From 7205e4075d8b50e4dd89fe39ed03860b23cbb704 Mon Sep 17 00:00:00 2001 From: wdenk Date: Wed, 10 Sep 2003 22:30:53 +0000 Subject: * Patches by Denis Peter, 9 Sep 2003: add FAT support for IDE, SCSI and USB * Patches by Gleb Natapov, 2 Sep 2003: - cleanup of POST code for unsupported architectures - MPC824x locks way0 of data cache for use as initial RAM; this patch unlocks it after relocation to RAM and invalidates the locked entries. * Patch by Gleb Natapov, 30 Aug 2003: new I2C driver for mpc107 bridge. Now works from flash. * Patch by Dave Ellis, 11 Aug 2003: - JFFS2: fix typo in common/cmd_jffs2.c - JFFS2: fix CFG_JFFS2_SORT_FRAGMENTS option - JFFS2: remove node version 0 warning - JFFS2: accept JFFS2 PADDING nodes - SXNI855T: add AM29LV800 support - SXNI855T: move environment from EEPROM to flash - SXNI855T: boot from JFFS2 in NOR or NAND flash * Patch by Bill Hargen, 11 Aug 2003: fixes for I2C on MPC8240 - fix i2c_write routine - fix iprobe command - eliminates use of global variables, plus dead code, cleanup. --- cpu/mpc824x/drivers/i2c/i2c.h | 309 ------------------------------------------ 1 file changed, 309 deletions(-) delete mode 100644 cpu/mpc824x/drivers/i2c/i2c.h (limited to 'cpu/mpc824x/drivers/i2c/i2c.h') diff --git a/cpu/mpc824x/drivers/i2c/i2c.h b/cpu/mpc824x/drivers/i2c/i2c.h deleted file mode 100644 index 48a401d..0000000 --- a/cpu/mpc824x/drivers/i2c/i2c.h +++ /dev/null @@ -1,309 +0,0 @@ -#ifndef I2C_H -#define I2C_H - -/**************************************************** - * - * Copyright Motrola 1999 - * - ****************************************************/ -#define get_eumbbar() CFG_EUMB_ADDR - -#define I2CADR 0x00003000 -#define I2CFDR 0x00003004 -#define I2CCR 0x00003008 -#define I2CSR 0x0000300C -#define I2CDR 0x00003010 - -typedef enum _i2cstatus -{ - I2CSUCCESS = 0x3000, - I2CADDRESS, - I2CERROR, - I2CBUFFFULL, - I2CBUFFEMPTY, - I2CXMITERROR, - I2CRCVERROR, - I2CBUSBUSY, - I2CALOSS, - I2CNOEVENT, -} I2CStatus; - -typedef enum i2c_control -{ - MEN = 0x00000080, - MIEN = 0x00000040, - MSTA = 0x00000020, - MTX = 0x00000010, - TXAK = 0x00000008, - RSTA = 0x00000004, -} I2C_CONTROL; - -typedef enum i2c_status -{ - MCF = 0x00000080, - MAAS = 0x00000040, - MBB = 0x00000020, - MAL = 0x00000010, - SRW = 0x00000004, - MIF = 0x00000002, - RXAK = 0x00000001, -} I2C_STATUS; - -typedef struct _i2c_ctrl -{ - unsigned int reserved0 : 24; - unsigned int men : 1; - unsigned int mien : 1; - unsigned int msta : 1; - unsigned int mtx : 1; - unsigned int txak : 1; - unsigned int rsta : 1; - unsigned int reserved1 : 2; -} I2C_CTRL; - -typedef struct _i2c_stat -{ - unsigned int rsrv0 : 24; - unsigned int mcf : 1; - unsigned int maas : 1; - unsigned int mbb : 1; - unsigned int mal : 1; - unsigned int rsrv1 : 1; - unsigned int srw : 1; - unsigned int mif : 1; - unsigned int rxak : 1; -} I2C_STAT; - -typedef enum _i2c_mode -{ - RCV = 0, - XMIT = 1, -} I2C_MODE; - -/******************** App. API ******************** - * The application API is for user level application - * to use the funcitonality provided by I2C driver - * - * Note: Its App.s responsibility to swap the data - * byte. In our API, we just transfer whatever - * we are given - **************************************************/ -/** - * Note: - * - * In all following functions, - * the caller shall pass the configured embedded utility memory - * block base, EUMBBAR. - **/ - -/* Send a buffer of data to the intended rcv_addr. - * If stop_flag is set, after the whole buffer - * is sent, generate a STOP signal provided that the - * receiver doesn't signal the STOP in the middle. - * I2C is the master performing transmitting. If - * no STOP signal is generated at the end of current - * transaction, the master can generate a START signal - * to another slave addr. - * - * return I2CSUCCESS if no error. - */ -static I2CStatus I2C_put( unsigned int eumbbar, - unsigned char rcv_addr, /* receiver's address */ - unsigned char *buffer_ptr, /* pointer of data to be sent */ - unsigned int length, /* number of byte of in the buffer */ - unsigned int stop_flag, /* 1 - signal STOP when buffer is empty - * 0 - no STOP signal when buffer is empty - */ - unsigned int is_cnt ); /* 1 - this is a restart, don't check MBB - * 0 - this is a new start, check MBB - */ - -/* Receive a buffer of data from the desired sender_addr - * If stop_flag is set, when the buffer is full and the - * sender does not signal STOP, generate a STOP signal. - * I2C is the master performing receiving. If no STOP signal - * is generated, the master can generate a START signal - * to another slave addr. - * - * return I2CSUCCESS if no error. - */ -static I2CStatus I2C_get( unsigned int eumbbar, - unsigned char sender_addr, /* sender's address */ - unsigned char *buffer_ptr, /* pointer of receiving buffer */ - unsigned int length, /* length of the receiving buffer */ - unsigned int stop_flag, /* 1 - signal STOP when buffer is full - * 0 - no STOP signal when buffer is full - */ - unsigned int is_cnt ); /* 1 - this is a restart, don't check MBB - * 0 - this is a new start, check MBB - */ - -#if 0 /* the I2C_write and I2C_read functions are not active */ -/* Send a buffer of data to the requiring master. - * If stop_flag is set, after the whole buffer is sent, - * generate a STOP signal provided that the requiring - * receiver doesn't signal the STOP in the middle. - * I2C is the slave performing transmitting. - * - * return I2CSUCCESS if no error. - * - * Note: due to the Kahlua design, slave transmitter - * shall not signal STOP since there is no way - * for master to detect it, causing I2C bus hung. - * - * For the above reason, the stop_flag is always - * set, i.e., 1. - * - * programmer shall use the timer on Kahlua to - * control the interval of data byte at the - * master side. - */ -static I2CStatus I2C_write( unsigned int eumbbar, - unsigned char *buffer_ptr, /* pointer of data to be sent */ - unsigned int length, /* number of byte of in the buffer */ - unsigned int stop_flag ); /* 1 - signal STOP when buffer is empty - * 0 - no STOP signal when buffer is empty - */ - - /* Receive a buffer of data from the sending master. - * If stop_flag is set, when the buffer is full and the - * sender does not signal STOP, generate a STOP signal. - * I2C is the slave performing receiving. - * - * return I2CSUCCESS if no error. - */ -static I2CStatus I2C_read(unsigned int eumbbar, - unsigned char *buffer_ptr, /* pointer of receiving buffer */ - unsigned int length, /* length of the receiving buffer */ - unsigned int stop_flag ); /* 1 - signal STOP when buffer is full - * 0 - no STOP signal when buffer is full - */ -#endif /* of if0 for turning off I2C_read & I2C_write */ - -/* if interrupt is not used, this is the timer event handler. - * After each fixed time interval, this function can be called - * to check the I2C status and call appropriate function to - * handle the status event. - */ -static I2CStatus I2C_Timer_Event( unsigned int eumbbar, I2CStatus (*handler)( unsigned int ) ); - -/********************* Kernel API ************************ - * Kernel APIs are functions I2C driver provides to the - * O.S. - *********************************************************/ - -/******************* device I/O function ***************/ - -/* Generate a START signal in the desired mode. - * I2C is the master. - * - * return I2CSUCCESS if no error. - * I2CERROR if i2c unit is not enabled. - * I2CBUSBUSY if bus cannot be granted - */ -static I2CStatus I2C_Start( unsigned int eumbbar, - unsigned char slave_addr, /* address of the receiver */ - I2C_MODE mode, /* XMIT(1) - put (write) - * RCV(0) - get (read) - */ - unsigned int is_cnt ); /* 1 - this is a restart, don't check MBB - * 0 - this is a new start, check MBB - */ - -/* Generate a STOP signal to terminate the transaction. */ -static I2CStatus I2C_Stop( unsigned int eumbbar ); - -/* Do a one-byte master transmit. - * - * return I2CBUFFEMPTY if this is the last byte. - * Otherwise return I2CSUCCESS - */ -static I2CStatus I2C_Master_Xmit( unsigned int eumbbar ); - -/* Do a one-byte master receive. - * - * return I2CBUFFFULL if this is the last byte. - * Otherwise return I2CSUCCESS - */ -static I2CStatus I2C_Master_Rcv( unsigned int eumbbar ); - -/* Do a one-byte slave transmit. - * - * return I2CBUFFEMPTY if this is the last byte. - * Otherwise return I2CSUCCESS - * - */ -static I2CStatus I2C_Slave_Xmit( unsigned int eumbbar ); - -/* Do a one-byte slave receive. - * - * return I2CBUFFFULL if this is the last byte. - * Otherwise return I2CSUCCESS - */ -static I2CStatus I2C_Slave_Rcv( unsigned int eumbbar ); - -/* Process slave address phase. - * - * return I2CADDRESS if this is slave receiver's address phase - * Otherwise return the result of slave xmit one byte. - */ -static I2CStatus I2C_Slave_Addr( unsigned int eumbbar ); - -/******************* Device Control Fucntion ****************/ -/* Initialize I2C unit with desired frequency divider, - * driver's slave address w/o interrupt enabled. - * - * This function must be called before I2C unit can - * be used. - */ -static I2CStatus I2C_Init( unsigned int eumbbar, - unsigned char fdr, /* frequency divider */ - unsigned char addr, /* driver's address used for receiving */ - unsigned int en_int); /* 1 - enable I2C interrupt - * 0 - disable I2C interrup - */ - -/* I2C interrupt service routine. - * - * return I2CADDRESS if it is receiver's (either master or slave) address phase. - * return the result of xmit or receive one byte - */ -static I2CStatus I2C_ISR(unsigned int eumbbar ); - -/* Set I2C Status, i.e., write to I2CSR */ -static void I2C_Set_Stat( unsigned int eumbbar, I2C_STAT stat ); - -/* Query I2C Status, i.e., read I2CSR */ -static I2C_STAT I2C_Get_Stat( unsigned int eumbbar ); - -/* Change I2C Control bits, i.e., write to I2CCR */ -static void I2C_Set_Ctrl( unsigned int eumbbar, I2C_CTRL ); /* new control value */ - -/* Query I2C Control bits, i.e., read I2CCR */ -static I2C_CTRL I2C_Get_Ctrl( unsigned int eumbbar ); - -/* This function performs the work for I2C_do_transaction. The work is - * split into this function to enable I2C_do_transaction to first transmit - * the data address to the I2C slave device without putting the data address - * into the first byte of the buffer. - * - * en_int controls interrupt/polling mode - * act is the type of transaction - * i2c_addr is the I2C address of the slave device - * len is the length of data to send or receive - * buffer is the address of the data buffer - * stop = I2C_NO_STOP, don't signal STOP at end of transaction - * I2C_STOP, signal STOP at end of transaction - * retry is the timeout retry value, currently ignored - * rsta = I2C_NO_RESTART, this is not continuation of existing transaction - * I2C_RESTART, this is a continuation of existing transaction - */ -static I2C_Status I2C_do_buffer( I2C_INTERRUPT_MODE en_int, - I2C_TRANSACTION_MODE act, - unsigned char i2c_addr, - int len, - unsigned char *buffer, - I2C_STOP_MODE stop, - int retry, - I2C_RESTART_MODE rsta); -#endif -- cgit v1.1