/* * Copyright (C) 2010 Samsung Electronics * Minkyu Kang * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #define PLL_DIV_1024 1024 #define PLL_DIV_65535 65535 #define PLL_DIV_65536 65536 /* * * This structure is to store the src bit, div bit and prediv bit * positions of the peripheral clocks of the src and div registers */ struct clk_bit_info { int8_t src_bit; int8_t div_bit; int8_t prediv_bit; }; /* src_bit div_bit prediv_bit */ static struct clk_bit_info clk_bit_info[PERIPH_ID_COUNT] = { {0, 0, -1}, {4, 4, -1}, {8, 8, -1}, {12, 12, -1}, {0, 0, 8}, {4, 16, 24}, {8, 0, 8}, {12, 16, 24}, {-1, -1, -1}, {16, 0, 8}, {20, 16, 24}, {24, 0, 8}, {0, 0, 4}, {4, 12, 16}, {-1, -1, -1}, {-1, -1, -1}, {-1, 24, 0}, {-1, 24, 0}, {-1, 24, 0}, {-1, 24, 0}, {-1, 24, 0}, {-1, 24, 0}, {-1, 24, 0}, {-1, 24, 0}, {24, 0, -1}, {24, 0, -1}, {24, 0, -1}, {24, 0, -1}, {24, 0, -1}, }; /* Epll Clock division values to achive different frequency output */ static struct set_epll_con_val exynos5_epll_div[] = { { 192000000, 0, 48, 3, 1, 0 }, { 180000000, 0, 45, 3, 1, 0 }, { 73728000, 1, 73, 3, 3, 47710 }, { 67737600, 1, 90, 4, 3, 20762 }, { 49152000, 0, 49, 3, 3, 9961 }, { 45158400, 0, 45, 3, 3, 10381 }, { 180633600, 0, 45, 3, 1, 10381 } }; /* exynos: return pll clock frequency */ static int exynos_get_pll_clk(int pllreg, unsigned int r, unsigned int k) { unsigned long m, p, s = 0, mask, fout; unsigned int div; unsigned int freq; /* * APLL_CON: MIDV [25:16] * MPLL_CON: MIDV [25:16] * EPLL_CON: MIDV [24:16] * VPLL_CON: MIDV [24:16] * BPLL_CON: MIDV [25:16]: Exynos5 */ if (pllreg == APLL || pllreg == MPLL || pllreg == BPLL) mask = 0x3ff; else mask = 0x1ff; m = (r >> 16) & mask; /* PDIV [13:8] */ p = (r >> 8) & 0x3f; /* SDIV [2:0] */ s = r & 0x7; freq = CONFIG_SYS_CLK_FREQ; if (pllreg == EPLL || pllreg == RPLL) { k = k & 0xffff; /* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */ fout = (m + k / PLL_DIV_65536) * (freq / (p * (1 << s))); } else if (pllreg == VPLL) { k = k & 0xfff; /* * Exynos4210 * FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV) * * Exynos4412 * FOUT = (MDIV + K / 65535) * FIN / (PDIV * 2^SDIV) * * Exynos5250 * FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */ if (proid_is_exynos4210()) div = PLL_DIV_1024; else if (proid_is_exynos4412()) div = PLL_DIV_65535; else if (proid_is_exynos5250() || proid_is_exynos5420()) div = PLL_DIV_65536; else return 0; fout = (m + k / div) * (freq / (p * (1 << s))); } else { /* * Exynos4412 / Exynos5250 * FOUT = MDIV * FIN / (PDIV * 2^SDIV) * * Exynos4210 * FOUT = MDIV * FIN / (PDIV * 2^(SDIV-1)) */ if (proid_is_exynos4210()) fout = m * (freq / (p * (1 << (s - 1)))); else fout = m * (freq / (p * (1 << s))); } return fout; } /* exynos4: return pll clock frequency */ static unsigned long exynos4_get_pll_clk(int pllreg) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned long r, k = 0; switch (pllreg) { case APLL: r = readl(&clk->apll_con0); break; case MPLL: r = readl(&clk->mpll_con0); break; case EPLL: r = readl(&clk->epll_con0); k = readl(&clk->epll_con1); break; case VPLL: r = readl(&clk->vpll_con0); k = readl(&clk->vpll_con1); break; default: printf("Unsupported PLL (%d)\n", pllreg); return 0; } return exynos_get_pll_clk(pllreg, r, k); } /* exynos4x12: return pll clock frequency */ static unsigned long exynos4x12_get_pll_clk(int pllreg) { struct exynos4x12_clock *clk = (struct exynos4x12_clock *)samsung_get_base_clock(); unsigned long r, k = 0; switch (pllreg) { case APLL: r = readl(&clk->apll_con0); break; case MPLL: r = readl(&clk->mpll_con0); break; case EPLL: r = readl(&clk->epll_con0); k = readl(&clk->epll_con1); break; case VPLL: r = readl(&clk->vpll_con0); k = readl(&clk->vpll_con1); break; default: printf("Unsupported PLL (%d)\n", pllreg); return 0; } return exynos_get_pll_clk(pllreg, r, k); } /* exynos5: return pll clock frequency */ static unsigned long exynos5_get_pll_clk(int pllreg) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned long r, k = 0, fout; unsigned int pll_div2_sel, fout_sel; switch (pllreg) { case APLL: r = readl(&clk->apll_con0); break; case MPLL: r = readl(&clk->mpll_con0); break; case EPLL: r = readl(&clk->epll_con0); k = readl(&clk->epll_con1); break; case VPLL: r = readl(&clk->vpll_con0); k = readl(&clk->vpll_con1); break; case BPLL: r = readl(&clk->bpll_con0); break; default: printf("Unsupported PLL (%d)\n", pllreg); return 0; } fout = exynos_get_pll_clk(pllreg, r, k); /* According to the user manual, in EVT1 MPLL and BPLL always gives * 1.6GHz clock, so divide by 2 to get 800MHz MPLL clock.*/ if (pllreg == MPLL || pllreg == BPLL) { pll_div2_sel = readl(&clk->pll_div2_sel); switch (pllreg) { case MPLL: fout_sel = (pll_div2_sel >> MPLL_FOUT_SEL_SHIFT) & MPLL_FOUT_SEL_MASK; break; case BPLL: fout_sel = (pll_div2_sel >> BPLL_FOUT_SEL_SHIFT) & BPLL_FOUT_SEL_MASK; break; default: fout_sel = -1; break; } if (fout_sel == 0) fout /= 2; } return fout; } static unsigned long exynos5_get_periph_rate(int peripheral) { struct clk_bit_info *bit_info = &clk_bit_info[peripheral]; unsigned long sclk, sub_clk; unsigned int src, div, sub_div; struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); switch (peripheral) { case PERIPH_ID_UART0: case PERIPH_ID_UART1: case PERIPH_ID_UART2: case PERIPH_ID_UART3: src = readl(&clk->src_peric0); div = readl(&clk->div_peric0); break; case PERIPH_ID_PWM0: case PERIPH_ID_PWM1: case PERIPH_ID_PWM2: case PERIPH_ID_PWM3: case PERIPH_ID_PWM4: src = readl(&clk->src_peric0); div = readl(&clk->div_peric3); break; case PERIPH_ID_I2S0: src = readl(&clk->src_mau); div = readl(&clk->div_mau); case PERIPH_ID_SPI0: case PERIPH_ID_SPI1: src = readl(&clk->src_peric1); div = readl(&clk->div_peric1); break; case PERIPH_ID_SPI2: src = readl(&clk->src_peric1); div = readl(&clk->div_peric2); break; case PERIPH_ID_SPI3: case PERIPH_ID_SPI4: src = readl(&clk->sclk_src_isp); div = readl(&clk->sclk_div_isp); break; case PERIPH_ID_SDMMC0: case PERIPH_ID_SDMMC1: case PERIPH_ID_SDMMC2: case PERIPH_ID_SDMMC3: src = readl(&clk->src_fsys); div = readl(&clk->div_fsys1); break; case PERIPH_ID_I2C0: case PERIPH_ID_I2C1: case PERIPH_ID_I2C2: case PERIPH_ID_I2C3: case PERIPH_ID_I2C4: case PERIPH_ID_I2C5: case PERIPH_ID_I2C6: case PERIPH_ID_I2C7: sclk = exynos5_get_pll_clk(MPLL); sub_div = ((readl(&clk->div_top1) >> bit_info->div_bit) & 0x7) + 1; div = ((readl(&clk->div_top0) >> bit_info->prediv_bit) & 0x7) + 1; return (sclk / sub_div) / div; default: debug("%s: invalid peripheral %d", __func__, peripheral); return -1; }; src = (src >> bit_info->src_bit) & 0xf; switch (src) { case EXYNOS_SRC_MPLL: sclk = exynos5_get_pll_clk(MPLL); break; case EXYNOS_SRC_EPLL: sclk = exynos5_get_pll_clk(EPLL); break; case EXYNOS_SRC_VPLL: sclk = exynos5_get_pll_clk(VPLL); break; default: return 0; } /* Ratio clock division for this peripheral */ sub_div = (div >> bit_info->div_bit) & 0xf; sub_clk = sclk / (sub_div + 1); /* Pre-ratio clock division for SDMMC0 and 2 */ if (peripheral == PERIPH_ID_SDMMC0 || peripheral == PERIPH_ID_SDMMC2) { div = (div >> bit_info->prediv_bit) & 0xff; return sub_clk / (div + 1); } return sub_clk; } unsigned long clock_get_periph_rate(int peripheral) { if (cpu_is_exynos5()) return exynos5_get_periph_rate(peripheral); else return 0; } /* exynos5420: return pll clock frequency */ static unsigned long exynos5420_get_pll_clk(int pllreg) { struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); unsigned long r, k = 0; switch (pllreg) { case APLL: r = readl(&clk->apll_con0); break; case MPLL: r = readl(&clk->mpll_con0); break; case EPLL: r = readl(&clk->epll_con0); k = readl(&clk->epll_con1); break; case VPLL: r = readl(&clk->vpll_con0); k = readl(&clk->vpll_con1); break; case BPLL: r = readl(&clk->bpll_con0); break; case RPLL: r = readl(&clk->rpll_con0); k = readl(&clk->rpll_con1); break; default: printf("Unsupported PLL (%d)\n", pllreg); return 0; } return exynos_get_pll_clk(pllreg, r, k); } /* exynos4: return ARM clock frequency */ static unsigned long exynos4_get_arm_clk(void) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned long div; unsigned long armclk; unsigned int core_ratio; unsigned int core2_ratio; div = readl(&clk->div_cpu0); /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */ core_ratio = (div >> 0) & 0x7; core2_ratio = (div >> 28) & 0x7; armclk = get_pll_clk(APLL) / (core_ratio + 1); armclk /= (core2_ratio + 1); return armclk; } /* exynos4x12: return ARM clock frequency */ static unsigned long exynos4x12_get_arm_clk(void) { struct exynos4x12_clock *clk = (struct exynos4x12_clock *)samsung_get_base_clock(); unsigned long div; unsigned long armclk; unsigned int core_ratio; unsigned int core2_ratio; div = readl(&clk->div_cpu0); /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */ core_ratio = (div >> 0) & 0x7; core2_ratio = (div >> 28) & 0x7; armclk = get_pll_clk(APLL) / (core_ratio + 1); armclk /= (core2_ratio + 1); return armclk; } /* exynos5: return ARM clock frequency */ static unsigned long exynos5_get_arm_clk(void) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned long div; unsigned long armclk; unsigned int arm_ratio; unsigned int arm2_ratio; div = readl(&clk->div_cpu0); /* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */ arm_ratio = (div >> 0) & 0x7; arm2_ratio = (div >> 28) & 0x7; armclk = get_pll_clk(APLL) / (arm_ratio + 1); armclk /= (arm2_ratio + 1); return armclk; } /* exynos4: return pwm clock frequency */ static unsigned long exynos4_get_pwm_clk(void) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned long pclk, sclk; unsigned int sel; unsigned int ratio; if (s5p_get_cpu_rev() == 0) { /* * CLK_SRC_PERIL0 * PWM_SEL [27:24] */ sel = readl(&clk->src_peril0); sel = (sel >> 24) & 0xf; if (sel == 0x6) sclk = get_pll_clk(MPLL); else if (sel == 0x7) sclk = get_pll_clk(EPLL); else if (sel == 0x8) sclk = get_pll_clk(VPLL); else return 0; /* * CLK_DIV_PERIL3 * PWM_RATIO [3:0] */ ratio = readl(&clk->div_peril3); ratio = ratio & 0xf; } else if (s5p_get_cpu_rev() == 1) { sclk = get_pll_clk(MPLL); ratio = 8; } else return 0; pclk = sclk / (ratio + 1); return pclk; } /* exynos4x12: return pwm clock frequency */ static unsigned long exynos4x12_get_pwm_clk(void) { unsigned long pclk, sclk; unsigned int ratio; sclk = get_pll_clk(MPLL); ratio = 8; pclk = sclk / (ratio + 1); return pclk; } /* exynos5420: return pwm clock frequency */ static unsigned long exynos5420_get_pwm_clk(void) { struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); unsigned long pclk, sclk; unsigned int ratio; /* * CLK_DIV_PERIC0 * PWM_RATIO [31:28] */ ratio = readl(&clk->div_peric0); ratio = (ratio >> 28) & 0xf; sclk = get_pll_clk(MPLL); pclk = sclk / (ratio + 1); return pclk; } /* exynos4: return uart clock frequency */ static unsigned long exynos4_get_uart_clk(int dev_index) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned long uclk, sclk; unsigned int sel; unsigned int ratio; /* * CLK_SRC_PERIL0 * UART0_SEL [3:0] * UART1_SEL [7:4] * UART2_SEL [8:11] * UART3_SEL [12:15] * UART4_SEL [16:19] * UART5_SEL [23:20] */ sel = readl(&clk->src_peril0); sel = (sel >> (dev_index << 2)) & 0xf; if (sel == 0x6) sclk = get_pll_clk(MPLL); else if (sel == 0x7) sclk = get_pll_clk(EPLL); else if (sel == 0x8) sclk = get_pll_clk(VPLL); else return 0; /* * CLK_DIV_PERIL0 * UART0_RATIO [3:0] * UART1_RATIO [7:4] * UART2_RATIO [8:11] * UART3_RATIO [12:15] * UART4_RATIO [16:19] * UART5_RATIO [23:20] */ ratio = readl(&clk->div_peril0); ratio = (ratio >> (dev_index << 2)) & 0xf; uclk = sclk / (ratio + 1); return uclk; } /* exynos4x12: return uart clock frequency */ static unsigned long exynos4x12_get_uart_clk(int dev_index) { struct exynos4x12_clock *clk = (struct exynos4x12_clock *)samsung_get_base_clock(); unsigned long uclk, sclk; unsigned int sel; unsigned int ratio; /* * CLK_SRC_PERIL0 * UART0_SEL [3:0] * UART1_SEL [7:4] * UART2_SEL [8:11] * UART3_SEL [12:15] * UART4_SEL [16:19] */ sel = readl(&clk->src_peril0); sel = (sel >> (dev_index << 2)) & 0xf; if (sel == 0x6) sclk = get_pll_clk(MPLL); else if (sel == 0x7) sclk = get_pll_clk(EPLL); else if (sel == 0x8) sclk = get_pll_clk(VPLL); else return 0; /* * CLK_DIV_PERIL0 * UART0_RATIO [3:0] * UART1_RATIO [7:4] * UART2_RATIO [8:11] * UART3_RATIO [12:15] * UART4_RATIO [16:19] */ ratio = readl(&clk->div_peril0); ratio = (ratio >> (dev_index << 2)) & 0xf; uclk = sclk / (ratio + 1); return uclk; } /* exynos5: return uart clock frequency */ static unsigned long exynos5_get_uart_clk(int dev_index) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned long uclk, sclk; unsigned int sel; unsigned int ratio; /* * CLK_SRC_PERIC0 * UART0_SEL [3:0] * UART1_SEL [7:4] * UART2_SEL [8:11] * UART3_SEL [12:15] * UART4_SEL [16:19] * UART5_SEL [23:20] */ sel = readl(&clk->src_peric0); sel = (sel >> (dev_index << 2)) & 0xf; if (sel == 0x6) sclk = get_pll_clk(MPLL); else if (sel == 0x7) sclk = get_pll_clk(EPLL); else if (sel == 0x8) sclk = get_pll_clk(VPLL); else return 0; /* * CLK_DIV_PERIC0 * UART0_RATIO [3:0] * UART1_RATIO [7:4] * UART2_RATIO [8:11] * UART3_RATIO [12:15] * UART4_RATIO [16:19] * UART5_RATIO [23:20] */ ratio = readl(&clk->div_peric0); ratio = (ratio >> (dev_index << 2)) & 0xf; uclk = sclk / (ratio + 1); return uclk; } /* exynos5420: return uart clock frequency */ static unsigned long exynos5420_get_uart_clk(int dev_index) { struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); unsigned long uclk, sclk; unsigned int sel; unsigned int ratio; /* * CLK_SRC_PERIC0 * UART0_SEL [6:4] * UART1_SEL [10:8] * UART2_SEL [14:12] * UART3_SEL [18:16] * generalised calculation as follows * sel = (sel >> ((dev_index * 4) + 4)) & mask; */ sel = readl(&clk->src_peric0); sel = (sel >> ((dev_index * 4) + 4)) & 0x7; if (sel == 0x3) sclk = get_pll_clk(MPLL); else if (sel == 0x6) sclk = get_pll_clk(EPLL); else if (sel == 0x7) sclk = get_pll_clk(RPLL); else return 0; /* * CLK_DIV_PERIC0 * UART0_RATIO [11:8] * UART1_RATIO [15:12] * UART2_RATIO [19:16] * UART3_RATIO [23:20] * generalised calculation as follows * ratio = (ratio >> ((dev_index * 4) + 8)) & mask; */ ratio = readl(&clk->div_peric0); ratio = (ratio >> ((dev_index * 4) + 8)) & 0xf; uclk = sclk / (ratio + 1); return uclk; } static unsigned long exynos4_get_mmc_clk(int dev_index) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned long uclk, sclk; unsigned int sel, ratio, pre_ratio; int shift = 0; sel = readl(&clk->src_fsys); sel = (sel >> (dev_index << 2)) & 0xf; if (sel == 0x6) sclk = get_pll_clk(MPLL); else if (sel == 0x7) sclk = get_pll_clk(EPLL); else if (sel == 0x8) sclk = get_pll_clk(VPLL); else return 0; switch (dev_index) { case 0: case 1: ratio = readl(&clk->div_fsys1); pre_ratio = readl(&clk->div_fsys1); break; case 2: case 3: ratio = readl(&clk->div_fsys2); pre_ratio = readl(&clk->div_fsys2); break; case 4: ratio = readl(&clk->div_fsys3); pre_ratio = readl(&clk->div_fsys3); break; default: return 0; } if (dev_index == 1 || dev_index == 3) shift = 16; ratio = (ratio >> shift) & 0xf; pre_ratio = (pre_ratio >> (shift + 8)) & 0xff; uclk = (sclk / (ratio + 1)) / (pre_ratio + 1); return uclk; } static unsigned long exynos5_get_mmc_clk(int dev_index) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned long uclk, sclk; unsigned int sel, ratio, pre_ratio; int shift = 0; sel = readl(&clk->src_fsys); sel = (sel >> (dev_index << 2)) & 0xf; if (sel == 0x6) sclk = get_pll_clk(MPLL); else if (sel == 0x7) sclk = get_pll_clk(EPLL); else if (sel == 0x8) sclk = get_pll_clk(VPLL); else return 0; switch (dev_index) { case 0: case 1: ratio = readl(&clk->div_fsys1); pre_ratio = readl(&clk->div_fsys1); break; case 2: case 3: ratio = readl(&clk->div_fsys2); pre_ratio = readl(&clk->div_fsys2); break; default: return 0; } if (dev_index == 1 || dev_index == 3) shift = 16; ratio = (ratio >> shift) & 0xf; pre_ratio = (pre_ratio >> (shift + 8)) & 0xff; uclk = (sclk / (ratio + 1)) / (pre_ratio + 1); return uclk; } static unsigned long exynos5420_get_mmc_clk(int dev_index) { struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); unsigned long uclk, sclk; unsigned int sel, ratio; /* * CLK_SRC_FSYS * MMC0_SEL [10:8] * MMC1_SEL [14:12] * MMC2_SEL [18:16] * generalised calculation as follows * sel = (sel >> ((dev_index * 4) + 8)) & mask */ sel = readl(&clk->src_fsys); sel = (sel >> ((dev_index * 4) + 8)) & 0x7; if (sel == 0x3) sclk = get_pll_clk(MPLL); else if (sel == 0x6) sclk = get_pll_clk(EPLL); else return 0; /* * CLK_DIV_FSYS1 * MMC0_RATIO [9:0] * MMC1_RATIO [19:10] * MMC2_RATIO [29:20] * generalised calculation as follows * ratio = (ratio >> (dev_index * 10)) & mask */ ratio = readl(&clk->div_fsys1); ratio = (ratio >> (dev_index * 10)) & 0x3ff; uclk = (sclk / (ratio + 1)); return uclk; } /* exynos4: set the mmc clock */ static void exynos4_set_mmc_clk(int dev_index, unsigned int div) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned int addr; unsigned int val; /* * CLK_DIV_FSYS1 * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24] * CLK_DIV_FSYS2 * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24] * CLK_DIV_FSYS3 * MMC4_PRE_RATIO [15:8] */ if (dev_index < 2) { addr = (unsigned int)&clk->div_fsys1; } else if (dev_index == 4) { addr = (unsigned int)&clk->div_fsys3; dev_index -= 4; } else { addr = (unsigned int)&clk->div_fsys2; dev_index -= 2; } val = readl(addr); val &= ~(0xff << ((dev_index << 4) + 8)); val |= (div & 0xff) << ((dev_index << 4) + 8); writel(val, addr); } /* exynos4x12: set the mmc clock */ static void exynos4x12_set_mmc_clk(int dev_index, unsigned int div) { struct exynos4x12_clock *clk = (struct exynos4x12_clock *)samsung_get_base_clock(); unsigned int addr; unsigned int val; /* * CLK_DIV_FSYS1 * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24] * CLK_DIV_FSYS2 * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24] */ if (dev_index < 2) { addr = (unsigned int)&clk->div_fsys1; } else { addr = (unsigned int)&clk->div_fsys2; dev_index -= 2; } val = readl(addr); val &= ~(0xff << ((dev_index << 4) + 8)); val |= (div & 0xff) << ((dev_index << 4) + 8); writel(val, addr); } /* exynos5: set the mmc clock */ static void exynos5_set_mmc_clk(int dev_index, unsigned int div) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned int addr; unsigned int val; /* * CLK_DIV_FSYS1 * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24] * CLK_DIV_FSYS2 * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24] */ if (dev_index < 2) { addr = (unsigned int)&clk->div_fsys1; } else { addr = (unsigned int)&clk->div_fsys2; dev_index -= 2; } val = readl(addr); val &= ~(0xff << ((dev_index << 4) + 8)); val |= (div & 0xff) << ((dev_index << 4) + 8); writel(val, addr); } /* exynos5: set the mmc clock */ static void exynos5420_set_mmc_clk(int dev_index, unsigned int div) { struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); unsigned int addr; unsigned int val, shift; /* * CLK_DIV_FSYS1 * MMC0_RATIO [9:0] * MMC1_RATIO [19:10] * MMC2_RATIO [29:20] */ addr = (unsigned int)&clk->div_fsys1; shift = dev_index * 10; val = readl(addr); val &= ~(0x3ff << shift); val |= (div & 0x3ff) << shift; writel(val, addr); } /* get_lcd_clk: return lcd clock frequency */ static unsigned long exynos4_get_lcd_clk(void) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned long pclk, sclk; unsigned int sel; unsigned int ratio; /* * CLK_SRC_LCD0 * FIMD0_SEL [3:0] */ sel = readl(&clk->src_lcd0); sel = sel & 0xf; /* * 0x6: SCLK_MPLL * 0x7: SCLK_EPLL * 0x8: SCLK_VPLL */ if (sel == 0x6) sclk = get_pll_clk(MPLL); else if (sel == 0x7) sclk = get_pll_clk(EPLL); else if (sel == 0x8) sclk = get_pll_clk(VPLL); else return 0; /* * CLK_DIV_LCD0 * FIMD0_RATIO [3:0] */ ratio = readl(&clk->div_lcd0); ratio = ratio & 0xf; pclk = sclk / (ratio + 1); return pclk; } /* get_lcd_clk: return lcd clock frequency */ static unsigned long exynos5_get_lcd_clk(void) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned long pclk, sclk; unsigned int sel; unsigned int ratio; /* * CLK_SRC_LCD0 * FIMD0_SEL [3:0] */ sel = readl(&clk->src_disp1_0); sel = sel & 0xf; /* * 0x6: SCLK_MPLL * 0x7: SCLK_EPLL * 0x8: SCLK_VPLL */ if (sel == 0x6) sclk = get_pll_clk(MPLL); else if (sel == 0x7) sclk = get_pll_clk(EPLL); else if (sel == 0x8) sclk = get_pll_clk(VPLL); else return 0; /* * CLK_DIV_LCD0 * FIMD0_RATIO [3:0] */ ratio = readl(&clk->div_disp1_0); ratio = ratio & 0xf; pclk = sclk / (ratio + 1); return pclk; } void exynos4_set_lcd_clk(void) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned int cfg = 0; /* * CLK_GATE_BLOCK * CLK_CAM [0] * CLK_TV [1] * CLK_MFC [2] * CLK_G3D [3] * CLK_LCD0 [4] * CLK_LCD1 [5] * CLK_GPS [7] */ cfg = readl(&clk->gate_block); cfg |= 1 << 4; writel(cfg, &clk->gate_block); /* * CLK_SRC_LCD0 * FIMD0_SEL [3:0] * MDNIE0_SEL [7:4] * MDNIE_PWM0_SEL [8:11] * MIPI0_SEL [12:15] * set lcd0 src clock 0x6: SCLK_MPLL */ cfg = readl(&clk->src_lcd0); cfg &= ~(0xf); cfg |= 0x6; writel(cfg, &clk->src_lcd0); /* * CLK_GATE_IP_LCD0 * CLK_FIMD0 [0] * CLK_MIE0 [1] * CLK_MDNIE0 [2] * CLK_DSIM0 [3] * CLK_SMMUFIMD0 [4] * CLK_PPMULCD0 [5] * Gating all clocks for FIMD0 */ cfg = readl(&clk->gate_ip_lcd0); cfg |= 1 << 0; writel(cfg, &clk->gate_ip_lcd0); /* * CLK_DIV_LCD0 * FIMD0_RATIO [3:0] * MDNIE0_RATIO [7:4] * MDNIE_PWM0_RATIO [11:8] * MDNIE_PWM_PRE_RATIO [15:12] * MIPI0_RATIO [19:16] * MIPI0_PRE_RATIO [23:20] * set fimd ratio */ cfg &= ~(0xf); cfg |= 0x1; writel(cfg, &clk->div_lcd0); } void exynos5_set_lcd_clk(void) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned int cfg = 0; /* * CLK_GATE_BLOCK * CLK_CAM [0] * CLK_TV [1] * CLK_MFC [2] * CLK_G3D [3] * CLK_LCD0 [4] * CLK_LCD1 [5] * CLK_GPS [7] */ cfg = readl(&clk->gate_block); cfg |= 1 << 4; writel(cfg, &clk->gate_block); /* * CLK_SRC_LCD0 * FIMD0_SEL [3:0] * MDNIE0_SEL [7:4] * MDNIE_PWM0_SEL [8:11] * MIPI0_SEL [12:15] * set lcd0 src clock 0x6: SCLK_MPLL */ cfg = readl(&clk->src_disp1_0); cfg &= ~(0xf); cfg |= 0x6; writel(cfg, &clk->src_disp1_0); /* * CLK_GATE_IP_LCD0 * CLK_FIMD0 [0] * CLK_MIE0 [1] * CLK_MDNIE0 [2] * CLK_DSIM0 [3] * CLK_SMMUFIMD0 [4] * CLK_PPMULCD0 [5] * Gating all clocks for FIMD0 */ cfg = readl(&clk->gate_ip_disp1); cfg |= 1 << 0; writel(cfg, &clk->gate_ip_disp1); /* * CLK_DIV_LCD0 * FIMD0_RATIO [3:0] * MDNIE0_RATIO [7:4] * MDNIE_PWM0_RATIO [11:8] * MDNIE_PWM_PRE_RATIO [15:12] * MIPI0_RATIO [19:16] * MIPI0_PRE_RATIO [23:20] * set fimd ratio */ cfg &= ~(0xf); cfg |= 0x0; writel(cfg, &clk->div_disp1_0); } void exynos4_set_mipi_clk(void) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned int cfg = 0; /* * CLK_SRC_LCD0 * FIMD0_SEL [3:0] * MDNIE0_SEL [7:4] * MDNIE_PWM0_SEL [8:11] * MIPI0_SEL [12:15] * set mipi0 src clock 0x6: SCLK_MPLL */ cfg = readl(&clk->src_lcd0); cfg &= ~(0xf << 12); cfg |= (0x6 << 12); writel(cfg, &clk->src_lcd0); /* * CLK_SRC_MASK_LCD0 * FIMD0_MASK [0] * MDNIE0_MASK [4] * MDNIE_PWM0_MASK [8] * MIPI0_MASK [12] * set src mask mipi0 0x1: Unmask */ cfg = readl(&clk->src_mask_lcd0); cfg |= (0x1 << 12); writel(cfg, &clk->src_mask_lcd0); /* * CLK_GATE_IP_LCD0 * CLK_FIMD0 [0] * CLK_MIE0 [1] * CLK_MDNIE0 [2] * CLK_DSIM0 [3] * CLK_SMMUFIMD0 [4] * CLK_PPMULCD0 [5] * Gating all clocks for MIPI0 */ cfg = readl(&clk->gate_ip_lcd0); cfg |= 1 << 3; writel(cfg, &clk->gate_ip_lcd0); /* * CLK_DIV_LCD0 * FIMD0_RATIO [3:0] * MDNIE0_RATIO [7:4] * MDNIE_PWM0_RATIO [11:8] * MDNIE_PWM_PRE_RATIO [15:12] * MIPI0_RATIO [19:16] * MIPI0_PRE_RATIO [23:20] * set mipi ratio */ cfg &= ~(0xf << 16); cfg |= (0x1 << 16); writel(cfg, &clk->div_lcd0); } /* * I2C * * exynos5: obtaining the I2C clock */ static unsigned long exynos5_get_i2c_clk(void) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned long aclk_66, aclk_66_pre, sclk; unsigned int ratio; sclk = get_pll_clk(MPLL); ratio = (readl(&clk->div_top1)) >> 24; ratio &= 0x7; aclk_66_pre = sclk / (ratio + 1); ratio = readl(&clk->div_top0); ratio &= 0x7; aclk_66 = aclk_66_pre / (ratio + 1); return aclk_66; } int exynos5_set_epll_clk(unsigned long rate) { unsigned int epll_con, epll_con_k; unsigned int i; unsigned int lockcnt; unsigned int start; struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); epll_con = readl(&clk->epll_con0); epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK << EPLL_CON0_LOCK_DET_EN_SHIFT) | EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT | EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT | EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT); for (i = 0; i < ARRAY_SIZE(exynos5_epll_div); i++) { if (exynos5_epll_div[i].freq_out == rate) break; } if (i == ARRAY_SIZE(exynos5_epll_div)) return -1; epll_con_k = exynos5_epll_div[i].k_dsm << 0; epll_con |= exynos5_epll_div[i].en_lock_det << EPLL_CON0_LOCK_DET_EN_SHIFT; epll_con |= exynos5_epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT; epll_con |= exynos5_epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT; epll_con |= exynos5_epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT; /* * Required period ( in cycles) to genarate a stable clock output. * The maximum clock time can be up to 3000 * PDIV cycles of PLLs * frequency input (as per spec) */ lockcnt = 3000 * exynos5_epll_div[i].p_div; writel(lockcnt, &clk->epll_lock); writel(epll_con, &clk->epll_con0); writel(epll_con_k, &clk->epll_con1); start = get_timer(0); while (!(readl(&clk->epll_con0) & (0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) { if (get_timer(start) > TIMEOUT_EPLL_LOCK) { debug("%s: Timeout waiting for EPLL lock\n", __func__); return -1; } } return 0; } int exynos5_set_i2s_clk_source(unsigned int i2s_id) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned int *audio_ass = (unsigned int *)samsung_get_base_audio_ass(); if (i2s_id == 0) { setbits_le32(&clk->src_top2, CLK_SRC_MOUT_EPLL); clrsetbits_le32(&clk->src_mau, AUDIO0_SEL_MASK, (CLK_SRC_SCLK_EPLL)); setbits_le32(audio_ass, AUDIO_CLKMUX_ASS); } else if (i2s_id == 1) { clrsetbits_le32(&clk->src_peric1, AUDIO1_SEL_MASK, (CLK_SRC_SCLK_EPLL)); } else { return -1; } return 0; } int exynos5_set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq, unsigned int i2s_id) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); unsigned int div; if ((dst_frq == 0) || (src_frq == 0)) { debug("%s: Invalid requency input for prescaler\n", __func__); debug("src frq = %d des frq = %d ", src_frq, dst_frq); return -1; } div = (src_frq / dst_frq); if (i2s_id == 0) { if (div > AUDIO_0_RATIO_MASK) { debug("%s: Frequency ratio is out of range\n", __func__); debug("src frq = %d des frq = %d ", src_frq, dst_frq); return -1; } clrsetbits_le32(&clk->div_mau, AUDIO_0_RATIO_MASK, (div & AUDIO_0_RATIO_MASK)); } else if(i2s_id == 1) { if (div > AUDIO_1_RATIO_MASK) { debug("%s: Frequency ratio is out of range\n", __func__); debug("src frq = %d des frq = %d ", src_frq, dst_frq); return -1; } clrsetbits_le32(&clk->div_peric4, AUDIO_1_RATIO_MASK, (div & AUDIO_1_RATIO_MASK)); } else { return -1; } return 0; } /** * Linearly searches for the most accurate main and fine stage clock scalars * (divisors) for a specified target frequency and scalar bit sizes by checking * all multiples of main_scalar_bits values. Will always return scalars up to or * slower than target. * * @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32 * @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32 * @param input_freq Clock frequency to be scaled in Hz * @param target_freq Desired clock frequency in Hz * @param best_fine_scalar Pointer to store the fine stage divisor * * @return best_main_scalar Main scalar for desired frequency or -1 if none * found */ static int clock_calc_best_scalar(unsigned int main_scaler_bits, unsigned int fine_scalar_bits, unsigned int input_rate, unsigned int target_rate, unsigned int *best_fine_scalar) { int i; int best_main_scalar = -1; unsigned int best_error = target_rate; const unsigned int cap = (1 << fine_scalar_bits) - 1; const unsigned int loops = 1 << main_scaler_bits; debug("Input Rate is %u, Target is %u, Cap is %u\n", input_rate, target_rate, cap); assert(best_fine_scalar != NULL); assert(main_scaler_bits <= fine_scalar_bits); *best_fine_scalar = 1; if (input_rate == 0 || target_rate == 0) return -1; if (target_rate >= input_rate) return 1; for (i = 1; i <= loops; i++) { const unsigned int effective_div = max(min(input_rate / i / target_rate, cap), 1); const unsigned int effective_rate = input_rate / i / effective_div; const int error = target_rate - effective_rate; debug("%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div, effective_rate, error); if (error >= 0 && error <= best_error) { best_error = error; best_main_scalar = i; *best_fine_scalar = effective_div; } } return best_main_scalar; } static int exynos5_set_spi_clk(enum periph_id periph_id, unsigned int rate) { struct exynos5_clock *clk = (struct exynos5_clock *)samsung_get_base_clock(); int main; unsigned int fine; unsigned shift, pre_shift; unsigned mask = 0xff; u32 *reg; main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine); if (main < 0) { debug("%s: Cannot set clock rate for periph %d", __func__, periph_id); return -1; } main = main - 1; fine = fine - 1; switch (periph_id) { case PERIPH_ID_SPI0: reg = &clk->div_peric1; shift = 0; pre_shift = 8; break; case PERIPH_ID_SPI1: reg = &clk->div_peric1; shift = 16; pre_shift = 24; break; case PERIPH_ID_SPI2: reg = &clk->div_peric2; shift = 0; pre_shift = 8; break; case PERIPH_ID_SPI3: reg = &clk->sclk_div_isp; shift = 0; pre_shift = 4; break; case PERIPH_ID_SPI4: reg = &clk->sclk_div_isp; shift = 12; pre_shift = 16; break; default: debug("%s: Unsupported peripheral ID %d\n", __func__, periph_id); return -1; } clrsetbits_le32(reg, mask << shift, (main & mask) << shift); clrsetbits_le32(reg, mask << pre_shift, (fine & mask) << pre_shift); return 0; } static int exynos5420_set_spi_clk(enum periph_id periph_id, unsigned int rate) { struct exynos5420_clock *clk = (struct exynos5420_clock *)samsung_get_base_clock(); int main; unsigned int fine; unsigned shift, pre_shift; unsigned div_mask = 0xf, pre_div_mask = 0xff; u32 *reg; u32 *pre_reg; main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine); if (main < 0) { debug("%s: Cannot set clock rate for periph %d", __func__, periph_id); return -1; } main = main - 1; fine = fine - 1; switch (periph_id) { case PERIPH_ID_SPI0: reg = &clk->div_peric1; shift = 20; pre_reg = &clk->div_peric4; pre_shift = 8; break; case PERIPH_ID_SPI1: reg = &clk->div_peric1; shift = 24; pre_reg = &clk->div_peric4; pre_shift = 16; break; case PERIPH_ID_SPI2: reg = &clk->div_peric1; shift = 28; pre_reg = &clk->div_peric4; pre_shift = 24; break; case PERIPH_ID_SPI3: reg = &clk->div_isp1; shift = 16; pre_reg = &clk->div_isp1; pre_shift = 0; break; case PERIPH_ID_SPI4: reg = &clk->div_isp1; shift = 20; pre_reg = &clk->div_isp1; pre_shift = 8; break; default: debug("%s: Unsupported peripheral ID %d\n", __func__, periph_id); return -1; } clrsetbits_le32(reg, div_mask << shift, (main & div_mask) << shift); clrsetbits_le32(pre_reg, pre_div_mask << pre_shift, (fine & pre_div_mask) << pre_shift); return 0; } static unsigned long exynos4_get_i2c_clk(void) { struct exynos4_clock *clk = (struct exynos4_clock *)samsung_get_base_clock(); unsigned long sclk, aclk_100; unsigned int ratio; sclk = get_pll_clk(APLL); ratio = (readl(&clk->div_top)) >> 4; ratio &= 0xf; aclk_100 = sclk / (ratio + 1); return aclk_100; } unsigned long get_pll_clk(int pllreg) { if (cpu_is_exynos5()) { if (proid_is_exynos5420()) return exynos5420_get_pll_clk(pllreg); return exynos5_get_pll_clk(pllreg); } else { if (proid_is_exynos4412()) return exynos4x12_get_pll_clk(pllreg); return exynos4_get_pll_clk(pllreg); } } unsigned long get_arm_clk(void) { if (cpu_is_exynos5()) return exynos5_get_arm_clk(); else { if (proid_is_exynos4412()) return exynos4x12_get_arm_clk(); return exynos4_get_arm_clk(); } } unsigned long get_i2c_clk(void) { if (cpu_is_exynos5()) { return exynos5_get_i2c_clk(); } else if (cpu_is_exynos4()) { return exynos4_get_i2c_clk(); } else { debug("I2C clock is not set for this CPU\n"); return 0; } } unsigned long get_pwm_clk(void) { if (cpu_is_exynos5()) { if (proid_is_exynos5420()) return exynos5420_get_pwm_clk(); return clock_get_periph_rate(PERIPH_ID_PWM0); } else { if (proid_is_exynos4412()) return exynos4x12_get_pwm_clk(); return exynos4_get_pwm_clk(); } } unsigned long get_uart_clk(int dev_index) { if (cpu_is_exynos5()) { if (proid_is_exynos5420()) return exynos5420_get_uart_clk(dev_index); return exynos5_get_uart_clk(dev_index); } else { if (proid_is_exynos4412()) return exynos4x12_get_uart_clk(dev_index); return exynos4_get_uart_clk(dev_index); } } unsigned long get_mmc_clk(int dev_index) { if (cpu_is_exynos5()) { if (proid_is_exynos5420()) return exynos5420_get_mmc_clk(dev_index); return exynos5_get_mmc_clk(dev_index); } else { return exynos4_get_mmc_clk(dev_index); } } void set_mmc_clk(int dev_index, unsigned int div) { if (cpu_is_exynos5()) { if (proid_is_exynos5420()) exynos5420_set_mmc_clk(dev_index, div); else exynos5_set_mmc_clk(dev_index, div); } else { if (proid_is_exynos4412()) exynos4x12_set_mmc_clk(dev_index, div); else exynos4_set_mmc_clk(dev_index, div); } } unsigned long get_lcd_clk(void) { if (cpu_is_exynos4()) return exynos4_get_lcd_clk(); else return exynos5_get_lcd_clk(); } void set_lcd_clk(void) { if (cpu_is_exynos4()) exynos4_set_lcd_clk(); else exynos5_set_lcd_clk(); } void set_mipi_clk(void) { if (cpu_is_exynos4()) exynos4_set_mipi_clk(); } int set_spi_clk(int periph_id, unsigned int rate) { if (cpu_is_exynos5()) { if (proid_is_exynos5420()) return exynos5420_set_spi_clk(periph_id, rate); return exynos5_set_spi_clk(periph_id, rate); } else { return 0; } } int set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq, unsigned int i2s_id) { if (cpu_is_exynos5()) return exynos5_set_i2s_clk_prescaler(src_frq, dst_frq, i2s_id); else return 0; } int set_i2s_clk_source(unsigned int i2s_id) { if (cpu_is_exynos5()) return exynos5_set_i2s_clk_source(i2s_id); else return 0; } int set_epll_clk(unsigned long rate) { if (cpu_is_exynos5()) return exynos5_set_epll_clk(rate); else return 0; }