdram_config_reg = sdram_config_reg | BIT20 | BIT21;
		debug("Data DQS pins set for 16 pins\n");
		break;
	case 0x8:		/* memory is x8 or x16 */
	case 0x10:
		sdram_config_reg = sdram_config_reg | BIT21;
		debug("Data DQS pins set for 8 pins\n");
		break;
	case 0x20:		/* memory is x32 */
		/* both bits are cleared for x32 so nothing to do */
		debug("Data DQS pins set for 2 pins\n");
		break;
	default:		/* memory width unsupported */
		printf ("DRAM chip width is unknown!\n");
		printf ("Aborting DRAM setup with an error\n");
		hang ();
		break;
	}

	/*ronen db64460 */
	/* perform read buffer assignments */
	/* we are going to use the Power-up defaults */
	/* bit 27 = PCI bus #0 = buffer 0 */
	/* bit 28 = PCI bus #1 = buffer 0 */
	/* bit 29 = MPSC = buffer 0 */
	/* bit 30 = IDMA = buffer 0 */
	/* bit 31 = Gigabit = buffer 0 */
	sdram_config_reg = sdram_config_reg | 0x58000000;
	sdram_config_reg = sdram_config_reg & 0xffffff00;
	/* bit 14 FBSplit = FCRAM controller bsplit enable. */
	/* bit 15 vw = FCRAM Variable write length enable.   */
	/* bit 16 DType = Dram Type (0 = FCRAM,1 = Standard) */
	sdram_config_reg = sdram_config_reg | BIT14 | BIT15;

	/* write the value into the SDRAM configuration register */
	GT_REG_WRITE (SDRAM_CONFIG, sdram_config_reg);
	debug("sdram_conf 0x1400: %08x\n", GTREGREAD (SDRAM_CONFIG));

	/* SDRAM open pages control keep open as much as I can */
	GT_REG_WRITE (SDRAM_OPEN_PAGES_CONTROL, 0x0);
	debug
	    ("sdram_open_pages_controll 0x1414: %08x\n",
	     GTREGREAD (SDRAM_OPEN_PAGES_CONTROL));

	/* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
	tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01);	/* Clock Domain Sync from power on reset */
	if (tmp == 0)
		debug("Core Signals are sync (by HW-Setting)!!!\n");
	else
		debug
		    ("Core Signals syncs. are bypassed (by HW-Setting)!!!\n");

	/* SDRAM set CAS Latency according to SPD information */
	switch (info->memoryType) {
	case SDRAM:
		printf ("### SD-RAM not supported !!!\n");
		printf ("Aborting!!!\n");
		hang ();
		/* ToDo fill SD-RAM if needed !!!!! */
		break;
		/* Calculate the settings for SDRAM mode and Dunit control low registers */
		/* Values set according to technical bulletin TB-92 rev. c */
	case DDR:
		debug("### SET-CL for DDR-RAM\n");
		/* ronen db64460 - change the tmp_dunit_control_low setting!!! */
		switch (info->maxClSupported_DDR) {
		case DDR_CL_3:
			tmp_sdram_mode = 0x32;	/* CL=3 Burstlength = 4 */
			if (tmp == 1) {	/* clocks sync */
				if (info->registeredAddrAndControlInputs == 1)	/* registerd DDR SDRAM? */
					tmp_dunit_control_low = 0x05110051;
				else
					tmp_dunit_control_low = 0x24110051;
				debug
				    ("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
				     tmp_sdram_mode, tmp_dunit_control_low);
				printf ("Warnning: DRAM ClkSync was never tested(db64460)!!!!!\n");
			} else {	/* clk sync. bypassed   */

				if (info->registeredAddrAndControlInputs == 1)	/* registerd DDR SDRAM? */
					tmp_dunit_control_low = 0xC5000540;
				else
					tmp_dunit_control_low = 0xC4000540;
				debug
				    ("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
				     tmp_sdram_mode, tmp_dunit_control_low);
			}
			break;
		case DDR_CL_2_5:
			tmp_sdram_mode = 0x62;	/* CL=2.5 Burstlength = 4 */
			if (tmp == 1) {	/* clocks sync */
				if (info->registeredAddrAndControlInputs == 1)	/* registerd DDR SDRAM? */
					tmp_dunit_control_low = 0x25110051;
				else
					tmp_dunit_control_low = 0x24110051;
				debug
				    ("Max. CL is 2.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
				     tmp_sdram_mode, tmp_dunit_control_low);
				printf ("Warnning: DRAM ClkSync was never tested(db64460)!!!!!\n");
			} else {	/* clk sync. bypassed   */

				if (info->registeredAddrAndControlInputs == 1) {	/* registerd DDR SDRAM? */
					tmp_dunit_control_low = 0xC5000540;
					/* printf("CL = 2.5, Clock Unsync'ed, Dunit Control Low register setting undefined\n");1 */
					/* printf("Aborting!!!\n");1 */
					/* hang();1 */
				} else
					tmp_dunit_control_low = 0xC4000540;
				debug
				    ("Max. CL is 2.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
				     tmp_sdram_mode, tmp_dunit_control_low);
			}
			break;
		case DDR_CL_2:
			tmp_sdram_mode = 0x22;	/* CL=2 Burstlength = 4 */
			if (tmp == 1) {	/* clocks sync */
				if (info->registeredAddrAndControlInputs == 1)	/* registerd DDR SDRAM? */
					tmp_dunit_control_low = 0x04110051;
				else
					tmp_dunit_control_low = 0x03110051;
				debug
				    ("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
				     tmp_sdram_mode, tmp_dunit_control_low);
				printf ("Warnning: DRAM ClkSync was never tested(db64460)!!!!!\n");
			} else {	/* clk sync. bypassed   */

				if (info->registeredAddrAndControlInputs == 1) {	/* registerd DDR SDRAM? */
					/*printf("CL = 2, Clock Unsync'ed, Dunit Control Low register setting undefined\n");1 */
					/*printf("Aborting!!!\n");1 */
					/*hang();1 */
					tmp_dunit_control_low = 0xC4000540;
				} else
					tmp_dunit_control_low = 0xC3000540;;
				debug
				    ("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
				     tmp_sdram_mode, tmp_dunit_control_low);
			}
			break;
		case DDR_CL_1_5:
			tmp_sdram_mode = 0x52;	/* CL=1.5 Burstlength = 4 */
			if (tmp == 1) {	/* clocks sync */
				if (info->registeredAddrAndControlInputs == 1)	/* registerd DDR SDRAM? */
					tmp_dunit_control_low = 0x24110051;
				else
					tmp_dunit_control_low = 0x23110051;
				debug
				    ("Max. CL is 1.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
				     tmp_sdram_mode, tmp_dunit_control_low);
				printf ("Warnning: DRAM ClkSync was never tested(db64460)!!!!!\n");
			} else {	/* clk sync. bypassed   */

				if (info->registeredAddrAndControlInputs == 1) {	/* registerd DDR SDRAM? */
					/*printf("CL = 1.5, Clock Unsync'ed, Dunit Control Low register setting undefined\n");1 */
					/*printf("Aborting!!!\n");1 */
					/*hang();1 */
					tmp_dunit_control_low = 0xC4000540;
				} else
					tmp_dunit_control_low = 0xC3000540;
				debug
				    ("Max. CL is 1.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
				     tmp_sdram_mode, tmp_dunit_control_low);
			}
			break;

		default:
			printf ("Max. CL is out of range %d\n",
				info->maxClSupported_DDR);
			hang ();
			break;
		}		/* end DDR switch */
		break;
	}			/* end CL switch */

	/* Write results of CL detection procedure */
	/* set SDRAM mode reg. 0x141c */
	GT_REG_WRITE (SDRAM_MODE, tmp_sdram_mode);

	/* set SDRAM mode SetCommand 0x1418 */
	GT_REG_WRITE (SDRAM_OPERATION, 0x3);
	while (GTREGREAD (SDRAM_OPERATION) != 0) {
		debug
		    ("\n*** SDRAM_OPERATION 0x1418 after SDRAM_MODE: Module still busy ... please wait... ***\n");
	}

	/* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
	GT_REG_WRITE (D_UNIT_CONTROL_LOW, tmp_dunit_control_low);

	/* set SDRAM mode SetCommand 0x1418 */
	GT_REG_WRITE (SDRAM_OPERATION, 0x3);
	while (GTREGREAD (SDRAM_OPERATION) != 0) {
		debug
		    ("\n*** SDRAM_OPERATION 1418 after D_UNIT_CONTROL_LOW: Module still busy ... please wait... ***\n");
	}

/*------------------------------------------------------------------------------ */

	/* bank parameters */
	/* SDRAM address decode register 0x1410 */
	/* program this with the default value */
	tmp = 0x02;		/* power-up default address select decoding value */

	debug("drb_size (n*64Mbit): %d\n", info->drb_size);
/* figure out the DRAM chip size */
	sdram_chip_size =
		(1 << (info->numOfRowAddresses + info->numOfColAddresses));
	sdram_chip_size *= info->sdramWidth;
	sdram_chip_size *= 4;
	debug("computed sdram chip size is %#lx\n", sdram_chip_size);
	/* divide sdram chip size by 64 Mbits */
	sdram_chip_size = sdram_chip_size / 0x4000000;
	switch (sdram_chip_size) {
	case 1:		/* 64 Mbit */
	case 2:		/* 128 Mbit */
		debug("RAM-Device_size 64Mbit or 128Mbit)\n");
		tmp |= (0x00 << 4);
		break;
	case 4:		/* 256 Mbit */
	case 8:		/* 512 Mbit */
		debug("RAM-Device_size 256Mbit or 512Mbit)\n");
		tmp |= (0x01 << 4);
		break;
	case 16:		/* 1 Gbit */
	case 32:		/* 2 Gbit */
		debug("RAM-Device_size 1Gbit or 2Gbit)\n");
		tmp |= (0x02 << 4);
		break;
	default:
		printf ("Error in dram size calculation\n");
		printf ("RAM-Device_size is unsupported\n");
		hang ();
	}

	/* SDRAM address control */
	GT_REG_WRITE (SDRAM_ADDR_CONTROL, tmp);
	debug
	    ("setting up sdram address control (0x1410) with: %08lx \n",
	     tmp);

/* ------------------------------------------------------------------------------ */
/* same settings for registerd & non-registerd DDR SDRAM */
	debug
	    ("setting up sdram_timing_control_low (0x1408) with: %08x \n",
	     0x01501220);
	/*ronen db64460 */
	GT_REG_WRITE (SDRAM_TIMING_CONTROL_LOW, 0x01501220);


/* ------------------------------------------------------------------------------ */

	/* SDRAM configuration */
	tmp = GTREGREAD (SDRAM_CONFIG);

	if (info->registeredAddrAndControlInputs
	    || info->registeredDQMBinputs) {
		tmp |= (1 << 17);
		debug
		    ("SPD says: registered Addr. and Cont.: %d; registered DQMBinputs: %d\n",
		     info->registeredAddrAndControlInputs,
		     info->registeredDQMBinputs);
	}

	/* Use buffer 1 to return read data to the CPU
	 * Page 426 MV6indent: Standard input:1464: Warning:old style assignment ambiguity in "=*".  Assuming "= *"

indent: Standard input:1465: Warning:old style assignment ambiguity in "=*".  Assuming "= *"

4460 */
	tmp |= (1 << 26);
	debug
	    ("Before Buffer assignment - sdram_conf (0x1400): %08x\n",
	     GTREGREAD (SDRAM_CONFIG));
	debug
	    ("After Buffer assignment - sdram_conf (0x1400): %08x\n",
	     GTREGREAD (SDRAM_CONFIG));

	/* SDRAM timing To_do: */
/* ------------------------------------------------------------------------------ */
	/* ronen db64460 */
	debug
	    ("setting up sdram_timing_control_high (0x140c) with: %08x \n",
	     0xc);
	GT_REG_WRITE (SDRAM_TIMING_CONTROL_HIGH, 0xc);

	debug
	    ("setting up sdram address pads control (0x14c0) with: %08x \n",
	     0x7d5014a);
	GT_REG_WRITE (SDRAM_ADDR_CTRL_PADS_CALIBRATION, 0x7d5014a);

	debug
	    ("setting up sdram data pads control (0x14c4) with: %08x \n",
	     0x7d5014a);
	GT_REG_WRITE (SDRAM_DATA_PADS_CALIBRATION, 0x7d5014a);

/* ------------------------------------------------------------------------------ */

	/* set the SDRAM configuration for each bank */

/*      for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) */
	{
		i = info->slot;
		debug
		    ("\n*** Running a MRS cycle for bank %d ***\n", i);

		/* map the bank */
		memory_map_bank (i, 0, GB / 4);

		/* set SDRAM mode */ /* To_do check it */
		GT_REG_WRITE (SDRAM_OPERATION, 0x3);
		check = GTREGREAD (SDRAM_OPERATION);
		debug
		    ("\n*** SDRAM_OPERATION 1418 (0 = Normal Operation) = %08lx ***\n",
		     check);


		/* switch back to normal operation mode */
		GT_REG_WRITE (SDRAM_OPERATION, 0);
		check = GTREGREAD (SDRAM_OPERATION);
		debug
		    ("\n*** SDRAM_OPERATION 1418 (0 = Normal Operation) = %08lx ***\n",
		     check);

		/* unmap the bank */
		memory_map_bank (i, 0, 0);
	}

	return 0;

}

/*
 * Check memory range for valid RAM. A simple memory test determines
 * the actually available RAM size between addresses `base' and
 * `base + maxsize'. Some (not all) hardware errors are detected:
 * - short between address lines
 * - short between data lines
 */
long int dram_size (long int *base, long int maxsize)
{
	volatile long int *addr, *b = base;
	long int cnt, val, save1, save2;

#define STARTVAL (1<<20)	/* start test at 1M */
	for (cnt = STARTVAL / sizeof (long); cnt < maxsize / sizeof (long);
	     cnt <<= 1) {
		addr = base + cnt;	/* pointer arith! */

		save1 = *addr;	/* save contents of addr */
		save2 = *b;	/* save contents of base */

		*addr = cnt;	/* write cnt to addr */
		*b = 0;		/* put null at base */

		/* check at base address */
		if ((*b) != 0) {
			*addr = save1;	/* restore *addr */
			*b = save2;	/* restore *b */
			return (0);
		}
		val = *addr;	/* read *addr */
		val = *addr;	/* read *addr */

		*addr = save1;
		*b = save2;

		if (val != cnt) {
			debug
			    ("Found %08x  at Address %08x (failure)\n",
			     (unsigned int) val, (unsigned int) addr);
			/* fix boundary condition.. STARTVAL means zero */
			if (cnt == STARTVAL / sizeof (long))
				cnt = 0;
			return (cnt * sizeof (long));
		}
	}
	return maxsize;
}

/* ------------------------------------------------------------------------- */

/* ppcboot interface function to SDRAM init - this is where all the
 * controlling logic happens */
phys_size_t initdram (int board_type)
{
	int checkbank[4] = {[0 ... 3] = 0 };
	ulong realsize, total;
	AUX_MEM_DIMM_INFO dimmInfo1;
	AUX_MEM_DIMM_INFO dimmInfo2;
	int nhr, bank_no;
	ulong dest, memSpaceAttr;

	/* first, use the SPD to get info about the SDRAM/ DDRRAM */

	/* check the NHR bit and skip mem init if it's already done */
	nhr = get_hid0 () & (1 << 16);

	if (nhr) {
		printf ("Skipping SD- DDRRAM setup due to NHR bit being set\n");
	} else {
		/* DIMM0 */
		check_dimm (0, &dimmInfo1);

		/* DIMM1 */
		check_dimm (1, &dimmInfo2);

		memory_map_bank (0, 0, 0);
		memory_map_bank (1, 0, 0);
		memory_map_bank (2, 0, 0);
		memory_map_bank (3, 0, 0);

		/* ronen check correct set of DIMMS */
		if (dimmInfo1.numOfModuleBanks && dimmInfo2.numOfModuleBanks) {
			if (dimmInfo1.errorCheckType !=
			    dimmInfo2.errorCheckType)
				printf ("***WARNNING***!!!! different ECC support of the DIMMS\n");
			if (dimmInfo1.maxClSupported_DDR !=
			    dimmInfo2.maxClSupported_DDR)
				printf ("***WARNNING***!!!! different CAL setting of the DIMMS\n");
			if (dimmInfo1.registeredAddrAndControlInputs !=
			    dimmInfo2.registeredAddrAndControlInputs)
				printf ("***WARNNING***!!!! different Registration setting of the DIMMS\n");
		}

		if (dimmInfo1.numOfModuleBanks && setup_sdram (&dimmInfo1)) {
			printf ("Setup for DIMM1 failed.\n");
		}

		if (dimmInfo2.numOfModuleBanks && setup_sdram (&dimmInfo2)) {
			printf ("Setup for DIMM2 failed.\n");
		}

		/* set the NHR bit */
		set_hid0 (get_hid0 () | (1 << 16));
	}
	/* next, size the SDRAM banks */

	realsize = total = 0;
	if (dimmInfo1.numOfModuleBanks > 0) {
		checkbank[0] = 1;
	}
	if (dimmInfo1.numOfModuleBanks > 1) {
		checkbank[1] = 1;
	}
	if (dimmInfo1.numOfModuleBanks > 2)
		printf ("Error, SPD claims DIMM1 has >2 banks\n");

	printf ("-- DIMM1 has %d banks\n", dimmInfo1.numOfModuleBanks);

	if (dimmInfo2.numOfModuleBanks > 0) {
		checkbank[2] = 1;
	}
	if (dimmInfo2.numOfModuleBanks > 1) {
		checkbank[3] = 1;
	}
	if (dimmInfo2.numOfModuleBanks > 2)
		printf ("Error, SPD claims DIMM2 has >2 banks\n");

	printf ("-- DIMM2 has %d banks\n", dimmInfo2.numOfModuleBanks);

	for (bank_no = 0; bank_no < CONFIG_SYS_DRAM_BANKS; bank_no++) {
		/* skip over banks that are not populated */
		if (!checkbank[bank_no])
			continue;

		/* ronen - realsize = dram_size((long int *)total, check); */
		if (bank_no == 0 || bank_no == 1) {
			if (checkbank[1] == 1)
				realsize = dimmInfo1.size / 2;
			else
				realsize = dimmInfo1.size;
		}
		if (bank_no == 2 || bank_no == 3) {
			if (checkbank[3] == 1)
				realsize = dimmInfo2.size / 2;
			else
				realsize = dimmInfo2.size;
		}
		memory_map_bank (bank_no, total, realsize);

		/* ronen - initialize the DRAM for ECC */
#ifdef CONFIG_MV64460_ECC
		if ((dimmInfo1.errorCheckType != 0) &&
		    ((dimmInfo2.errorCheckType != 0)
		     || (dimmInfo2.numOfModuleBanks == 0))) {
			printf ("ECC Initialization of Bank %d:", bank_no);
			memSpaceAttr = ((~(BIT0 << bank_no)) & 0xf) << 8;
			mvDmaSetMemorySpace (0, 0, memSpaceAttr, total,
					     realsize);
			for (dest = total; dest < total + realsize;
			     dest += _8M) {
				mvDmaTransfer (0, total, dest, _8M,
					       BIT8 /*DMA_DTL_128BYTES */  |
					       BIT3 /*DMA_HOLD_SOURCE_ADDR */
					       |
					       BIT11
					       /*DMA_BLOCK_TRANSFER_MODE */ );
				while (mvDmaIsChannelActive (0));
			}
			printf (" PASS\n");
		}
#endif

		total += realsize;
	}

	/* ronen */
	switch ((GTREGREAD (0x141c) >> 4) & 0x7) {
	case 0x2:
		printf ("CAS Latency = 2");
		break;
	case 0x3:
		printf ("CAS Latency = 3");
		break;
	case 0x5:
		printf ("CAS Latency = 1.5");
		break;
	case 0x6:
		printf ("CAS Latency = 2.5");
		break;
	}
	printf (" tRP = %d tRAS = %d tRCD=%d\n",
		((GTREGREAD (0x1408) >> 8) & 0xf) + 1,
		((GTREGREAD (0x1408) >> 20) & 0xf) + 1,
		((GTREGREAD (0x1408) >> 4) & 0xf) + 1);

/*	Setup Ethernet DMA Adress window to DRAM Area */
	if (total > _256M)
		printf ("*** ONLY the first 256MB DRAM memory are used out of the ");
	else
		printf ("Total SDRAM memory is ");
	/* (cause all the 4 BATS are taken) */
	return (total);
}


/* ronen- add Idma functions for usage of the ecc dram init. */
/*******************************************************************************
* mvDmaIsChannelActive - Checks if a engine is busy.
********************************************************************************/
int mvDmaIsChannelActive (int engine)
{
	ulong data;

	data = GTREGREAD (MV64460_DMA_CHANNEL0_CONTROL + 4 * engine);
	if (data & BIT14 /*activity status */ ) {
		return 1;
	}
	return 0;
}

/*******************************************************************************
* mvDmaSetMemorySpace - Set a DMA memory window for the DMA's address decoding
*                       map.
*******************************************************************************/
int mvDmaSetMemorySpace (ulong memSpace,
			 ulong memSpaceTarget,
			 ulong memSpaceAttr, ulong baseAddress, ulong size)
{
	ulong temp;

	/* The base address must be aligned to the size.  */
	if (baseAddress % size != 0) {
		return 0;
	}
	if (size >= 0x10000 /*64K */ ) {
		size &= 0xffff0000;
		baseAddress = (baseAddress & 0xffff0000);
		/* Set the new attributes */
		GT_REG_WRITE (MV64460_DMA_BASE_ADDR_REG0 + memSpace * 8,
			      (baseAddress | memSpaceTarget | memSpaceAttr));
		GT_REG_WRITE ((MV64460_DMA_SIZE_REG0 + memSpace * 8),
			      (size - 1) & 0xffff0000);
		temp = GTREGREAD (MV64460_DMA_BASE_ADDR_ENABLE_REG);
		GT_REG_WRITE (DMA_BASE_ADDR_ENABLE_REG,
			      (temp & ~(BIT0 << memSpace)));
		return 1;
	}
	return 0;
}


/*******************************************************************************
* mvDmaTransfer - Transfer data from sourceAddr to destAddr on one of the 4
*                 DMA channels.
********************************************************************************/
int mvDmaTransfer (int engine, ulong sourceAddr,
		   ulong destAddr, ulong numOfBytes, ulong command)
{
	ulong engOffReg = 0;	/* Engine Offset Register */

	if (numOfBytes > 0xffff) {
		command = command | BIT31 /*DMA_16M_DESCRIPTOR_MODE */ ;
	}
	command = command | ((command >> 6) & 0x7);
	engOffReg = engine * 4;
	GT_REG_WRITE (MV64460_DMA_CHANNEL0_BYTE_COUNT + engOffReg,
		      numOfBytes);
	GT_REG_WRITE (MV64460_DMA_CHANNEL0_SOURCE_ADDR + engOffReg,
		      sourceAddr);
	GT_REG_WRITE (MV64460_DMA_CHANNEL0_DESTINATION_ADDR + engOffReg,
		      destAddr);
	command =
		command | BIT12 /*DMA_CHANNEL_ENABLE */  | BIT9
		/*DMA_NON_CHAIN_MODE */ ;
	/* Activate DMA engine By writting to mvDmaControlRegister */
	GT_REG_WRITE (MV64460_DMA_CHANNEL0_CONTROL + engOffReg, command);
	return 1;
}

/****************************************************************************************
 *			       SDRAM INIT						*
 *  This procedure detect all Sdram types: 64, 128, 256, 512 Mbit, 1Gbit and 2Gb	*
 *		 This procedure fits only the Atlantis					*
 *											*
 ***************************************************************************************/


/****************************************************************************************
 *			       DFCDL initialize MV643xx Design Considerations		*
 *											*
 ***************************************************************************************/
int set_dfcdlInit (void)
{
	/*ronen the dfcdl init are done by the I2C */
	return (0);
}