diff options
Diffstat (limited to 'include/asm-mips/bitops.h')
-rw-r--r-- | include/asm-mips/bitops.h | 902 |
1 files changed, 0 insertions, 902 deletions
diff --git a/include/asm-mips/bitops.h b/include/asm-mips/bitops.h deleted file mode 100644 index 1c8f4c0..0000000 --- a/include/asm-mips/bitops.h +++ /dev/null @@ -1,902 +0,0 @@ -/* - * This file is subject to the terms and conditions of the GNU General Public - * License. See the file "COPYING" in the main directory of this archive - * for more details. - * - * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org) - * Copyright (c) 2000 Silicon Graphics, Inc. - */ -#ifndef _ASM_BITOPS_H -#define _ASM_BITOPS_H - -#include <linux/types.h> -#include <asm/byteorder.h> /* sigh ... */ - -#ifdef __KERNEL__ - -#include <asm/sgidefs.h> -#include <asm/system.h> -#include <linux/config.h> - -/* - * clear_bit() doesn't provide any barrier for the compiler. - */ -#define smp_mb__before_clear_bit() barrier() -#define smp_mb__after_clear_bit() barrier() - -/* - * Only disable interrupt for kernel mode stuff to keep usermode stuff - * that dares to use kernel include files alive. - */ -#define __bi_flags unsigned long flags -#define __bi_cli() __cli() -#define __bi_save_flags(x) __save_flags(x) -#define __bi_save_and_cli(x) __save_and_cli(x) -#define __bi_restore_flags(x) __restore_flags(x) -#else -#define __bi_flags -#define __bi_cli() -#define __bi_save_flags(x) -#define __bi_save_and_cli(x) -#define __bi_restore_flags(x) -#endif /* __KERNEL__ */ - -#ifdef CONFIG_CPU_HAS_LLSC - -#include <asm/mipsregs.h> - -/* - * These functions for MIPS ISA > 1 are interrupt and SMP proof and - * interrupt friendly - */ - -/* - * set_bit - Atomically set a bit in memory - * @nr: the bit to set - * @addr: the address to start counting from - * - * This function is atomic and may not be reordered. See __set_bit() - * if you do not require the atomic guarantees. - * Note that @nr may be almost arbitrarily large; this function is not - * restricted to acting on a single-word quantity. - */ -static __inline__ void -set_bit(int nr, volatile void *addr) -{ - unsigned long *m = ((unsigned long *) addr) + (nr >> 5); - unsigned long temp; - - __asm__ __volatile__( - "1:\tll\t%0, %1\t\t# set_bit\n\t" - "or\t%0, %2\n\t" - "sc\t%0, %1\n\t" - "beqz\t%0, 1b" - : "=&r" (temp), "=m" (*m) - : "ir" (1UL << (nr & 0x1f)), "m" (*m)); -} - -/* - * __set_bit - Set a bit in memory - * @nr: the bit to set - * @addr: the address to start counting from - * - * Unlike set_bit(), this function is non-atomic and may be reordered. - * If it's called on the same region of memory simultaneously, the effect - * may be that only one operation succeeds. - */ -static __inline__ void __set_bit(int nr, volatile void * addr) -{ - unsigned long * m = ((unsigned long *) addr) + (nr >> 5); - - *m |= 1UL << (nr & 31); -} -#define PLATFORM__SET_BIT - -/* - * clear_bit - Clears a bit in memory - * @nr: Bit to clear - * @addr: Address to start counting from - * - * clear_bit() is atomic and may not be reordered. However, it does - * not contain a memory barrier, so if it is used for locking purposes, - * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() - * in order to ensure changes are visible on other processors. - */ -static __inline__ void -clear_bit(int nr, volatile void *addr) -{ - unsigned long *m = ((unsigned long *) addr) + (nr >> 5); - unsigned long temp; - - __asm__ __volatile__( - "1:\tll\t%0, %1\t\t# clear_bit\n\t" - "and\t%0, %2\n\t" - "sc\t%0, %1\n\t" - "beqz\t%0, 1b\n\t" - : "=&r" (temp), "=m" (*m) - : "ir" (~(1UL << (nr & 0x1f))), "m" (*m)); -} - -/* - * change_bit - Toggle a bit in memory - * @nr: Bit to clear - * @addr: Address to start counting from - * - * change_bit() is atomic and may not be reordered. - * Note that @nr may be almost arbitrarily large; this function is not - * restricted to acting on a single-word quantity. - */ -static __inline__ void -change_bit(int nr, volatile void *addr) -{ - unsigned long *m = ((unsigned long *) addr) + (nr >> 5); - unsigned long temp; - - __asm__ __volatile__( - "1:\tll\t%0, %1\t\t# change_bit\n\t" - "xor\t%0, %2\n\t" - "sc\t%0, %1\n\t" - "beqz\t%0, 1b" - : "=&r" (temp), "=m" (*m) - : "ir" (1UL << (nr & 0x1f)), "m" (*m)); -} - -/* - * __change_bit - Toggle a bit in memory - * @nr: the bit to set - * @addr: the address to start counting from - * - * Unlike change_bit(), this function is non-atomic and may be reordered. - * If it's called on the same region of memory simultaneously, the effect - * may be that only one operation succeeds. - */ -static __inline__ void __change_bit(int nr, volatile void * addr) -{ - unsigned long * m = ((unsigned long *) addr) + (nr >> 5); - - *m ^= 1UL << (nr & 31); -} - -/* - * test_and_set_bit - Set a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is atomic and cannot be reordered. - * It also implies a memory barrier. - */ -static __inline__ int -test_and_set_bit(int nr, volatile void *addr) -{ - unsigned long *m = ((unsigned long *) addr) + (nr >> 5); - unsigned long temp, res; - - __asm__ __volatile__( - ".set\tnoreorder\t\t# test_and_set_bit\n" - "1:\tll\t%0, %1\n\t" - "or\t%2, %0, %3\n\t" - "sc\t%2, %1\n\t" - "beqz\t%2, 1b\n\t" - " and\t%2, %0, %3\n\t" - ".set\treorder" - : "=&r" (temp), "=m" (*m), "=&r" (res) - : "r" (1UL << (nr & 0x1f)), "m" (*m) - : "memory"); - - return res != 0; -} - -/* - * __test_and_set_bit - Set a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is non-atomic and can be reordered. - * If two examples of this operation race, one can appear to succeed - * but actually fail. You must protect multiple accesses with a lock. - */ -static __inline__ int __test_and_set_bit(int nr, volatile void * addr) -{ - int mask, retval; - volatile int *a = addr; - - a += nr >> 5; - mask = 1 << (nr & 0x1f); - retval = (mask & *a) != 0; - *a |= mask; - - return retval; -} - -/* - * test_and_clear_bit - Clear a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is atomic and cannot be reordered. - * It also implies a memory barrier. - */ -static __inline__ int -test_and_clear_bit(int nr, volatile void *addr) -{ - unsigned long *m = ((unsigned long *) addr) + (nr >> 5); - unsigned long temp, res; - - __asm__ __volatile__( - ".set\tnoreorder\t\t# test_and_clear_bit\n" - "1:\tll\t%0, %1\n\t" - "or\t%2, %0, %3\n\t" - "xor\t%2, %3\n\t" - "sc\t%2, %1\n\t" - "beqz\t%2, 1b\n\t" - " and\t%2, %0, %3\n\t" - ".set\treorder" - : "=&r" (temp), "=m" (*m), "=&r" (res) - : "r" (1UL << (nr & 0x1f)), "m" (*m) - : "memory"); - - return res != 0; -} - -/* - * __test_and_clear_bit - Clear a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is non-atomic and can be reordered. - * If two examples of this operation race, one can appear to succeed - * but actually fail. You must protect multiple accesses with a lock. - */ -static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) -{ - int mask, retval; - volatile int *a = addr; - - a += nr >> 5; - mask = 1 << (nr & 0x1f); - retval = (mask & *a) != 0; - *a &= ~mask; - - return retval; -} - -/* - * test_and_change_bit - Change a bit and return its new value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is atomic and cannot be reordered. - * It also implies a memory barrier. - */ -static __inline__ int -test_and_change_bit(int nr, volatile void *addr) -{ - unsigned long *m = ((unsigned long *) addr) + (nr >> 5); - unsigned long temp, res; - - __asm__ __volatile__( - ".set\tnoreorder\t\t# test_and_change_bit\n" - "1:\tll\t%0, %1\n\t" - "xor\t%2, %0, %3\n\t" - "sc\t%2, %1\n\t" - "beqz\t%2, 1b\n\t" - " and\t%2, %0, %3\n\t" - ".set\treorder" - : "=&r" (temp), "=m" (*m), "=&r" (res) - : "r" (1UL << (nr & 0x1f)), "m" (*m) - : "memory"); - - return res != 0; -} - -/* - * __test_and_change_bit - Change a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is non-atomic and can be reordered. - * If two examples of this operation race, one can appear to succeed - * but actually fail. You must protect multiple accesses with a lock. - */ -static __inline__ int __test_and_change_bit(int nr, volatile void * addr) -{ - int mask, retval; - volatile int *a = addr; - - a += nr >> 5; - mask = 1 << (nr & 0x1f); - retval = (mask & *a) != 0; - *a ^= mask; - - return retval; -} - -#else /* MIPS I */ - -/* - * set_bit - Atomically set a bit in memory - * @nr: the bit to set - * @addr: the address to start counting from - * - * This function is atomic and may not be reordered. See __set_bit() - * if you do not require the atomic guarantees. - * Note that @nr may be almost arbitrarily large; this function is not - * restricted to acting on a single-word quantity. - */ -static __inline__ void set_bit(int nr, volatile void * addr) -{ - int mask; - volatile int *a = addr; - __bi_flags; - - a += nr >> 5; - mask = 1 << (nr & 0x1f); - __bi_save_and_cli(flags); - *a |= mask; - __bi_restore_flags(flags); -} - -/* - * __set_bit - Set a bit in memory - * @nr: the bit to set - * @addr: the address to start counting from - * - * Unlike set_bit(), this function is non-atomic and may be reordered. - * If it's called on the same region of memory simultaneously, the effect - * may be that only one operation succeeds. - */ -static __inline__ void __set_bit(int nr, volatile void * addr) -{ - int mask; - volatile int *a = addr; - - a += nr >> 5; - mask = 1 << (nr & 0x1f); - *a |= mask; -} - -/* - * clear_bit - Clears a bit in memory - * @nr: Bit to clear - * @addr: Address to start counting from - * - * clear_bit() is atomic and may not be reordered. However, it does - * not contain a memory barrier, so if it is used for locking purposes, - * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() - * in order to ensure changes are visible on other processors. - */ -static __inline__ void clear_bit(int nr, volatile void * addr) -{ - int mask; - volatile int *a = addr; - __bi_flags; - - a += nr >> 5; - mask = 1 << (nr & 0x1f); - __bi_save_and_cli(flags); - *a &= ~mask; - __bi_restore_flags(flags); -} - -/* - * change_bit - Toggle a bit in memory - * @nr: Bit to clear - * @addr: Address to start counting from - * - * change_bit() is atomic and may not be reordered. - * Note that @nr may be almost arbitrarily large; this function is not - * restricted to acting on a single-word quantity. - */ -static __inline__ void change_bit(int nr, volatile void * addr) -{ - int mask; - volatile int *a = addr; - __bi_flags; - - a += nr >> 5; - mask = 1 << (nr & 0x1f); - __bi_save_and_cli(flags); - *a ^= mask; - __bi_restore_flags(flags); -} - -/* - * __change_bit - Toggle a bit in memory - * @nr: the bit to set - * @addr: the address to start counting from - * - * Unlike change_bit(), this function is non-atomic and may be reordered. - * If it's called on the same region of memory simultaneously, the effect - * may be that only one operation succeeds. - */ -static __inline__ void __change_bit(int nr, volatile void * addr) -{ - unsigned long * m = ((unsigned long *) addr) + (nr >> 5); - - *m ^= 1UL << (nr & 31); -} - -/* - * test_and_set_bit - Set a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is atomic and cannot be reordered. - * It also implies a memory barrier. - */ -static __inline__ int test_and_set_bit(int nr, volatile void * addr) -{ - int mask, retval; - volatile int *a = addr; - __bi_flags; - - a += nr >> 5; - mask = 1 << (nr & 0x1f); - __bi_save_and_cli(flags); - retval = (mask & *a) != 0; - *a |= mask; - __bi_restore_flags(flags); - - return retval; -} - -/* - * __test_and_set_bit - Set a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is non-atomic and can be reordered. - * If two examples of this operation race, one can appear to succeed - * but actually fail. You must protect multiple accesses with a lock. - */ -static __inline__ int __test_and_set_bit(int nr, volatile void * addr) -{ - int mask, retval; - volatile int *a = addr; - - a += nr >> 5; - mask = 1 << (nr & 0x1f); - retval = (mask & *a) != 0; - *a |= mask; - - return retval; -} - -/* - * test_and_clear_bit - Clear a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is atomic and cannot be reordered. - * It also implies a memory barrier. - */ -static __inline__ int test_and_clear_bit(int nr, volatile void * addr) -{ - int mask, retval; - volatile int *a = addr; - __bi_flags; - - a += nr >> 5; - mask = 1 << (nr & 0x1f); - __bi_save_and_cli(flags); - retval = (mask & *a) != 0; - *a &= ~mask; - __bi_restore_flags(flags); - - return retval; -} - -/* - * __test_and_clear_bit - Clear a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is non-atomic and can be reordered. - * If two examples of this operation race, one can appear to succeed - * but actually fail. You must protect multiple accesses with a lock. - */ -static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) -{ - int mask, retval; - volatile int *a = addr; - - a += nr >> 5; - mask = 1 << (nr & 0x1f); - retval = (mask & *a) != 0; - *a &= ~mask; - - return retval; -} - -/* - * test_and_change_bit - Change a bit and return its new value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is atomic and cannot be reordered. - * It also implies a memory barrier. - */ -static __inline__ int test_and_change_bit(int nr, volatile void * addr) -{ - int mask, retval; - volatile int *a = addr; - __bi_flags; - - a += nr >> 5; - mask = 1 << (nr & 0x1f); - __bi_save_and_cli(flags); - retval = (mask & *a) != 0; - *a ^= mask; - __bi_restore_flags(flags); - - return retval; -} - -/* - * __test_and_change_bit - Change a bit and return its old value - * @nr: Bit to set - * @addr: Address to count from - * - * This operation is non-atomic and can be reordered. - * If two examples of this operation race, one can appear to succeed - * but actually fail. You must protect multiple accesses with a lock. - */ -static __inline__ int __test_and_change_bit(int nr, volatile void * addr) -{ - int mask, retval; - volatile int *a = addr; - - a += nr >> 5; - mask = 1 << (nr & 0x1f); - retval = (mask & *a) != 0; - *a ^= mask; - - return retval; -} - -#undef __bi_flags -#undef __bi_cli -#undef __bi_save_flags -#undef __bi_restore_flags - -#endif /* MIPS I */ - -/* - * test_bit - Determine whether a bit is set - * @nr: bit number to test - * @addr: Address to start counting from - */ -static __inline__ int test_bit(int nr, volatile void *addr) -{ - return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0; -} - -#ifndef __MIPSEB__ - -/* Little endian versions. */ - -/* - * find_first_zero_bit - find the first zero bit in a memory region - * @addr: The address to start the search at - * @size: The maximum size to search - * - * Returns the bit-number of the first zero bit, not the number of the byte - * containing a bit. - */ -static __inline__ int find_first_zero_bit (void *addr, unsigned size) -{ - unsigned long dummy; - int res; - - if (!size) - return 0; - - __asm__ (".set\tnoreorder\n\t" - ".set\tnoat\n" - "1:\tsubu\t$1,%6,%0\n\t" - "blez\t$1,2f\n\t" - "lw\t$1,(%5)\n\t" - "addiu\t%5,4\n\t" -#if (_MIPS_ISA == _MIPS_ISA_MIPS2 ) || (_MIPS_ISA == _MIPS_ISA_MIPS3 ) || \ - (_MIPS_ISA == _MIPS_ISA_MIPS4 ) || (_MIPS_ISA == _MIPS_ISA_MIPS5 ) || \ - (_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64) - "beql\t%1,$1,1b\n\t" - "addiu\t%0,32\n\t" -#else - "addiu\t%0,32\n\t" - "beq\t%1,$1,1b\n\t" - "nop\n\t" - "subu\t%0,32\n\t" -#endif -#ifdef __MIPSEB__ -#error "Fix this for big endian" -#endif /* __MIPSEB__ */ - "li\t%1,1\n" - "1:\tand\t%2,$1,%1\n\t" - "beqz\t%2,2f\n\t" - "sll\t%1,%1,1\n\t" - "bnez\t%1,1b\n\t" - "add\t%0,%0,1\n\t" - ".set\tat\n\t" - ".set\treorder\n" - "2:" - : "=r" (res), "=r" (dummy), "=r" (addr) - : "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff), - "2" (addr), "r" (size) - : "$1"); - - return res; -} - -/* - * find_next_zero_bit - find the first zero bit in a memory region - * @addr: The address to base the search on - * @offset: The bitnumber to start searching at - * @size: The maximum size to search - */ -static __inline__ int find_next_zero_bit (void * addr, int size, int offset) -{ - unsigned int *p = ((unsigned int *) addr) + (offset >> 5); - int set = 0, bit = offset & 31, res; - unsigned long dummy; - - if (bit) { - /* - * Look for zero in first byte - */ -#ifdef __MIPSEB__ -#error "Fix this for big endian byte order" -#endif - __asm__(".set\tnoreorder\n\t" - ".set\tnoat\n" - "1:\tand\t$1,%4,%1\n\t" - "beqz\t$1,1f\n\t" - "sll\t%1,%1,1\n\t" - "bnez\t%1,1b\n\t" - "addiu\t%0,1\n\t" - ".set\tat\n\t" - ".set\treorder\n" - "1:" - : "=r" (set), "=r" (dummy) - : "0" (0), "1" (1 << bit), "r" (*p) - : "$1"); - if (set < (32 - bit)) - return set + offset; - set = 32 - bit; - p++; - } - /* - * No zero yet, search remaining full bytes for a zero - */ - res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr)); - return offset + set + res; -} - -#endif /* !(__MIPSEB__) */ - -/* - * ffz - find first zero in word. - * @word: The word to search - * - * Undefined if no zero exists, so code should check against ~0UL first. - */ -static __inline__ unsigned long ffz(unsigned long word) -{ - unsigned int __res; - unsigned int mask = 1; - - __asm__ ( - ".set\tnoreorder\n\t" - ".set\tnoat\n\t" - "move\t%0,$0\n" - "1:\tand\t$1,%2,%1\n\t" - "beqz\t$1,2f\n\t" - "sll\t%1,1\n\t" - "bnez\t%1,1b\n\t" - "addiu\t%0,1\n\t" - ".set\tat\n\t" - ".set\treorder\n" - "2:\n\t" - : "=&r" (__res), "=r" (mask) - : "r" (word), "1" (mask) - : "$1"); - - return __res; -} - -#ifdef __KERNEL__ - -/* - * hweightN - returns the hamming weight of a N-bit word - * @x: the word to weigh - * - * The Hamming Weight of a number is the total number of bits set in it. - */ - -#define hweight32(x) generic_hweight32(x) -#define hweight16(x) generic_hweight16(x) -#define hweight8(x) generic_hweight8(x) - -#endif /* __KERNEL__ */ - -#ifdef __MIPSEB__ -/* - * find_next_zero_bit - find the first zero bit in a memory region - * @addr: The address to base the search on - * @offset: The bitnumber to start searching at - * @size: The maximum size to search - */ -static __inline__ int find_next_zero_bit(void *addr, int size, int offset) -{ - unsigned long *p = ((unsigned long *) addr) + (offset >> 5); - unsigned long result = offset & ~31UL; - unsigned long tmp; - - if (offset >= size) - return size; - size -= result; - offset &= 31UL; - if (offset) { - tmp = *(p++); - tmp |= ~0UL >> (32-offset); - if (size < 32) - goto found_first; - if (~tmp) - goto found_middle; - size -= 32; - result += 32; - } - while (size & ~31UL) { - if (~(tmp = *(p++))) - goto found_middle; - result += 32; - size -= 32; - } - if (!size) - return result; - tmp = *p; - -found_first: - tmp |= ~0UL << size; -found_middle: - return result + ffz(tmp); -} - -/* Linus sez that gcc can optimize the following correctly, we'll see if this - * holds on the Sparc as it does for the ALPHA. - */ - -#if 0 /* Fool kernel-doc since it doesn't do macros yet */ -/* - * find_first_zero_bit - find the first zero bit in a memory region - * @addr: The address to start the search at - * @size: The maximum size to search - * - * Returns the bit-number of the first zero bit, not the number of the byte - * containing a bit. - */ -static int find_first_zero_bit (void *addr, unsigned size); -#endif - -#define find_first_zero_bit(addr, size) \ - find_next_zero_bit((addr), (size), 0) - -#endif /* (__MIPSEB__) */ - -/* Now for the ext2 filesystem bit operations and helper routines. */ - -#ifdef __MIPSEB__ -static __inline__ int ext2_set_bit(int nr, void * addr) -{ - int mask, retval, flags; - unsigned char *ADDR = (unsigned char *) addr; - - ADDR += nr >> 3; - mask = 1 << (nr & 0x07); - save_and_cli(flags); - retval = (mask & *ADDR) != 0; - *ADDR |= mask; - restore_flags(flags); - return retval; -} - -static __inline__ int ext2_clear_bit(int nr, void * addr) -{ - int mask, retval, flags; - unsigned char *ADDR = (unsigned char *) addr; - - ADDR += nr >> 3; - mask = 1 << (nr & 0x07); - save_and_cli(flags); - retval = (mask & *ADDR) != 0; - *ADDR &= ~mask; - restore_flags(flags); - return retval; -} - -static __inline__ int ext2_test_bit(int nr, const void * addr) -{ - int mask; - const unsigned char *ADDR = (const unsigned char *) addr; - - ADDR += nr >> 3; - mask = 1 << (nr & 0x07); - return ((mask & *ADDR) != 0); -} - -#define ext2_find_first_zero_bit(addr, size) \ - ext2_find_next_zero_bit((addr), (size), 0) - -static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) -{ - unsigned long *p = ((unsigned long *) addr) + (offset >> 5); - unsigned long result = offset & ~31UL; - unsigned long tmp; - - if (offset >= size) - return size; - size -= result; - offset &= 31UL; - if(offset) { - /* We hold the little endian value in tmp, but then the - * shift is illegal. So we could keep a big endian value - * in tmp, like this: - * - * tmp = __swab32(*(p++)); - * tmp |= ~0UL >> (32-offset); - * - * but this would decrease preformance, so we change the - * shift: - */ - tmp = *(p++); - tmp |= __swab32(~0UL >> (32-offset)); - if(size < 32) - goto found_first; - if(~tmp) - goto found_middle; - size -= 32; - result += 32; - } - while(size & ~31UL) { - if(~(tmp = *(p++))) - goto found_middle; - result += 32; - size -= 32; - } - if(!size) - return result; - tmp = *p; - -found_first: - /* tmp is little endian, so we would have to swab the shift, - * see above. But then we have to swab tmp below for ffz, so - * we might as well do this here. - */ - return result + ffz(__swab32(tmp) | (~0UL << size)); -found_middle: - return result + ffz(__swab32(tmp)); -} -#else /* !(__MIPSEB__) */ - -/* Native ext2 byte ordering, just collapse using defines. */ -#define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr)) -#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr)) -#define ext2_test_bit(nr, addr) test_bit((nr), (addr)) -#define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size)) -#define ext2_find_next_zero_bit(addr, size, offset) \ - find_next_zero_bit((addr), (size), (offset)) - -#endif /* !(__MIPSEB__) */ - -/* - * Bitmap functions for the minix filesystem. - * FIXME: These assume that Minix uses the native byte/bitorder. - * This limits the Minix filesystem's value for data exchange very much. - */ -#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) -#define minix_set_bit(nr,addr) set_bit(nr,addr) -#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) -#define minix_test_bit(nr,addr) test_bit(nr,addr) -#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) - -#endif /* _ASM_BITOPS_H */ |