summaryrefslogtreecommitdiff
path: root/arch/arc/lib/Makefile
Commit message (Collapse)AuthorAgeLines
* arc: fix separate compilation of start.oAlexey Brodkin2015-04-10-0/+1
| | | | | | | | | | | | | | | While testing "arc: make sure _start is in the beginning of .text section" I haven't done proper clean-up of built binaries and so missed another tiny bit that lead to the following error: --->8--- LD u-boot arc-linux-ld.bfd: cannot find arch/arc/lib/start.o Makefile:1107: recipe for target 'u-boot' failed make: *** [u-boot] Error 1 --->8--- Fix is trivial: put "start.o" in "extra-y". Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
* arc: make sure _start is in the beginning of .text sectionAlexey Brodkin2015-04-10-1/+1
| | | | | | | | | | | | | | This is important to have entry point in the beginning of .text section because it allows simple loading and execution of U-Boot. For example pre-bootloader loads U-Boot in memory starting from offset 0x81000000 and then just jumps to the same address. Otherwise pre-bootloader would need to find-out where entry-point is. In its turn if it deals with binary image of U-Boot there's no way for pre-bootloader to get required value. Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
* arc: clean-up init procedureAlexey Brodkin2015-04-03-0/+1
| | | | | | | | | | | | | | | | Intention behind this work was elimination of as much assembly-written code as it is possible. In case of ARC we already have relocation fix-up implemented in C so why don't we use C for U-Boot copying, .bss zeroing etc. It turned out x86 uses pretty similar approach so we re-used parts of code in "board_f.c" initially implemented for x86. Now assembly usage during init is limited to stack- and frame-pointer setup before and after relocation. Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com> Cc: Simon Glass <sjg@chromium.org>
* arc: move low-level interrupt and exception handlers in a separate fileAlexey Brodkin2015-04-03-0/+1
| | | | | | | | This separation makes maintenance of code easier because those low-level interrupt- or exception handling routines are pretty static and usually require not much care while start-up code is a subject of modifications and enhancements. Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
* arc: merge common start-up code between ARC and ARCv2Alexey Brodkin2015-04-03-0/+1
| | | | | | | | | | Even though ARCompact and ARCv2 are not binary compatible most of assembly instructions are used in both. With this change we'll get rid of duplicate code. Still IVTs are implemented differently so we're keeping them in separate files. Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
* arc: build libgcc in U-BootAlexey Brodkin2015-02-09-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This way we may have very limited set of functions implemented so we save some space. Also it allows us to build U-Boot for any ARC core with the same one toolchain because we don't rely on pre-built libgcc. For example: * we may use little-endian toolchain but build U-Boot for ether endianess * we may use non-multilibbed uClibc toolchain but build U-Boot for whatever ARC CPU flavour that current GCC supports Private libgcc built from generic C implementation contributes only 144 bytes to .text section so we don't see significant degradation of size: --->8--- $ arc-linux-size u-boot.libgcc-prebuilt text data bss dec hex filename 222217 24912 214820 461949 70c7d u-boot.libgcc-prebuilt $ arc-linux-size u-boot.libgcc-private text data bss dec hex filename 222361 24912 214820 462093 70d0d u-boot.libgcc-private --->8--- Also I don't notice visible performance degradation compared to pre-built libgcc (where at least "*div*" functions are had-written in assembly) on typical operations of downloading 10Mb uImage over TFTP and bootm. Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
* arc: move common sources in libraryAlexey Brodkin2015-01-15-0/+6
| | | | | | | | | | | | | | | | | | | "reset.c" and "cpu.c" have no architecture-specific code at all. Others are applicable to either ARC CPU. This change is a preparation to submission of ARCv2 architecture port. Even though ARCv1 and ARCv2 ISAs are not binary compatible most of built-in modules still have the same programming model - AUX registers are mapped in the same addresses and hold the same data (new featues extend existing ones). So only low-level assembly code (start-up, interrupt handlers) is left as CPU(actually ISA)-specific. This significantyl simplifies maintenance of multiple CPUs/ISAs. Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com> Signed-off-by: Igor Guryanov <guryanov@synopsys.com>
* arc: add library functionsAlexey Brodkin2014-02-07-0/+16
These are library functions used by ARC700 architecture. Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Francois Bedard <fbedard@synopsys.com> Cc: Wolfgang Denk <wd@denx.de> Cc: Heiko Schocher <hs@denx.de>