/* * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include enum pll_clocks { PLL_SYS, /* System PLL */ PLL_BUS, /* System Bus PLL*/ PLL_USBOTG, /* OTG USB PLL */ PLL_ENET, /* ENET PLL */ }; struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; #ifdef CONFIG_MXC_OCOTP void enable_ocotp_clk(unsigned char enable) { u32 reg; reg = __raw_readl(&imx_ccm->CCGR2); if (enable) reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK; else reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK; __raw_writel(reg, &imx_ccm->CCGR2); } #endif #ifdef CONFIG_NAND_MXS void setup_gpmi_io_clk(u32 cfg) { /* Disable clocks per ERR007177 from MX6 errata */ clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK | MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK); clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK); clrsetbits_le32(&imx_ccm->cs2cdr, MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK | MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK | MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK, cfg); setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK); setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK | MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK); } #endif void enable_usboh3_clk(unsigned char enable) { u32 reg; reg = __raw_readl(&imx_ccm->CCGR6); if (enable) reg |= MXC_CCM_CCGR6_USBOH3_MASK; else reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK); __raw_writel(reg, &imx_ccm->CCGR6); } #if defined(CONFIG_FEC_MXC) && !defined(CONFIG_MX6SX) void enable_enet_clk(unsigned char enable) { u32 mask = MXC_CCM_CCGR1_ENET_CLK_ENABLE_MASK; if (enable) setbits_le32(&imx_ccm->CCGR1, mask); else clrbits_le32(&imx_ccm->CCGR1, mask); } #endif #ifdef CONFIG_MXC_UART void enable_uart_clk(unsigned char enable) { u32 mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK; if (enable) setbits_le32(&imx_ccm->CCGR5, mask); else clrbits_le32(&imx_ccm->CCGR5, mask); } #endif #ifdef CONFIG_SPI /* spi_num can be from 0 - 4 */ int enable_cspi_clock(unsigned char enable, unsigned spi_num) { u32 mask; if (spi_num > 4) return -EINVAL; mask = MXC_CCM_CCGR_CG_MASK << (spi_num * 2); if (enable) setbits_le32(&imx_ccm->CCGR1, mask); else clrbits_le32(&imx_ccm->CCGR1, mask); return 0; } #endif #ifdef CONFIG_MMC int enable_usdhc_clk(unsigned char enable, unsigned bus_num) { u32 mask; if (bus_num > 3) return -EINVAL; mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2); if (enable) setbits_le32(&imx_ccm->CCGR6, mask); else clrbits_le32(&imx_ccm->CCGR6, mask); return 0; } #endif #ifdef CONFIG_SYS_I2C_MXC /* i2c_num can be from 0 - 2 */ int enable_i2c_clk(unsigned char enable, unsigned i2c_num) { u32 reg; u32 mask; if (i2c_num > 2) return -EINVAL; mask = MXC_CCM_CCGR_CG_MASK << (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET + (i2c_num << 1)); reg = __raw_readl(&imx_ccm->CCGR2); if (enable) reg |= mask; else reg &= ~mask; __raw_writel(reg, &imx_ccm->CCGR2); return 0; } #endif /* spi_num can be from 0 - SPI_MAX_NUM */ int enable_spi_clk(unsigned char enable, unsigned spi_num) { u32 reg; u32 mask; if (spi_num > SPI_MAX_NUM) return -EINVAL; mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1); reg = __raw_readl(&imx_ccm->CCGR1); if (enable) reg |= mask; else reg &= ~mask; __raw_writel(reg, &imx_ccm->CCGR1); return 0; } static u32 decode_pll(enum pll_clocks pll, u32 infreq) { u32 div; switch (pll) { case PLL_SYS: div = __raw_readl(&imx_ccm->analog_pll_sys); div &= BM_ANADIG_PLL_SYS_DIV_SELECT; return (infreq * div) >> 1; case PLL_BUS: div = __raw_readl(&imx_ccm->analog_pll_528); div &= BM_ANADIG_PLL_528_DIV_SELECT; return infreq * (20 + (div << 1)); case PLL_USBOTG: div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl); div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT; return infreq * (20 + (div << 1)); case PLL_ENET: div = __raw_readl(&imx_ccm->analog_pll_enet); div &= BM_ANADIG_PLL_ENET_DIV_SELECT; return 25000000 * (div + (div >> 1) + 1); default: return 0; } /* NOTREACHED */ } static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num) { u32 div; u64 freq; switch (pll) { case PLL_BUS: if (pfd_num == 3) { /* No PFD3 on PPL2 */ return 0; } div = __raw_readl(&imx_ccm->analog_pfd_528); freq = (u64)decode_pll(PLL_BUS, MXC_HCLK); break; case PLL_USBOTG: div = __raw_readl(&imx_ccm->analog_pfd_480); freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK); break; default: /* No PFD on other PLL */ return 0; } return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >> ANATOP_PFD_FRAC_SHIFT(pfd_num)); } static u32 get_mcu_main_clk(void) { u32 reg, freq; reg = __raw_readl(&imx_ccm->cacrr); reg &= MXC_CCM_CACRR_ARM_PODF_MASK; reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET; freq = decode_pll(PLL_SYS, MXC_HCLK); return freq / (reg + 1); } u32 get_periph_clk(void) { u32 reg, freq = 0; reg = __raw_readl(&imx_ccm->cbcdr); if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) { reg = __raw_readl(&imx_ccm->cbcmr); reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK; reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET; switch (reg) { case 0: freq = decode_pll(PLL_USBOTG, MXC_HCLK); break; case 1: case 2: freq = MXC_HCLK; break; default: break; } } else { reg = __raw_readl(&imx_ccm->cbcmr); reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK; reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET; switch (reg) { case 0: freq = decode_pll(PLL_BUS, MXC_HCLK); break; case 1: freq = mxc_get_pll_pfd(PLL_BUS, 2); break; case 2: freq = mxc_get_pll_pfd(PLL_BUS, 0); break; case 3: /* static / 2 divider */ freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2; break; default: break; } } return freq; } static u32 get_ipg_clk(void) { u32 reg, ipg_podf; reg = __raw_readl(&imx_ccm->cbcdr); reg &= MXC_CCM_CBCDR_IPG_PODF_MASK; ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET; return get_ahb_clk() / (ipg_podf + 1); } static u32 get_ipg_per_clk(void) { u32 reg, perclk_podf; reg = __raw_readl(&imx_ccm->cscmr1); #if (defined(CONFIG_MX6SL) || defined(CONFIG_MX6SX)) if (reg & MXC_CCM_CSCMR1_PER_CLK_SEL_MASK) return MXC_HCLK; /* OSC 24Mhz */ #endif perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK; return get_ipg_clk() / (perclk_podf + 1); } static u32 get_uart_clk(void) { u32 reg, uart_podf; u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */ reg = __raw_readl(&imx_ccm->cscdr1); #if (defined(CONFIG_MX6SL) || defined(CONFIG_MX6SX)) if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL) freq = MXC_HCLK; #endif reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK; uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET; return freq / (uart_podf + 1); } static u32 get_cspi_clk(void) { u32 reg, cspi_podf; reg = __raw_readl(&imx_ccm->cscdr2); reg &= MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK; cspi_podf = reg >> MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET; return decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1)); } static u32 get_axi_clk(void) { u32 root_freq, axi_podf; u32 cbcdr = __raw_readl(&imx_ccm->cbcdr); axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK; axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET; if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) { if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL) root_freq = mxc_get_pll_pfd(PLL_BUS, 2); else root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1); } else root_freq = get_periph_clk(); return root_freq / (axi_podf + 1); } static u32 get_emi_slow_clk(void) { u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0; cscmr1 = __raw_readl(&imx_ccm->cscmr1); emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK; emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET; emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK; emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET; switch (emi_clk_sel) { case 0: root_freq = get_axi_clk(); break; case 1: root_freq = decode_pll(PLL_USBOTG, MXC_HCLK); break; case 2: root_freq = mxc_get_pll_pfd(PLL_BUS, 2); break; case 3: root_freq = mxc_get_pll_pfd(PLL_BUS, 0); break; } return root_freq / (emi_slow_podf + 1); } #if (defined(CONFIG_MX6SL) || defined(CONFIG_MX6SX)) static u32 get_mmdc_ch0_clk(void) { u32 cbcmr = __raw_readl(&imx_ccm->cbcmr); u32 cbcdr = __raw_readl(&imx_ccm->cbcdr); u32 freq, podf; podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) \ >> MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET; switch ((cbcmr & MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >> MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) { case 0: freq = decode_pll(PLL_BUS, MXC_HCLK); break; case 1: freq = mxc_get_pll_pfd(PLL_BUS, 2); break; case 2: freq = mxc_get_pll_pfd(PLL_BUS, 0); break; case 3: /* static / 2 divider */ freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2; } return freq / (podf + 1); } #else static u32 get_mmdc_ch0_clk(void) { u32 cbcdr = __raw_readl(&imx_ccm->cbcdr); u32 mmdc_ch0_podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >> MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET; return get_periph_clk() / (mmdc_ch0_podf + 1); } #endif #ifdef CONFIG_FEC_MXC int enable_fec_anatop_clock(enum enet_freq freq) { u32 reg = 0; s32 timeout = 100000; struct anatop_regs __iomem *anatop = (struct anatop_regs __iomem *)ANATOP_BASE_ADDR; if (freq < ENET_25MHZ || freq > ENET_125MHZ) return -EINVAL; reg = readl(&anatop->pll_enet); reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT; reg |= freq; if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) || (!(reg & BM_ANADIG_PLL_ENET_LOCK))) { reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN; writel(reg, &anatop->pll_enet); while (timeout--) { if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK) break; } if (timeout < 0) return -ETIMEDOUT; } /* Enable FEC clock */ reg |= BM_ANADIG_PLL_ENET_ENABLE; reg &= ~BM_ANADIG_PLL_ENET_BYPASS; writel(reg, &anatop->pll_enet); #ifdef CONFIG_MX6SX /* * Set enet ahb clock to 200MHz * pll2_pfd2_396m-> ENET_PODF-> ENET_AHB */ reg = readl(&imx_ccm->chsccdr); reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK | MXC_CCM_CHSCCDR_ENET_PODF_MASK | MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK); /* PLL2 PFD2 */ reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET); /* Div = 2*/ reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET); reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET); writel(reg, &imx_ccm->chsccdr); /* Enable enet system clock */ reg = readl(&imx_ccm->CCGR3); reg |= MXC_CCM_CCGR3_ENET_MASK; writel(reg, &imx_ccm->CCGR3); #endif return 0; } #endif static u32 get_usdhc_clk(u32 port) { u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0; u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1); u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1); switch (port) { case 0: usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >> MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET; clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL; break; case 1: usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >> MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET; clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL; break; case 2: usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >> MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET; clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL; break; case 3: usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >> MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET; clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL; break; default: break; } if (clk_sel) root_freq = mxc_get_pll_pfd(PLL_BUS, 0); else root_freq = mxc_get_pll_pfd(PLL_BUS, 2); return root_freq / (usdhc_podf + 1); } u32 imx_get_uartclk(void) { return get_uart_clk(); } u32 imx_get_fecclk(void) { return mxc_get_clock(MXC_IPG_CLK); } static int enable_enet_pll(uint32_t en) { struct mxc_ccm_reg *const imx_ccm = (struct mxc_ccm_reg *) CCM_BASE_ADDR; s32 timeout = 100000; u32 reg = 0; /* Enable PLLs */ reg = readl(&imx_ccm->analog_pll_enet); reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN; writel(reg, &imx_ccm->analog_pll_enet); reg |= BM_ANADIG_PLL_SYS_ENABLE; while (timeout--) { if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK) break; } if (timeout <= 0) return -EIO; reg &= ~BM_ANADIG_PLL_SYS_BYPASS; writel(reg, &imx_ccm->analog_pll_enet); reg |= en; writel(reg, &imx_ccm->analog_pll_enet); return 0; } #ifndef CONFIG_MX6SX static void ungate_sata_clock(void) { struct mxc_ccm_reg *const imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; /* Enable SATA clock. */ setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK); } #endif static void ungate_pcie_clock(void) { struct mxc_ccm_reg *const imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; /* Enable PCIe clock. */ setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK); } #ifndef CONFIG_MX6SX int enable_sata_clock(void) { ungate_sata_clock(); return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA); } void disable_sata_clock(void) { struct mxc_ccm_reg *const imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; clrbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK); } #endif int enable_pcie_clock(void) { struct anatop_regs *anatop_regs = (struct anatop_regs *)ANATOP_BASE_ADDR; struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR; u32 lvds1_clk_sel; /* * Here be dragons! * * The register ANATOP_MISC1 is not documented in the Freescale * MX6RM. The register that is mapped in the ANATOP space and * marked as ANATOP_MISC1 is actually documented in the PMU section * of the datasheet as PMU_MISC1. * * Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on * mx6sx, disable clock INPUT and enable clock OUTPUT. This is important * for PCI express link that is clocked from the i.MX6. */ #define ANADIG_ANA_MISC1_LVDSCLK1_IBEN (1 << 12) #define ANADIG_ANA_MISC1_LVDSCLK1_OBEN (1 << 10) #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK 0x0000001F #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF 0xa #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF 0xb if (is_cpu_type(MXC_CPU_MX6SX)) lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF; else lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF; clrsetbits_le32(&anatop_regs->ana_misc1, ANADIG_ANA_MISC1_LVDSCLK1_IBEN | ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK, ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel); /* PCIe reference clock sourced from AXI. */ clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL); /* Party time! Ungate the clock to the PCIe. */ #ifndef CONFIG_MX6SX ungate_sata_clock(); #endif ungate_pcie_clock(); return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA | BM_ANADIG_PLL_ENET_ENABLE_PCIE); } #ifdef CONFIG_SECURE_BOOT void hab_caam_clock_enable(unsigned char enable) { u32 reg; /* CG4 ~ CG6, CAAM clocks */ reg = __raw_readl(&imx_ccm->CCGR0); if (enable) reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK | MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK | MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK); else reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK | MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK | MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK); __raw_writel(reg, &imx_ccm->CCGR0); /* EMI slow clk */ reg = __raw_readl(&imx_ccm->CCGR6); if (enable) reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK; else reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK; __raw_writel(reg, &imx_ccm->CCGR6); } #endif static void enable_pll3(void) { struct anatop_regs __iomem *anatop = (struct anatop_regs __iomem *)ANATOP_BASE_ADDR; /* make sure pll3 is enabled */ if ((readl(&anatop->usb1_pll_480_ctrl) & BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) { /* enable pll's power */ writel(BM_ANADIG_USB1_PLL_480_CTRL_POWER, &anatop->usb1_pll_480_ctrl_set); writel(0x80, &anatop->ana_misc2_clr); /* wait for pll lock */ while ((readl(&anatop->usb1_pll_480_ctrl) & BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) ; /* disable bypass */ writel(BM_ANADIG_USB1_PLL_480_CTRL_BYPASS, &anatop->usb1_pll_480_ctrl_clr); /* enable pll output */ writel(BM_ANADIG_USB1_PLL_480_CTRL_ENABLE, &anatop->usb1_pll_480_ctrl_set); } } void enable_thermal_clk(void) { enable_pll3(); } unsigned int mxc_get_clock(enum mxc_clock clk) { switch (clk) { case MXC_ARM_CLK: return get_mcu_main_clk(); case MXC_PER_CLK: return get_periph_clk(); case MXC_AHB_CLK: return get_ahb_clk(); case MXC_IPG_CLK: return get_ipg_clk(); case MXC_IPG_PERCLK: case MXC_I2C_CLK: return get_ipg_per_clk(); case MXC_UART_CLK: return get_uart_clk(); case MXC_CSPI_CLK: return get_cspi_clk(); case MXC_AXI_CLK: return get_axi_clk(); case MXC_EMI_SLOW_CLK: return get_emi_slow_clk(); case MXC_DDR_CLK: return get_mmdc_ch0_clk(); case MXC_ESDHC_CLK: return get_usdhc_clk(0); case MXC_ESDHC2_CLK: return get_usdhc_clk(1); case MXC_ESDHC3_CLK: return get_usdhc_clk(2); case MXC_ESDHC4_CLK: return get_usdhc_clk(3); case MXC_SATA_CLK: return get_ahb_clk(); default: printf("Unsupported MXC CLK: %d\n", clk); break; } return 0; } /* * Dump some core clockes. */ int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { u32 freq; freq = decode_pll(PLL_SYS, MXC_HCLK); printf("PLL_SYS %8d MHz\n", freq / 1000000); freq = decode_pll(PLL_BUS, MXC_HCLK); printf("PLL_BUS %8d MHz\n", freq / 1000000); freq = decode_pll(PLL_USBOTG, MXC_HCLK); printf("PLL_OTG %8d MHz\n", freq / 1000000); freq = decode_pll(PLL_ENET, MXC_HCLK); printf("PLL_NET %8d MHz\n", freq / 1000000); printf("\n"); printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000); printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000); #ifdef CONFIG_MXC_SPI printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000); #endif printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000); printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000); printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000); printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000); printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000); printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000); printf("USDHC4 %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000); printf("EMI SLOW %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000); printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000); return 0; } #ifndef CONFIG_MX6SX void enable_ipu_clock(void) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; int reg; reg = readl(&mxc_ccm->CCGR3); reg |= MXC_CCM_CCGR3_IPU1_IPU_MASK; writel(reg, &mxc_ccm->CCGR3); } #endif /***************************************************/ U_BOOT_CMD( clocks, CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks, "display clocks", "" );