summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/mtd/nand/omap_elm.c6
-rw-r--r--drivers/mtd/nand/omap_gpmc.c572
2 files changed, 186 insertions, 392 deletions
diff --git a/drivers/mtd/nand/omap_elm.c b/drivers/mtd/nand/omap_elm.c
index 2aa7807..47b1f1b 100644
--- a/drivers/mtd/nand/omap_elm.c
+++ b/drivers/mtd/nand/omap_elm.c
@@ -16,9 +16,9 @@
#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
-#include <asm/arch/cpu.h>
-#include <asm/omap_gpmc.h>
-#include <asm/omap_elm.h>
+#include <linux/mtd/omap_gpmc.h>
+#include <linux/mtd/omap_elm.h>
+#include <asm/arch/hardware.h>
#define ELM_DEFAULT_POLY (0)
diff --git a/drivers/mtd/nand/omap_gpmc.c b/drivers/mtd/nand/omap_gpmc.c
index 389c4de..881a636 100644
--- a/drivers/mtd/nand/omap_gpmc.c
+++ b/drivers/mtd/nand/omap_gpmc.c
@@ -9,17 +9,24 @@
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/arch/mem.h>
-#include <asm/arch/cpu.h>
-#include <asm/omap_gpmc.h>
+#include <linux/mtd/omap_gpmc.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/bch.h>
#include <linux/compiler.h>
#include <nand.h>
-#include <asm/omap_elm.h>
+#include <linux/mtd/omap_elm.h>
#define BADBLOCK_MARKER_LENGTH 2
#define SECTOR_BYTES 512
+#define ECCCLEAR (0x1 << 8)
+#define ECCRESULTREG1 (0x1 << 0)
+/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
+#define BCH4_BIT_PAD 4
+#ifdef CONFIG_BCH
+static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
+ 0x97, 0x79, 0xe5, 0x24, 0xb5};
+#endif
static uint8_t cs;
static __maybe_unused struct nand_ecclayout omap_ecclayout;
@@ -60,21 +67,6 @@ int omap_spl_dev_ready(struct mtd_info *mtd)
}
#endif
-/*
- * omap_hwecc_init - Initialize the Hardware ECC for NAND flash in
- * GPMC controller
- * @mtd: MTD device structure
- *
- */
-static void __maybe_unused omap_hwecc_init(struct nand_chip *chip)
-{
- /*
- * Init ECC Control Register
- * Clear all ECC | Enable Reg1
- */
- writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
- writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config);
-}
/*
* gen_true_ecc - This function will generate true ECC value, which
@@ -156,74 +148,6 @@ static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
}
/*
- * omap_calculate_ecc - Generate non-inverted ECC bytes.
- *
- * Using noninverted ECC can be considered ugly since writing a blank
- * page ie. padding will clear the ECC bytes. This is no problem as
- * long nobody is trying to write data on the seemingly unused page.
- * Reading an erased page will produce an ECC mismatch between
- * generated and read ECC bytes that has to be dealt with separately.
- * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
- * is used, the result of read will be 0x0 while the ECC offsets of the
- * spare area will be 0xFF which will result in an ECC mismatch.
- * @mtd: MTD structure
- * @dat: unused
- * @ecc_code: ecc_code buffer
- */
-static int __maybe_unused omap_calculate_ecc(struct mtd_info *mtd,
- const uint8_t *dat, uint8_t *ecc_code)
-{
- u_int32_t val;
-
- /* Start Reading from HW ECC1_Result = 0x200 */
- val = readl(&gpmc_cfg->ecc1_result);
-
- ecc_code[0] = val & 0xFF;
- ecc_code[1] = (val >> 16) & 0xFF;
- ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
-
- /*
- * Stop reading anymore ECC vals and clear old results
- * enable will be called if more reads are required
- */
- writel(0x000, &gpmc_cfg->ecc_config);
-
- return 0;
-}
-
-/*
- * omap_enable_ecc - This function enables the hardware ecc functionality
- * @mtd: MTD device structure
- * @mode: Read/Write mode
- */
-static void __maybe_unused omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
-{
- struct nand_chip *chip = mtd->priv;
- uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
-
- switch (mode) {
- case NAND_ECC_READ:
- case NAND_ECC_WRITE:
- /* Clear the ecc result registers, select ecc reg as 1 */
- writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
-
- /*
- * Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
- * tell all regs to generate size0 sized regs
- * we just have a single ECC engine for all CS
- */
- writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL,
- &gpmc_cfg->ecc_size_config);
- val = (dev_width << 7) | (cs << 1) | (0x1);
- writel(val, &gpmc_cfg->ecc_config);
- break;
- default:
- printf("Error: Unrecognized Mode[%d]!\n", mode);
- break;
- }
-}
-
-/*
* Generic BCH interface
*/
struct nand_bch_priv {
@@ -239,12 +163,7 @@ struct nand_bch_priv {
#define ECC_BCH8 1
#define ECC_BCH16 2
-/* GPMC ecc engine settings */
-#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
-#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
-
/* BCH nibbles for diff bch levels */
-#define NAND_ECC_HW_BCH ((uint8_t)(NAND_ECC_HW_OOB_FIRST) + 1)
#define ECC_BCH4_NIBBLES 13
#define ECC_BCH8_NIBBLES 26
#define ECC_BCH16_NIBBLES 52
@@ -256,266 +175,161 @@ struct nand_bch_priv {
* When some users with other BCH strength will exists this have to change!
*/
static __maybe_unused struct nand_bch_priv bch_priv = {
- .mode = NAND_ECC_HW_BCH,
.type = ECC_BCH8,
.nibbles = ECC_BCH8_NIBBLES,
.control = NULL
};
/*
- * omap_hwecc_init_bch - Initialize the BCH Hardware ECC for NAND flash in
- * GPMC controller
- * @mtd: MTD device structure
- * @mode: Read/Write mode
- */
-__maybe_unused
-static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
+ * omap_reverse_list - re-orders list elements in reverse order [internal]
+ * @list: pointer to start of list
+ * @length: length of list
+*/
+void omap_reverse_list(u8 *list, unsigned int length)
{
- uint32_t val;
- uint32_t dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
- uint32_t unused_length = 0;
- uint32_t wr_mode = BCH_WRAPMODE_6;
- struct nand_bch_priv *bch = chip->priv;
-
- /* Clear the ecc result registers, select ecc reg as 1 */
- writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
-
- if (bch->ecc_scheme == OMAP_ECC_BCH8_CODE_HW) {
- wr_mode = BCH_WRAPMODE_1;
-
- switch (bch->nibbles) {
- case ECC_BCH4_NIBBLES:
- unused_length = 3;
- break;
- case ECC_BCH8_NIBBLES:
- unused_length = 2;
- break;
- case ECC_BCH16_NIBBLES:
- unused_length = 0;
- break;
- }
-
- /*
- * This is ecc_size_config for ELM mode. Here we are using
- * different settings for read and write access and also
- * depending on BCH strength.
- */
- switch (mode) {
- case NAND_ECC_WRITE:
- /* write access only setup eccsize1 config */
- val = ((unused_length + bch->nibbles) << 22);
- break;
-
- case NAND_ECC_READ:
- default:
- /*
- * by default eccsize0 selected for ecc1resultsize
- * eccsize0 config.
- */
- val = (bch->nibbles << 12);
- /* eccsize1 config */
- val |= (unused_length << 22);
- break;
- }
- } else {
- /*
- * This ecc_size_config setting is for BCH sw library.
- *
- * Note: we only support BCH8 currently with BCH sw library!
- * Should be really easy to adobt to BCH4, however some omap3
- * have flaws with BCH4.
- *
- * Here we are using wrapping mode 6 both for reading and
- * writing, with:
- * size0 = 0 (no additional protected byte in spare area)
- * size1 = 32 (skip 32 nibbles = 16 bytes per sector in
- * spare area)
- */
- val = (32 << 22) | (0 << 12);
+ unsigned int i, j;
+ unsigned int half_length = length / 2;
+ u8 tmp;
+ for (i = 0, j = length - 1; i < half_length; i++, j--) {
+ tmp = list[i];
+ list[i] = list[j];
+ list[j] = tmp;
}
- /* ecc size configuration */
- writel(val, &gpmc_cfg->ecc_size_config);
-
- /*
- * Configure the ecc engine in gpmc
- * We assume 512 Byte sector pages for access to NAND.
- */
- val = (1 << 16); /* enable BCH mode */
- val |= (bch->type << 12); /* setup BCH type */
- val |= (wr_mode << 8); /* setup wrapping mode */
- val |= (dev_width << 7); /* setup device width (16 or 8 bit) */
- val |= (cs << 1); /* setup chip select to work on */
- debug("set ECC_CONFIG=0x%08x\n", val);
- writel(val, &gpmc_cfg->ecc_config);
}
/*
- * omap_enable_ecc_bch - This function enables the bch h/w ecc functionality
+ * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
* @mtd: MTD device structure
* @mode: Read/Write mode
*/
__maybe_unused
-static void omap_enable_ecc_bch(struct mtd_info *mtd, int32_t mode)
-{
- struct nand_chip *chip = mtd->priv;
-
- omap_hwecc_init_bch(chip, mode);
- /* enable ecc */
- writel((readl(&gpmc_cfg->ecc_config) | 0x1), &gpmc_cfg->ecc_config);
-}
-
-/*
- * omap_ecc_disable - Disable H/W ECC calculation
- *
- * @mtd: MTD device structure
- */
-static void __maybe_unused omap_ecc_disable(struct mtd_info *mtd)
+static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
{
- writel((readl(&gpmc_cfg->ecc_config) & ~0x1), &gpmc_cfg->ecc_config);
+ struct nand_chip *nand = mtd->priv;
+ struct nand_bch_priv *bch = nand->priv;
+ unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
+ unsigned int ecc_algo = 0;
+ unsigned int bch_type = 0;
+ unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
+ u32 ecc_size_config_val = 0;
+ u32 ecc_config_val = 0;
+
+ /* configure GPMC for specific ecc-scheme */
+ switch (bch->ecc_scheme) {
+ case OMAP_ECC_HAM1_CODE_SW:
+ return;
+ case OMAP_ECC_HAM1_CODE_HW:
+ ecc_algo = 0x0;
+ bch_type = 0x0;
+ bch_wrapmode = 0x00;
+ eccsize0 = 0xFF;
+ eccsize1 = 0xFF;
+ break;
+ case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+ case OMAP_ECC_BCH8_CODE_HW:
+ ecc_algo = 0x1;
+ bch_type = 0x1;
+ if (mode == NAND_ECC_WRITE) {
+ bch_wrapmode = 0x01;
+ eccsize0 = 0; /* extra bits in nibbles per sector */
+ eccsize1 = 28; /* OOB bits in nibbles per sector */
+ } else {
+ bch_wrapmode = 0x01;
+ eccsize0 = 26; /* ECC bits in nibbles per sector */
+ eccsize1 = 2; /* non-ECC bits in nibbles per sector */
+ }
+ break;
+ default:
+ return;
+ }
+ /* Clear ecc and enable bits */
+ writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
+ /* Configure ecc size for BCH */
+ ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
+ writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
+
+ /* Configure device details for BCH engine */
+ ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */
+ (bch_type << 12) | /* BCH4/BCH8/BCH16 */
+ (bch_wrapmode << 8) | /* wrap mode */
+ (dev_width << 7) | /* bus width */
+ (0x0 << 4) | /* number of sectors */
+ (cs << 1) | /* ECC CS */
+ (0x1)); /* enable ECC */
+ writel(ecc_config_val, &gpmc_cfg->ecc_config);
}
/*
- * BCH support using ELM module
- */
-#ifdef CONFIG_NAND_OMAP_ELM
-/*
- * omap_read_bch8_result - Read BCH result for BCH8 level
- *
- * @mtd: MTD device structure
- * @big_endian: When set read register 3 first
- * @ecc_code: Read syndrome from BCH result registers
+ * omap_calculate_ecc - Read ECC result
+ * @mtd: MTD structure
+ * @dat: unused
+ * @ecc_code: ecc_code buffer
+ * Using noninverted ECC can be considered ugly since writing a blank
+ * page ie. padding will clear the ECC bytes. This is no problem as
+ * long nobody is trying to write data on the seemingly unused page.
+ * Reading an erased page will produce an ECC mismatch between
+ * generated and read ECC bytes that has to be dealt with separately.
+ * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
+ * is used, the result of read will be 0x0 while the ECC offsets of the
+ * spare area will be 0xFF which will result in an ECC mismatch.
*/
-static void omap_read_bch8_result(struct mtd_info *mtd, uint8_t big_endian,
+static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
uint8_t *ecc_code)
{
- uint32_t *ptr;
+ struct nand_chip *chip = mtd->priv;
+ struct nand_bch_priv *bch = chip->priv;
+ uint32_t *ptr, val = 0;
int8_t i = 0, j;
- if (big_endian) {
+ switch (bch->ecc_scheme) {
+ case OMAP_ECC_HAM1_CODE_HW:
+ val = readl(&gpmc_cfg->ecc1_result);
+ ecc_code[0] = val & 0xFF;
+ ecc_code[1] = (val >> 16) & 0xFF;
+ ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
+ break;
+#ifdef CONFIG_BCH
+ case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+#endif
+ case OMAP_ECC_BCH8_CODE_HW:
ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
- ecc_code[i++] = readl(ptr) & 0xFF;
+ val = readl(ptr);
+ ecc_code[i++] = (val >> 0) & 0xFF;
ptr--;
for (j = 0; j < 3; j++) {
- ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
- ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
- ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
- ecc_code[i++] = readl(ptr) & 0xFF;
+ val = readl(ptr);
+ ecc_code[i++] = (val >> 24) & 0xFF;
+ ecc_code[i++] = (val >> 16) & 0xFF;
+ ecc_code[i++] = (val >> 8) & 0xFF;
+ ecc_code[i++] = (val >> 0) & 0xFF;
ptr--;
}
- } else {
- ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[0];
- for (j = 0; j < 3; j++) {
- ecc_code[i++] = readl(ptr) & 0xFF;
- ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
- ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
- ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
- ptr++;
- }
- ecc_code[i++] = readl(ptr) & 0xFF;
- ecc_code[i++] = 0; /* 14th byte is always zero */
+ break;
+ default:
+ return -EINVAL;
}
-}
-
-/*
- * omap_rotate_ecc_bch - Rotate the syndrome bytes
- *
- * @mtd: MTD device structure
- * @calc_ecc: ECC read from ECC registers
- * @syndrome: Rotated syndrome will be retuned in this array
- *
- */
-static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc,
- uint8_t *syndrome)
-{
- struct nand_chip *chip = mtd->priv;
- struct nand_bch_priv *bch = chip->priv;
- uint8_t n_bytes = 0;
- int8_t i, j;
-
- switch (bch->type) {
- case ECC_BCH4:
- n_bytes = 8;
+ /* ECC scheme specific syndrome customizations */
+ switch (bch->ecc_scheme) {
+ case OMAP_ECC_HAM1_CODE_HW:
break;
+#ifdef CONFIG_BCH
+ case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
- case ECC_BCH16:
- n_bytes = 28;
+ for (i = 0; i < chip->ecc.bytes; i++)
+ *(ecc_code + i) = *(ecc_code + i) ^
+ bch8_polynomial[i];
break;
-
- case ECC_BCH8:
- default:
- n_bytes = 13;
+#endif
+ case OMAP_ECC_BCH8_CODE_HW:
+ ecc_code[chip->ecc.bytes - 1] = 0x00;
break;
+ default:
+ return -EINVAL;
}
-
- for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--)
- syndrome[i] = calc_ecc[j];
-}
-
-/*
- * omap_calculate_ecc_bch - Read BCH ECC result
- *
- * @mtd: MTD structure
- * @dat: unused
- * @ecc_code: ecc_code buffer
- */
-static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
- uint8_t *ecc_code)
-{
- struct nand_chip *chip = mtd->priv;
- struct nand_bch_priv *bch = chip->priv;
- uint8_t big_endian = 1;
- int8_t ret = 0;
-
- if (bch->type == ECC_BCH8)
- omap_read_bch8_result(mtd, big_endian, ecc_code);
- else /* BCH4 and BCH16 currently not supported */
- ret = -1;
-
- /*
- * Stop reading anymore ECC vals and clear old results
- * enable will be called if more reads are required
- */
- omap_ecc_disable(mtd);
-
- return ret;
-}
-
-/*
- * omap_fix_errors_bch - Correct bch error in the data
- *
- * @mtd: MTD device structure
- * @data: Data read from flash
- * @error_count:Number of errors in data
- * @error_loc: Locations of errors in the data
- *
- */
-static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data,
- uint32_t error_count, uint32_t *error_loc)
-{
- struct nand_chip *chip = mtd->priv;
- struct nand_bch_priv *bch = chip->priv;
- uint8_t count = 0;
- uint32_t error_byte_pos;
- uint32_t error_bit_mask;
- uint32_t last_bit = (bch->nibbles * 4) - 1;
-
- /* Flip all bits as specified by the error location array. */
- /* FOR( each found error location flip the bit ) */
- for (count = 0; count < error_count; count++) {
- if (error_loc[count] > last_bit) {
- /* Remove the ECC spare bits from correction. */
- error_loc[count] -= (last_bit + 1);
- /* Offset bit in data region */
- error_byte_pos = ((512 * 8) -
- (error_loc[count]) - 1) / 8;
- /* Error Bit mask */
- error_bit_mask = 0x1 << (error_loc[count] % 8);
- /* Toggle the error bit to make the correction. */
- data[error_byte_pos] ^= error_bit_mask;
- }
- }
+ return 0;
}
+#ifdef CONFIG_NAND_OMAP_ELM
/*
* omap_correct_data_bch - Compares the ecc read from nand spare area
* with ECC registers values and corrects one bit error if it has occured
@@ -532,40 +346,72 @@ static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
{
struct nand_chip *chip = mtd->priv;
struct nand_bch_priv *bch = chip->priv;
- uint8_t syndrome[28];
- uint32_t error_count = 0;
+ uint32_t eccbytes = chip->ecc.bytes;
+ uint32_t error_count = 0, error_max;
uint32_t error_loc[8];
- uint32_t i, ecc_flag;
+ uint32_t i, ecc_flag = 0;
+ uint8_t count, err = 0;
+ uint32_t byte_pos, bit_pos;
+
+ /* check calculated ecc */
+ for (i = 0; i < chip->ecc.bytes && !ecc_flag; i++) {
+ if (calc_ecc[i] != 0x00)
+ ecc_flag = 1;
+ }
+ if (!ecc_flag)
+ return 0;
+ /* check for whether its a erased-page */
ecc_flag = 0;
- for (i = 0; i < chip->ecc.bytes; i++)
+ for (i = 0; i < chip->ecc.bytes && !ecc_flag; i++) {
if (read_ecc[i] != 0xff)
ecc_flag = 1;
-
+ }
if (!ecc_flag)
return 0;
- elm_reset();
- elm_config((enum bch_level)(bch->type));
-
/*
* while reading ECC result we read it in big endian.
* Hence while loading to ELM we have rotate to get the right endian.
*/
- omap_rotate_ecc_bch(mtd, calc_ecc, syndrome);
-
+ switch (bch->ecc_scheme) {
+ case OMAP_ECC_BCH8_CODE_HW:
+ omap_reverse_list(calc_ecc, eccbytes - 1);
+ break;
+ default:
+ return -EINVAL;
+ }
/* use elm module to check for errors */
- if (elm_check_error(syndrome, bch->nibbles, &error_count,
- error_loc) != 0) {
- printf("ECC: uncorrectable.\n");
- return -1;
+ elm_config((enum bch_level)(bch->type));
+ if (elm_check_error(calc_ecc, bch->nibbles, &error_count, error_loc)) {
+ printf("nand: error: uncorrectable ECC errors\n");
+ return -EINVAL;
}
-
/* correct bch error */
- if (error_count > 0)
- omap_fix_errors_bch(mtd, dat, error_count, error_loc);
-
- return 0;
+ for (count = 0; count < error_count; count++) {
+ switch (bch->type) {
+ case ECC_BCH8:
+ /* 14th byte in ECC is reserved to match ROM layout */
+ error_max = SECTOR_BYTES + (eccbytes - 1);
+ break;
+ default:
+ return -EINVAL;
+ }
+ byte_pos = error_max - (error_loc[count] / 8) - 1;
+ bit_pos = error_loc[count] % 8;
+ if (byte_pos < SECTOR_BYTES) {
+ dat[byte_pos] ^= 1 << bit_pos;
+ printf("nand: bit-flip corrected @data=%d\n", byte_pos);
+ } else if (byte_pos < error_max) {
+ read_ecc[byte_pos - SECTOR_BYTES] = 1 << bit_pos;
+ printf("nand: bit-flip corrected @oob=%d\n", byte_pos -
+ SECTOR_BYTES);
+ } else {
+ err = -EBADMSG;
+ printf("nand: error: invalid bit-flip location\n");
+ }
+ }
+ return (err) ? err : error_count;
}
/**
@@ -636,57 +482,6 @@ static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
* OMAP3 BCH8 support (with BCH library)
*/
#ifdef CONFIG_BCH
-/*
- * omap_calculate_ecc_bch_sw - Read BCH ECC result
- *
- * @mtd: MTD device structure
- * @dat: The pointer to data on which ecc is computed (unused here)
- * @ecc: The ECC output buffer
- */
-static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd, const uint8_t *dat,
- uint8_t *ecc)
-{
- int ret = 0;
- size_t i;
- unsigned long nsectors, val1, val2, val3, val4;
-
- nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
-
- for (i = 0; i < nsectors; i++) {
- /* Read hw-computed remainder */
- val1 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[0]);
- val2 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[1]);
- val3 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[2]);
- val4 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[3]);
-
- /*
- * Add constant polynomial to remainder, in order to get an ecc
- * sequence of 0xFFs for a buffer filled with 0xFFs.
- */
- *ecc++ = 0xef ^ (val4 & 0xFF);
- *ecc++ = 0x51 ^ ((val3 >> 24) & 0xFF);
- *ecc++ = 0x2e ^ ((val3 >> 16) & 0xFF);
- *ecc++ = 0x09 ^ ((val3 >> 8) & 0xFF);
- *ecc++ = 0xed ^ (val3 & 0xFF);
- *ecc++ = 0x93 ^ ((val2 >> 24) & 0xFF);
- *ecc++ = 0x9a ^ ((val2 >> 16) & 0xFF);
- *ecc++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
- *ecc++ = 0x97 ^ (val2 & 0xFF);
- *ecc++ = 0x79 ^ ((val1 >> 24) & 0xFF);
- *ecc++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
- *ecc++ = 0x24 ^ ((val1 >> 8) & 0xFF);
- *ecc++ = 0xb5 ^ (val1 & 0xFF);
- }
-
- /*
- * Stop reading anymore ECC vals and clear old results
- * enable will be called if more reads are required
- */
- omap_ecc_disable(mtd);
-
- return ret;
-}
-
/**
* omap_correct_data_bch_sw - Decode received data and correct errors
* @mtd: MTD device structure
@@ -835,9 +630,9 @@ static int omap_select_ecc_scheme(struct nand_chip *nand,
nand->ecc.strength = 8;
nand->ecc.size = SECTOR_BYTES;
nand->ecc.bytes = 13;
- nand->ecc.hwctl = omap_enable_ecc_bch;
+ nand->ecc.hwctl = omap_enable_hwecc;
nand->ecc.correct = omap_correct_data_bch_sw;
- nand->ecc.calculate = omap_calculate_ecc_bch_sw;
+ nand->ecc.calculate = omap_calculate_ecc;
/* define ecc-layout */
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
@@ -852,7 +647,6 @@ static int omap_select_ecc_scheme(struct nand_chip *nand,
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
BADBLOCK_MARKER_LENGTH;
- omap_hwecc_init_bch(nand, NAND_ECC_READ);
bch->ecc_scheme = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
break;
#else
@@ -878,9 +672,9 @@ static int omap_select_ecc_scheme(struct nand_chip *nand,
nand->ecc.strength = 8;
nand->ecc.size = SECTOR_BYTES;
nand->ecc.bytes = 14;
- nand->ecc.hwctl = omap_enable_ecc_bch;
+ nand->ecc.hwctl = omap_enable_hwecc;
nand->ecc.correct = omap_correct_data_bch;
- nand->ecc.calculate = omap_calculate_ecc_bch;
+ nand->ecc.calculate = omap_calculate_ecc;
nand->ecc.read_page = omap_read_page_bch;
/* define ecc-layout */
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;