From 36fab997d85d89ee7fd2c7fd6057fab786d556aa Mon Sep 17 00:00:00 2001 From: Ilya Yanok Date: Tue, 11 Aug 2009 02:32:54 +0400 Subject: mxc_nand: add nand driver for MX2/MX3 Driver for NFC NAND controller found on Freescale's MX2 and MX3 processors. Ported from Linux. Tested only with i.MX27 but should works with other MX2 and MX3 processors too. Signed-off-by: Ilya Yanok Signed-off-by: Scott Wood --- drivers/mtd/nand/mxc_nand.c | 880 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 880 insertions(+) create mode 100644 drivers/mtd/nand/mxc_nand.c (limited to 'drivers/mtd/nand/mxc_nand.c') diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c new file mode 100644 index 0000000..647be0b --- /dev/null +++ b/drivers/mtd/nand/mxc_nand.c @@ -0,0 +1,880 @@ +/* + * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. + * Copyright 2008 Sascha Hauer, kernel@pengutronix.de + * Copyright 2009 Ilya Yanok, + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, + * MA 02110-1301, USA. + */ + +#include +#include +#include +#include +#ifdef CONFIG_MX27 +#include +#endif + +#define DRIVER_NAME "mxc_nand" + +struct nfc_regs { +/* NFC RAM BUFFER Main area 0 */ + uint8_t main_area0[0x200]; + uint8_t main_area1[0x200]; + uint8_t main_area2[0x200]; + uint8_t main_area3[0x200]; +/* SPARE BUFFER Spare area 0 */ + uint8_t spare_area0[0x10]; + uint8_t spare_area1[0x10]; + uint8_t spare_area2[0x10]; + uint8_t spare_area3[0x10]; + uint8_t pad[0x5c0]; +/* NFC registers */ + uint16_t nfc_buf_size; + uint16_t reserved; + uint16_t nfc_buf_addr; + uint16_t nfc_flash_addr; + uint16_t nfc_flash_cmd; + uint16_t nfc_config; + uint16_t nfc_ecc_status_result; + uint16_t nfc_rsltmain_area; + uint16_t nfc_rsltspare_area; + uint16_t nfc_wrprot; + uint16_t nfc_unlockstart_blkaddr; + uint16_t nfc_unlockend_blkaddr; + uint16_t nfc_nf_wrprst; + uint16_t nfc_config1; + uint16_t nfc_config2; +}; + +/* + * Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register + * for Command operation + */ +#define NFC_CMD 0x1 + +/* + * Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register + * for Address operation + */ +#define NFC_ADDR 0x2 + +/* + * Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register + * for Input operation + */ +#define NFC_INPUT 0x4 + +/* + * Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register + * for Data Output operation + */ +#define NFC_OUTPUT 0x8 + +/* + * Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register + * for Read ID operation + */ +#define NFC_ID 0x10 + +/* + * Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register + * for Read Status operation + */ +#define NFC_STATUS 0x20 + +/* + * Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read + * Status operation + */ +#define NFC_INT 0x8000 + +#define NFC_SP_EN (1 << 2) +#define NFC_ECC_EN (1 << 3) +#define NFC_BIG (1 << 5) +#define NFC_RST (1 << 6) +#define NFC_CE (1 << 7) +#define NFC_ONE_CYCLE (1 << 8) + +typedef enum {false, true} bool; + +struct mxc_nand_host { + struct mtd_info mtd; + struct nand_chip *nand; + + struct nfc_regs __iomem *regs; + int spare_only; + int status_request; + int pagesize_2k; + int clk_act; + uint16_t col_addr; +}; + +static struct mxc_nand_host mxc_host; +static struct mxc_nand_host *host = &mxc_host; + +/* Define delays in microsec for NAND device operations */ +#define TROP_US_DELAY 2000 +/* Macros to get byte and bit positions of ECC */ +#define COLPOS(x) ((x) >> 3) +#define BITPOS(x) ((x) & 0xf) + +/* Define single bit Error positions in Main & Spare area */ +#define MAIN_SINGLEBIT_ERROR 0x4 +#define SPARE_SINGLEBIT_ERROR 0x1 + +/* OOB placement block for use with hardware ecc generation */ +#ifdef CONFIG_MXC_NAND_HWECC +static struct nand_ecclayout nand_hw_eccoob = { + .eccbytes = 5, + .eccpos = {6, 7, 8, 9, 10}, + .oobfree = {{0, 5}, {11, 5}, } +}; +#else +static struct nand_ecclayout nand_soft_eccoob = { + .eccbytes = 6, + .eccpos = {6, 7, 8, 9, 10, 11}, + .oobfree = {{0, 5}, {12, 4}, } +}; +#endif + +static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size) +{ + uint32_t *d = dest; + + size >>= 2; + while (size--) + __raw_writel(__raw_readl(source++), d++); + return dest; +} + +/* + * This function polls the NANDFC to wait for the basic operation to + * complete by checking the INT bit of config2 register. + */ +static void wait_op_done(struct mxc_nand_host *host, int max_retries, + uint16_t param) +{ + uint32_t tmp; + + while (max_retries-- > 0) { + if (readw(&host->regs->nfc_config2) & NFC_INT) { + tmp = readw(&host->regs->nfc_config2); + tmp &= ~NFC_INT; + writew(tmp, &host->regs->nfc_config2); + break; + } + udelay(1); + } + if (max_retries < 0) { + MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n", + __func__, param); + } +} + +/* + * This function issues the specified command to the NAND device and + * waits for completion. + */ +static void send_cmd(struct mxc_nand_host *host, uint16_t cmd) +{ + MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd); + + writew(cmd, &host->regs->nfc_flash_cmd); + writew(NFC_CMD, &host->regs->nfc_config2); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, cmd); +} + +/* + * This function sends an address (or partial address) to the + * NAND device. The address is used to select the source/destination for + * a NAND command. + */ +static void send_addr(struct mxc_nand_host *host, uint16_t addr) +{ + MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr); + + writew(addr, &host->regs->nfc_flash_addr); + writew(NFC_ADDR, &host->regs->nfc_config2); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, addr); +} + +/* + * This function requests the NANDFC to initate the transfer + * of data currently in the NANDFC RAM buffer to the NAND device. + */ +static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id, + int spare_only) +{ + MTDDEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only); + + writew(buf_id, &host->regs->nfc_buf_addr); + + /* Configure spare or page+spare access */ + if (!host->pagesize_2k) { + uint16_t config1 = readw(&host->regs->nfc_config1); + if (spare_only) + config1 |= NFC_SP_EN; + else + config1 &= ~(NFC_SP_EN); + writew(config1, &host->regs->nfc_config1); + } + + writew(NFC_INPUT, &host->regs->nfc_config2); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, spare_only); +} + +/* + * Requests NANDFC to initated the transfer of data from the + * NAND device into in the NANDFC ram buffer. + */ +static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id, + int spare_only) +{ + MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only); + + writew(buf_id, &host->regs->nfc_buf_addr); + + /* Configure spare or page+spare access */ + if (!host->pagesize_2k) { + uint32_t config1 = readw(&host->regs->nfc_config1); + if (spare_only) + config1 |= NFC_SP_EN; + else + config1 &= ~NFC_SP_EN; + writew(config1, &host->regs->nfc_config1); + } + + writew(NFC_OUTPUT, &host->regs->nfc_config2); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, spare_only); +} + +/* Request the NANDFC to perform a read of the NAND device ID. */ +static void send_read_id(struct mxc_nand_host *host) +{ + uint16_t tmp; + + /* NANDFC buffer 0 is used for device ID output */ + writew(0x0, &host->regs->nfc_buf_addr); + + /* Read ID into main buffer */ + tmp = readw(&host->regs->nfc_config1); + tmp &= ~NFC_SP_EN; + writew(tmp, &host->regs->nfc_config1); + + writew(NFC_ID, &host->regs->nfc_config2); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, 0); +} + +/* + * This function requests the NANDFC to perform a read of the + * NAND device status and returns the current status. + */ +static uint16_t get_dev_status(struct mxc_nand_host *host) +{ + void __iomem *main_buf = host->regs->main_area1; + uint32_t store; + uint16_t ret, tmp; + /* Issue status request to NAND device */ + + /* store the main area1 first word, later do recovery */ + store = readl(main_buf); + /* NANDFC buffer 1 is used for device status */ + writew(1, &host->regs->nfc_buf_addr); + + /* Read status into main buffer */ + tmp = readw(&host->regs->nfc_config1); + tmp &= ~NFC_SP_EN; + writew(tmp, &host->regs->nfc_config1); + + writew(NFC_STATUS, &host->regs->nfc_config2); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, 0); + + /* + * Status is placed in first word of main buffer + * get status, then recovery area 1 data + */ + ret = readw(main_buf); + writel(store, main_buf); + + return ret; +} + +/* This function is used by upper layer to checks if device is ready */ +static int mxc_nand_dev_ready(struct mtd_info *mtd) +{ + /* + * NFC handles R/B internally. Therefore, this function + * always returns status as ready. + */ + return 1; +} + +#ifdef CONFIG_MXC_NAND_HWECC +static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) +{ + /* + * If HW ECC is enabled, we turn it on during init. There is + * no need to enable again here. + */ +} + +static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + + /* + * 1-Bit errors are automatically corrected in HW. No need for + * additional correction. 2-Bit errors cannot be corrected by + * HW ECC, so we need to return failure + */ + uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result); + + if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { + MTDDEBUG(MTD_DEBUG_LEVEL0, + "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); + return -1; + } + + return 0; +} + +static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + return 0; +} +#endif + +static u_char mxc_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + uint8_t ret = 0; + uint16_t col; + uint16_t __iomem *main_buf = + (uint16_t __iomem *)host->regs->main_area0; + uint16_t __iomem *spare_buf = + (uint16_t __iomem *)host->regs->spare_area0; + union { + uint16_t word; + uint8_t bytes[2]; + } nfc_word; + + /* Check for status request */ + if (host->status_request) + return get_dev_status(host) & 0xFF; + + /* Get column for 16-bit access */ + col = host->col_addr >> 1; + + /* If we are accessing the spare region */ + if (host->spare_only) + nfc_word.word = readw(&spare_buf[col]); + else + nfc_word.word = readw(&main_buf[col]); + + /* Pick upper/lower byte of word from RAM buffer */ + ret = nfc_word.bytes[host->col_addr & 0x1]; + + /* Update saved column address */ + if (nand_chip->options & NAND_BUSWIDTH_16) + host->col_addr += 2; + else + host->col_addr++; + + return ret; +} + +static uint16_t mxc_nand_read_word(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + uint16_t col, ret; + uint16_t __iomem *p; + + MTDDEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_read_word(col = %d)\n", host->col_addr); + + col = host->col_addr; + /* Adjust saved column address */ + if (col < mtd->writesize && host->spare_only) + col += mtd->writesize; + + if (col < mtd->writesize) { + p = (uint16_t __iomem *)(host->regs->main_area0 + (col >> 1)); + } else { + p = (uint16_t __iomem *)(host->regs->spare_area0 + + ((col - mtd->writesize) >> 1)); + } + + if (col & 1) { + union { + uint16_t word; + uint8_t bytes[2]; + } nfc_word[3]; + + nfc_word[0].word = readw(p); + nfc_word[1].word = readw(p + 1); + + nfc_word[2].bytes[0] = nfc_word[0].bytes[1]; + nfc_word[2].bytes[1] = nfc_word[1].bytes[0]; + + ret = nfc_word[2].word; + } else { + ret = readw(p); + } + + /* Update saved column address */ + host->col_addr = col + 2; + + return ret; +} + +/* + * Write data of length len to buffer buf. The data to be + * written on NAND Flash is first copied to RAMbuffer. After the Data Input + * Operation by the NFC, the data is written to NAND Flash + */ +static void mxc_nand_write_buf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + int n, col, i = 0; + + MTDDEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr, + len); + + col = host->col_addr; + + /* Adjust saved column address */ + if (col < mtd->writesize && host->spare_only) + col += mtd->writesize; + + n = mtd->writesize + mtd->oobsize - col; + n = min(len, n); + + MTDDEBUG(MTD_DEBUG_LEVEL3, + "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n); + + while (n > 0) { + void __iomem *p; + + if (col < mtd->writesize) { + p = host->regs->main_area0 + (col & ~3); + } else { + p = host->regs->spare_area0 - + mtd->writesize + (col & ~3); + } + + MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__, + __LINE__, p); + + if (((col | (unsigned long)&buf[i]) & 3) || n < 4) { + union { + uint32_t word; + uint8_t bytes[4]; + } nfc_word; + + nfc_word.word = readl(p); + nfc_word.bytes[col & 3] = buf[i++]; + n--; + col++; + + writel(nfc_word.word, p); + } else { + int m = mtd->writesize - col; + + if (col >= mtd->writesize) + m += mtd->oobsize; + + m = min(n, m) & ~3; + + MTDDEBUG(MTD_DEBUG_LEVEL3, + "%s:%d: n = %d, m = %d, i = %d, col = %d\n", + __func__, __LINE__, n, m, i, col); + + mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m); + col += m; + i += m; + n -= m; + } + } + /* Update saved column address */ + host->col_addr = col; +} + +/* + * Read the data buffer from the NAND Flash. To read the data from NAND + * Flash first the data output cycle is initiated by the NFC, which copies + * the data to RAMbuffer. This data of length len is then copied to buffer buf. + */ +static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + int n, col, i = 0; + + MTDDEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len); + + col = host->col_addr; + + /* Adjust saved column address */ + if (col < mtd->writesize && host->spare_only) + col += mtd->writesize; + + n = mtd->writesize + mtd->oobsize - col; + n = min(len, n); + + while (n > 0) { + void __iomem *p; + + if (col < mtd->writesize) { + p = host->regs->main_area0 + (col & ~3); + } else { + p = host->regs->spare_area0 - + mtd->writesize + (col & ~3); + } + + if (((col | (int)&buf[i]) & 3) || n < 4) { + union { + uint32_t word; + uint8_t bytes[4]; + } nfc_word; + + nfc_word.word = readl(p); + buf[i++] = nfc_word.bytes[col & 3]; + n--; + col++; + } else { + int m = mtd->writesize - col; + + if (col >= mtd->writesize) + m += mtd->oobsize; + + m = min(n, m) & ~3; + mxc_nand_memcpy32((uint32_t *)&buf[i], p, m); + + col += m; + i += m; + n -= m; + } + } + /* Update saved column address */ + host->col_addr = col; +} + +/* + * Used by the upper layer to verify the data in NAND Flash + * with the data in the buf. + */ +static int mxc_nand_verify_buf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + u_char tmp[256]; + uint bsize; + + while (len) { + bsize = min(len, 256); + mxc_nand_read_buf(mtd, tmp, bsize); + + if (memcmp(buf, tmp, bsize)) + return 1; + + buf += bsize; + len -= bsize; + } + + return 0; +} + +/* + * This function is used by upper layer for select and + * deselect of the NAND chip + */ +static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + + switch (chip) { + case -1: + /* TODO: Disable the NFC clock */ + if (host->clk_act) + host->clk_act = 0; + break; + case 0: + /* TODO: Enable the NFC clock */ + if (!host->clk_act) + host->clk_act = 1; + break; + + default: + break; + } +} + +/* + * Used by the upper layer to write command to NAND Flash for + * different operations to be carried out on NAND Flash + */ +static void mxc_nand_command(struct mtd_info *mtd, unsigned command, + int column, int page_addr) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + + MTDDEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", + command, column, page_addr); + + /* Reset command state information */ + host->status_request = false; + + /* Command pre-processing step */ + switch (command) { + + case NAND_CMD_STATUS: + host->col_addr = 0; + host->status_request = true; + break; + + case NAND_CMD_READ0: + host->col_addr = column; + host->spare_only = false; + break; + + case NAND_CMD_READOOB: + host->col_addr = column; + host->spare_only = true; + if (host->pagesize_2k) + command = NAND_CMD_READ0; /* only READ0 is valid */ + break; + + case NAND_CMD_SEQIN: + if (column >= mtd->writesize) { + /* + * before sending SEQIN command for partial write, + * we need read one page out. FSL NFC does not support + * partial write. It alway send out 512+ecc+512+ecc ... + * for large page nand flash. But for small page nand + * flash, it does support SPARE ONLY operation. + */ + if (host->pagesize_2k) { + /* call ourself to read a page */ + mxc_nand_command(mtd, NAND_CMD_READ0, 0, + page_addr); + } + + host->col_addr = column - mtd->writesize; + host->spare_only = true; + + /* Set program pointer to spare region */ + if (!host->pagesize_2k) + send_cmd(host, NAND_CMD_READOOB); + } else { + host->spare_only = false; + host->col_addr = column; + + /* Set program pointer to page start */ + if (!host->pagesize_2k) + send_cmd(host, NAND_CMD_READ0); + } + break; + + case NAND_CMD_PAGEPROG: + send_prog_page(host, 0, host->spare_only); + + if (host->pagesize_2k) { + /* data in 4 areas datas */ + send_prog_page(host, 1, host->spare_only); + send_prog_page(host, 2, host->spare_only); + send_prog_page(host, 3, host->spare_only); + } + + break; + } + + /* Write out the command to the device. */ + send_cmd(host, command); + + /* Write out column address, if necessary */ + if (column != -1) { + /* + * MXC NANDFC can only perform full page+spare or + * spare-only read/write. When the upper layers + * layers perform a read/write buf operation, + * we will used the saved column adress to index into + * the full page. + */ + send_addr(host, 0); + if (host->pagesize_2k) + /* another col addr cycle for 2k page */ + send_addr(host, 0); + } + + /* Write out page address, if necessary */ + if (page_addr != -1) { + /* paddr_0 - p_addr_7 */ + send_addr(host, (page_addr & 0xff)); + + if (host->pagesize_2k) { + send_addr(host, (page_addr >> 8) & 0xFF); + if (mtd->size >= 0x10000000) { + /* paddr_8 - paddr_15 */ + send_addr(host, (page_addr >> 8) & 0xff); + send_addr(host, (page_addr >> 16) & 0xff); + } else { + /* paddr_8 - paddr_15 */ + send_addr(host, (page_addr >> 8) & 0xff); + } + } else { + /* One more address cycle for higher density devices */ + if (mtd->size >= 0x4000000) { + /* paddr_8 - paddr_15 */ + send_addr(host, (page_addr >> 8) & 0xff); + send_addr(host, (page_addr >> 16) & 0xff); + } else { + /* paddr_8 - paddr_15 */ + send_addr(host, (page_addr >> 8) & 0xff); + } + } + } + + /* Command post-processing step */ + switch (command) { + + case NAND_CMD_RESET: + break; + + case NAND_CMD_READOOB: + case NAND_CMD_READ0: + if (host->pagesize_2k) { + /* send read confirm command */ + send_cmd(host, NAND_CMD_READSTART); + /* read for each AREA */ + send_read_page(host, 0, host->spare_only); + send_read_page(host, 1, host->spare_only); + send_read_page(host, 2, host->spare_only); + send_read_page(host, 3, host->spare_only); + } else { + send_read_page(host, 0, host->spare_only); + } + break; + + case NAND_CMD_READID: + host->col_addr = 0; + send_read_id(host); + break; + + case NAND_CMD_PAGEPROG: + break; + + case NAND_CMD_STATUS: + break; + + case NAND_CMD_ERASE2: + break; + } +} + +int board_nand_init(struct nand_chip *this) +{ + struct system_control_regs *sc_regs = + (struct system_control_regs *)IMX_SYSTEM_CTL_BASE; + struct mtd_info *mtd; + uint16_t tmp; + int err = 0; + + /* structures must be linked */ + mtd = &host->mtd; + mtd->priv = this; + host->nand = this; + + /* 5 us command delay time */ + this->chip_delay = 5; + + this->priv = host; + this->dev_ready = mxc_nand_dev_ready; + this->cmdfunc = mxc_nand_command; + this->select_chip = mxc_nand_select_chip; + this->read_byte = mxc_nand_read_byte; + this->read_word = mxc_nand_read_word; + this->write_buf = mxc_nand_write_buf; + this->read_buf = mxc_nand_read_buf; + this->verify_buf = mxc_nand_verify_buf; + + host->regs = (struct nfc_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE; + host->clk_act = 1; + +#ifdef CONFIG_MXC_NAND_HWECC + this->ecc.calculate = mxc_nand_calculate_ecc; + this->ecc.hwctl = mxc_nand_enable_hwecc; + this->ecc.correct = mxc_nand_correct_data; + this->ecc.mode = NAND_ECC_HW; + this->ecc.size = 512; + this->ecc.bytes = 3; + this->ecc.layout = &nand_hw_eccoob; + tmp = readw(&host->regs->nfc_config1); + tmp |= NFC_ECC_EN; + writew(tmp, &host->regs->nfc_config1); +#else + this->ecc.layout = &nand_soft_eccoob; + this->ecc.mode = NAND_ECC_SOFT; + tmp = readw(&host->regs->nfc_config1); + tmp &= ~NFC_ECC_EN; + writew(tmp, &host->regs->nfc_config1); +#endif + + /* Reset NAND */ + this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + + /* + * preset operation + * Unlock the internal RAM Buffer + */ + writew(0x2, &host->regs->nfc_config); + + /* Blocks to be unlocked */ + writew(0x0, &host->regs->nfc_unlockstart_blkaddr); + writew(0x4000, &host->regs->nfc_unlockend_blkaddr); + + /* Unlock Block Command for given address range */ + writew(0x4, &host->regs->nfc_wrprot); + + /* NAND bus width determines access funtions used by upper layer */ + if (readl(&sc_regs->fmcr) & NF_16BIT_SEL) + this->options |= NAND_BUSWIDTH_16; + + host->pagesize_2k = 0; + + return err; +} -- cgit v1.1