diff options
Diffstat (limited to 'cpu')
-rw-r--r-- | cpu/ppc4xx/denali_spd_ddr2.c | 1254 |
1 files changed, 1254 insertions, 0 deletions
diff --git a/cpu/ppc4xx/denali_spd_ddr2.c b/cpu/ppc4xx/denali_spd_ddr2.c new file mode 100644 index 0000000..825bc21 --- /dev/null +++ b/cpu/ppc4xx/denali_spd_ddr2.c @@ -0,0 +1,1254 @@ +/* + * cpu/ppc4xx/denali_spd_ddr2.c + * This SPD SDRAM detection code supports AMCC PPC44x CPUs with a Denali-core + * DDR2 controller, specifically the 440EPx/GRx. + * + * (C) Copyright 2007 + * Larry Johnson, lrj@acm.org. + * + * Based primarily on cpu/ppc4xx/4xx_spd_ddr2.c, which is... + * + * (C) Copyright 2007 + * Stefan Roese, DENX Software Engineering, sr@denx.de. + * + * COPYRIGHT AMCC CORPORATION 2004 + * + * See file CREDITS for list of people who contributed to this + * project. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of + * the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, + * MA 02111-1307 USA + * + */ + +/* define DEBUG for debugging output (obviously ;-)) */ +#if 0 +#define DEBUG +#endif + +#include <common.h> +#include <command.h> +#include <ppc4xx.h> +#include <i2c.h> +#include <asm/io.h> +#include <asm/processor.h> +#include <asm/mmu.h> + +#if defined(CONFIG_SPD_EEPROM) && \ + (defined(CONFIG_440EPX) || defined(CONFIG_440GRX)) + +/*-----------------------------------------------------------------------------+ + * Defines + *-----------------------------------------------------------------------------*/ +#ifndef TRUE +#define TRUE 1 +#endif +#ifndef FALSE +#define FALSE 0 +#endif + +#define MAXDIMMS 2 +#define MAXRANKS 2 + +#define ONE_BILLION 1000000000 + +#define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d)) + +#define DLL_DQS_DELAY 0x19 +#define DLL_DQS_BYPASS 0x0B +#define DQS_OUT_SHIFT 0x7F + +/* + * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory + * region. Right now the cache should still be disabled in U-Boot because of the + * EMAC driver, that need it's buffer descriptor to be located in non cached + * memory. + * + * If at some time this restriction doesn't apply anymore, just define + * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup + * everything correctly. + */ +#if defined(CFG_ENABLE_SDRAM_CACHE) +#define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */ +#else +#define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */ +#endif + +/*-----------------------------------------------------------------------------+ + * Prototypes + *-----------------------------------------------------------------------------*/ +extern int denali_wait_for_dlllock(void); +extern void denali_core_search_data_eye(void); +extern void dcbz_area(u32 start_address, u32 num_bytes); +extern void dflush(void); + +/* + * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed + */ +void __spd_ddr_init_hang(void) +{ + hang(); +} +void spd_ddr_init_hang(void) + __attribute__ ((weak, alias("__spd_ddr_init_hang"))); + +#if defined(DEBUG) +static void print_mcsr(void) +{ + printf("MCSR = 0x%08X\n", mfspr(SPRN_MCSR)); +} + +static void denali_sdram_register_dump(void) +{ + unsigned int sdram_data; + + printf("\n Register Dump:\n"); + mfsdram(DDR0_00, sdram_data); + printf(" DDR0_00 = 0x%08X", sdram_data); + mfsdram(DDR0_01, sdram_data); + printf(" DDR0_01 = 0x%08X\n", sdram_data); + mfsdram(DDR0_02, sdram_data); + printf(" DDR0_02 = 0x%08X", sdram_data); + mfsdram(DDR0_03, sdram_data); + printf(" DDR0_03 = 0x%08X\n", sdram_data); + mfsdram(DDR0_04, sdram_data); + printf(" DDR0_04 = 0x%08X", sdram_data); + mfsdram(DDR0_05, sdram_data); + printf(" DDR0_05 = 0x%08X\n", sdram_data); + mfsdram(DDR0_06, sdram_data); + printf(" DDR0_06 = 0x%08X", sdram_data); + mfsdram(DDR0_07, sdram_data); + printf(" DDR0_07 = 0x%08X\n", sdram_data); + mfsdram(DDR0_08, sdram_data); + printf(" DDR0_08 = 0x%08X", sdram_data); + mfsdram(DDR0_09, sdram_data); + printf(" DDR0_09 = 0x%08X\n", sdram_data); + mfsdram(DDR0_10, sdram_data); + printf(" DDR0_10 = 0x%08X", sdram_data); + mfsdram(DDR0_11, sdram_data); + printf(" DDR0_11 = 0x%08X\n", sdram_data); + mfsdram(DDR0_12, sdram_data); + printf(" DDR0_12 = 0x%08X", sdram_data); + mfsdram(DDR0_14, sdram_data); + printf(" DDR0_14 = 0x%08X\n", sdram_data); + mfsdram(DDR0_17, sdram_data); + printf(" DDR0_17 = 0x%08X", sdram_data); + mfsdram(DDR0_18, sdram_data); + printf(" DDR0_18 = 0x%08X\n", sdram_data); + mfsdram(DDR0_19, sdram_data); + printf(" DDR0_19 = 0x%08X", sdram_data); + mfsdram(DDR0_20, sdram_data); + printf(" DDR0_20 = 0x%08X\n", sdram_data); + mfsdram(DDR0_21, sdram_data); + printf(" DDR0_21 = 0x%08X", sdram_data); + mfsdram(DDR0_22, sdram_data); + printf(" DDR0_22 = 0x%08X\n", sdram_data); + mfsdram(DDR0_23, sdram_data); + printf(" DDR0_23 = 0x%08X", sdram_data); + mfsdram(DDR0_24, sdram_data); + printf(" DDR0_24 = 0x%08X\n", sdram_data); + mfsdram(DDR0_25, sdram_data); + printf(" DDR0_25 = 0x%08X", sdram_data); + mfsdram(DDR0_26, sdram_data); + printf(" DDR0_26 = 0x%08X\n", sdram_data); + mfsdram(DDR0_27, sdram_data); + printf(" DDR0_27 = 0x%08X", sdram_data); + mfsdram(DDR0_28, sdram_data); + printf(" DDR0_28 = 0x%08X\n", sdram_data); + mfsdram(DDR0_31, sdram_data); + printf(" DDR0_31 = 0x%08X", sdram_data); + mfsdram(DDR0_32, sdram_data); + printf(" DDR0_32 = 0x%08X\n", sdram_data); + mfsdram(DDR0_33, sdram_data); + printf(" DDR0_33 = 0x%08X", sdram_data); + mfsdram(DDR0_34, sdram_data); + printf(" DDR0_34 = 0x%08X\n", sdram_data); + mfsdram(DDR0_35, sdram_data); + printf(" DDR0_35 = 0x%08X", sdram_data); + mfsdram(DDR0_36, sdram_data); + printf(" DDR0_36 = 0x%08X\n", sdram_data); + mfsdram(DDR0_37, sdram_data); + printf(" DDR0_37 = 0x%08X", sdram_data); + mfsdram(DDR0_38, sdram_data); + printf(" DDR0_38 = 0x%08X\n", sdram_data); + mfsdram(DDR0_39, sdram_data); + printf(" DDR0_39 = 0x%08X", sdram_data); + mfsdram(DDR0_40, sdram_data); + printf(" DDR0_40 = 0x%08X\n", sdram_data); + mfsdram(DDR0_41, sdram_data); + printf(" DDR0_41 = 0x%08X", sdram_data); + mfsdram(DDR0_42, sdram_data); + printf(" DDR0_42 = 0x%08X\n", sdram_data); + mfsdram(DDR0_43, sdram_data); + printf(" DDR0_43 = 0x%08X", sdram_data); + mfsdram(DDR0_44, sdram_data); + printf(" DDR0_44 = 0x%08X\n", sdram_data); +} +#else +static inline void denali_sdram_register_dump(void) +{ +} + +inline static void print_mcsr(void) +{ +} +#endif /* defined(DEBUG) */ + +static int is_ecc_enabled(void) +{ + u32 val; + + mfsdram(DDR0_22, val); + return 0x3 == DDR0_22_CTRL_RAW_DECODE(val); +} + +static unsigned char spd_read(u8 chip, unsigned int addr) +{ + u8 data[2]; + + if (0 != i2c_probe(chip) || 0 != i2c_read(chip, addr, 1, data, 1)) { + debug("spd_read(0x%02X, 0x%02X) failed\n", chip, addr); + return 0; + } + debug("spd_read(0x%02X, 0x%02X) returned 0x%02X\n", + chip, addr, data[0]); + return data[0]; +} + +static unsigned long get_tcyc(unsigned char reg) +{ + /* + * Byte 9, et al: Cycle time for CAS Latency=X, is split into two + * nibbles: the higher order nibble (bits 4-7) designates the cycle time + * to a granularity of 1ns; the value presented by the lower order + * nibble (bits 0-3) has a granularity of .1ns and is added to the value + * designated by the higher nibble. In addition, four lines of the lower + * order nibble are assigned to support +.25, +.33, +.66, and +.75. + */ + + unsigned char subfield_b = reg & 0x0F; + + switch (subfield_b & 0x0F) { + case 0x0: + case 0x1: + case 0x2: + case 0x3: + case 0x4: + case 0x5: + case 0x6: + case 0x7: + case 0x8: + case 0x9: + return 1000 * (reg >> 4) + 100 * subfield_b; + case 0xA: + return 1000 * (reg >> 4) + 250; + case 0xB: + return 1000 * (reg >> 4) + 333; + case 0xC: + return 1000 * (reg >> 4) + 667; + case 0xD: + return 1000 * (reg >> 4) + 750; + } + return 0; +} + +/*------------------------------------------------------------------ + * Find the installed DIMMs, make sure that the are DDR2, and fill + * in the dimm_ranks array. Then dimm_ranks[dimm_num] > 0 iff the + * DIMM and dimm_num is present. + * Note: Because there are only two chip-select lines, it is assumed + * that a board with a single socket can support two ranks on that + * socket, while a board with two sockets can support only one rank + * on each socket. + *-----------------------------------------------------------------*/ +static void get_spd_info(unsigned long dimm_ranks[], + unsigned long *ranks, + unsigned char const iic0_dimm_addr[], + unsigned long num_dimm_banks) +{ + unsigned long dimm_num; + unsigned long dimm_found = FALSE; + unsigned long const max_ranks_per_dimm = (1 == num_dimm_banks) ? 2 : 1; + unsigned char num_of_bytes; + unsigned char total_size; + + *ranks = 0; + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + num_of_bytes = 0; + total_size = 0; + + num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0); + total_size = spd_read(iic0_dimm_addr[dimm_num], 1); + if ((num_of_bytes != 0) && (total_size != 0)) { + unsigned char const dimm_type = + spd_read(iic0_dimm_addr[dimm_num], 2); + + unsigned long ranks_on_dimm = + (spd_read(iic0_dimm_addr[dimm_num], 5) & 0x07) + 1; + + if (8 != dimm_type) { + switch (dimm_type) { + case 1: + printf("ERROR: Standard Fast Page Mode " + "DRAM DIMM"); + break; + case 2: + printf("ERROR: EDO DIMM"); + break; + case 3: + printf("ERROR: Pipelined Nibble DIMM"); + break; + case 4: + printf("ERROR: SDRAM DIMM"); + break; + case 5: + printf("ERROR: Multiplexed ROM DIMM"); + break; + case 6: + printf("ERROR: SGRAM DIMM"); + break; + case 7: + printf("ERROR: DDR1 DIMM"); + break; + default: + printf("ERROR: Unknown DIMM (type %d)", + (unsigned int)dimm_type); + break; + } + printf(" detected in slot %lu.\n", dimm_num); + printf("Only DDR2 SDRAM DIMMs are supported." + "\n"); + printf("Replace the module with a DDR2 DIMM." + "\n\n"); + spd_ddr_init_hang(); + } + dimm_found = TRUE; + debug("DIMM slot %lu: populated with %lu-rank DDR2 DIMM" + "\n", dimm_num, ranks_on_dimm); + if (ranks_on_dimm > max_ranks_per_dimm) { + printf("WARNING: DRAM DIMM in slot %lu has %lu " + "ranks.\n"); + if (1 == max_ranks_per_dimm) { + printf("Only one rank will be used.\n"); + } else { + printf + ("Only two ranks will be used.\n"); + } + ranks_on_dimm = max_ranks_per_dimm; + } + dimm_ranks[dimm_num] = ranks_on_dimm; + *ranks += ranks_on_dimm; + } else { + dimm_ranks[dimm_num] = 0; + debug("DIMM slot %lu: Not populated\n", dimm_num); + } + } + if (dimm_found == FALSE) { + printf("ERROR: No memory installed.\n"); + printf("Install at least one DDR2 DIMM.\n\n"); + spd_ddr_init_hang(); + } + debug("Total number of ranks = %d\n", *ranks); +} + +/*------------------------------------------------------------------ + * For the memory DIMMs installed, this routine verifies that + * frequency previously calculated is supported. + *-----------------------------------------------------------------*/ +static void check_frequency(unsigned long *dimm_ranks, + unsigned char const iic0_dimm_addr[], + unsigned long num_dimm_banks, + unsigned long sdram_freq) +{ + unsigned long dimm_num; + unsigned long cycle_time; + unsigned long calc_cycle_time; + + /* + * calc_cycle_time is calculated from DDR frequency set by board/chip + * and is expressed in picoseconds to match the way DIMM cycle time is + * calculated below. + */ + calc_cycle_time = MULDIV64(ONE_BILLION, 1000, sdram_freq); + + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + if (dimm_ranks[dimm_num]) { + cycle_time = + get_tcyc(spd_read(iic0_dimm_addr[dimm_num], 9)); + debug("cycle_time=%d ps\n", cycle_time); + + if (cycle_time > (calc_cycle_time + 10)) { + /* + * the provided sdram cycle_time is too small + * for the available DIMM cycle_time. The + * additionnal 10ps is here to accept a small + * incertainty. + */ + printf + ("ERROR: DRAM DIMM detected with cycle_time %d ps in " + "slot %d \n while calculated cycle time is %d ps.\n", + (unsigned int)cycle_time, + (unsigned int)dimm_num, + (unsigned int)calc_cycle_time); + printf + ("Replace the DIMM, or change DDR frequency via " + "strapping bits.\n\n"); + spd_ddr_init_hang(); + } + } + } +} + +/*------------------------------------------------------------------ + * This routine gets size information for the installed memory + * DIMMs. + *-----------------------------------------------------------------*/ +static void get_dimm_size(unsigned long dimm_ranks[], + unsigned char const iic0_dimm_addr[], + unsigned long num_dimm_banks, + unsigned long *const rows, + unsigned long *const banks, + unsigned long *const cols, unsigned long *const width) +{ + unsigned long dimm_num; + + *rows = 0; + *banks = 0; + *cols = 0; + *width = 0; + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + if (dimm_ranks[dimm_num]) { + unsigned long t; + + /* Rows */ + t = spd_read(iic0_dimm_addr[dimm_num], 3); + if (0 == *rows) { + *rows = t; + } else if (t != *rows) { + printf("ERROR: DRAM DIMM modules do not all " + "have the same number of rows.\n\n"); + spd_ddr_init_hang(); + } + /* Banks */ + t = spd_read(iic0_dimm_addr[dimm_num], 17); + if (0 == *banks) { + *banks = t; + } else if (t != *banks) { + printf("ERROR: DRAM DIMM modules do not all " + "have the same number of banks.\n\n"); + spd_ddr_init_hang(); + } + /* Columns */ + t = spd_read(iic0_dimm_addr[dimm_num], 4); + if (0 == *cols) { + *cols = t; + } else if (t != *cols) { + printf("ERROR: DRAM DIMM modules do not all " + "have the same number of columns.\n\n"); + spd_ddr_init_hang(); + } + /* Data width */ + t = spd_read(iic0_dimm_addr[dimm_num], 6); + if (0 == *width) { + *width = t; + } else if (t != *width) { + printf("ERROR: DRAM DIMM modules do not all " + "have the same data width.\n\n"); + spd_ddr_init_hang(); + } + } + } + debug("Number of rows = %d\n", *rows); + debug("Number of columns = %d\n", *cols); + debug("Number of banks = %d\n", *banks); + debug("Data width = %d\n", *width); + if (*rows > 14) { + printf("ERROR: DRAM DIMM modules have %lu address rows.\n", + *rows); + printf("Only modules with 14 or fewer rows are supported.\n\n"); + spd_ddr_init_hang(); + } + if (4 != *banks && 8 != *banks) { + printf("ERROR: DRAM DIMM modules have %lu banks.\n", *banks); + printf("Only modules with 4 or 8 banks are supported.\n\n"); + spd_ddr_init_hang(); + } + if (*cols > 12) { + printf("ERROR: DRAM DIMM modules have %lu address columns.\n", + *cols); + printf("Only modules with 12 or fewer columns are " + "supported.\n\n"); + spd_ddr_init_hang(); + } + if (32 != *width && 40 != *width && 64 != *width && 72 != *width) { + printf("ERROR: DRAM DIMM modules have a width of %lu bit.\n", + *width); + printf("Only modules with widths of 32, 40, 64, and 72 bits " + "are supported.\n\n"); + spd_ddr_init_hang(); + } +} + +/*------------------------------------------------------------------ + * Only 1.8V modules are supported. This routine verifies this. + *-----------------------------------------------------------------*/ +static void check_voltage_type(unsigned long dimm_ranks[], + unsigned char const iic0_dimm_addr[], + unsigned long num_dimm_banks) +{ + unsigned long dimm_num; + unsigned long voltage_type; + + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + if (dimm_ranks[dimm_num]) { + voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8); + if (0x05 != voltage_type) { /* 1.8V for DDR2 */ + printf("ERROR: Slot %lu provides 1.8V for DDR2 " + "DIMMs.\n", dimm_num); + switch (voltage_type) { + case 0x00: + printf("This DIMM is 5.0 Volt/TTL.\n"); + break; + case 0x01: + printf("This DIMM is LVTTL.\n"); + break; + case 0x02: + printf("This DIMM is 1.5 Volt.\n"); + break; + case 0x03: + printf("This DIMM is 3.3 Volt/TTL.\n"); + break; + case 0x04: + printf("This DIMM is 2.5 Volt.\n"); + break; + default: + printf("This DIMM is an unknown " + "voltage.\n"); + break; + } + printf("Replace it with a 1.8V DDR2 DIMM.\n\n"); + spd_ddr_init_hang(); + } + } + } +} + +static void program_ddr0_03(unsigned long dimm_ranks[], + unsigned char const iic0_dimm_addr[], + unsigned long num_dimm_banks, + unsigned long sdram_freq, + unsigned long rows, unsigned long *cas_latency) +{ + unsigned long dimm_num; + unsigned long cas_index; + unsigned long cycle_2_0_clk; + unsigned long cycle_3_0_clk; + unsigned long cycle_4_0_clk; + unsigned long cycle_5_0_clk; + unsigned long max_2_0_tcyc_ps = 100; + unsigned long max_3_0_tcyc_ps = 100; + unsigned long max_4_0_tcyc_ps = 100; + unsigned long max_5_0_tcyc_ps = 100; + unsigned char cas_available = 0x3C; /* value for DDR2 */ + u32 ddr0_03 = DDR0_03_BSTLEN_ENCODE(0x2) | DDR0_03_INITAREF_ENCODE(0x2); + unsigned int const tcyc_addr[3] = { 9, 23, 25 }; + + /*------------------------------------------------------------------ + * Get the board configuration info. + *-----------------------------------------------------------------*/ + debug("sdram_freq = %d\n", sdram_freq); + + /*------------------------------------------------------------------ + * Handle the timing. We need to find the worst case timing of all + * the dimm modules installed. + *-----------------------------------------------------------------*/ + /* loop through all the DIMM slots on the board */ + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + /* If a dimm is installed in a particular slot ... */ + if (dimm_ranks[dimm_num]) { + unsigned char const cas_bit = + spd_read(iic0_dimm_addr[dimm_num], 18); + unsigned char cas_mask; + + cas_available &= cas_bit; + for (cas_mask = 0x80; cas_mask; cas_mask >>= 1) { + if (cas_bit & cas_mask) + break; + } + debug("cas_bit (SPD byte 18) = %02X, cas_mask = %02X\n", + cas_bit, cas_mask); + + for (cas_index = 0; cas_index < 3; + cas_mask >>= 1, cas_index++) { + unsigned long cycle_time_ps; + + if (!(cas_available & cas_mask)) { + continue; + } + cycle_time_ps = + get_tcyc(spd_read(iic0_dimm_addr[dimm_num], + tcyc_addr[cas_index])); + + debug("cas_index = %d: cycle_time_ps = %d\n", + cas_index, cycle_time_ps); + /* + * DDR2 devices use the following bitmask for CAS latency: + * Bit 7 6 5 4 3 2 1 0 + * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD + */ + switch (cas_mask) { + case 0x20: + max_5_0_tcyc_ps = + max(max_5_0_tcyc_ps, cycle_time_ps); + break; + case 0x10: + max_4_0_tcyc_ps = + max(max_4_0_tcyc_ps, cycle_time_ps); + break; + case 0x08: + max_3_0_tcyc_ps = + max(max_3_0_tcyc_ps, cycle_time_ps); + break; + case 0x04: + max_2_0_tcyc_ps = + max(max_2_0_tcyc_ps, cycle_time_ps); + break; + } + } + } + } + debug("cas_available (bit map) = 0x%02X\n", cas_available); + + /*------------------------------------------------------------------ + * Set the SDRAM mode, SDRAM_MMODE + *-----------------------------------------------------------------*/ + + /* add 10 here because of rounding problems */ + cycle_2_0_clk = MULDIV64(ONE_BILLION, 1000, max_2_0_tcyc_ps) + 10; + cycle_3_0_clk = MULDIV64(ONE_BILLION, 1000, max_3_0_tcyc_ps) + 10; + cycle_4_0_clk = MULDIV64(ONE_BILLION, 1000, max_4_0_tcyc_ps) + 10; + cycle_5_0_clk = MULDIV64(ONE_BILLION, 1000, max_5_0_tcyc_ps) + 10; + debug("cycle_2_0_clk = %d\n", cycle_2_0_clk); + debug("cycle_3_0_clk = %d\n", cycle_3_0_clk); + debug("cycle_4_0_clk = %d\n", cycle_4_0_clk); + debug("cycle_5_0_clk = %d\n", cycle_5_0_clk); + + if ((cas_available & 0x04) && (sdram_freq <= cycle_2_0_clk)) { + *cas_latency = 2; + ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x2) | + DDR0_03_CASLAT_LIN_ENCODE(0x4); + } else if ((cas_available & 0x08) && (sdram_freq <= cycle_3_0_clk)) { + *cas_latency = 3; + ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x3) | + DDR0_03_CASLAT_LIN_ENCODE(0x6); + } else if ((cas_available & 0x10) && (sdram_freq <= cycle_4_0_clk)) { + *cas_latency = 4; + ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x4) | + DDR0_03_CASLAT_LIN_ENCODE(0x8); + } else if ((cas_available & 0x20) && (sdram_freq <= cycle_5_0_clk)) { + *cas_latency = 5; + ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x5) | + DDR0_03_CASLAT_LIN_ENCODE(0xA); + } else { + printf("ERROR: Cannot find a supported CAS latency with the " + "installed DIMMs.\n"); + printf("Only DDR2 DIMMs with CAS latencies of 2.0, 3.0, 4.0, " + "and 5.0 are supported.\n"); + printf("Make sure the PLB speed is within the supported range " + "of the DIMMs.\n"); + printf("sdram_freq=%d cycle2=%d cycle3=%d cycle4=%d " + "cycle5=%d\n\n", sdram_freq, cycle_2_0_clk, + cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk); + spd_ddr_init_hang(); + } + debug("CAS latency = %d\n", *cas_latency); + mtsdram(DDR0_03, ddr0_03); +} + +static void program_ddr0_04(unsigned long dimm_ranks[], + unsigned char const iic0_dimm_addr[], + unsigned long num_dimm_banks, + unsigned long sdram_freq) +{ + unsigned long dimm_num; + unsigned long t_rc_ps = 0; + unsigned long t_rrd_ps = 0; + unsigned long t_rtp_ps = 0; + unsigned long t_rc_clk; + unsigned long t_rrd_clk; + unsigned long t_rtp_clk; + + /*------------------------------------------------------------------ + * Handle the timing. We need to find the worst case timing of all + * the dimm modules installed. + *-----------------------------------------------------------------*/ + /* loop through all the DIMM slots on the board */ + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + /* If a dimm is installed in a particular slot ... */ + if (dimm_ranks[dimm_num]) { + unsigned long ps; + + /* tRC */ + ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 41); + switch (spd_read(iic0_dimm_addr[dimm_num], 40) >> 4) { + case 0x1: + ps += 250; + break; + case 0x2: + ps += 333; + break; + case 0x3: + ps += 500; + break; + case 0x4: + ps += 667; + break; + case 0x5: + ps += 750; + break; + } + t_rc_ps = max(t_rc_ps, ps); + /* tRRD */ + ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 28); + t_rrd_ps = max(t_rrd_ps, ps); + /* tRTP */ + ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 38); + t_rtp_ps = max(t_rtp_ps, ps); + } + } + debug("t_rc_ps = %d\n", t_rc_ps); + t_rc_clk = (MULDIV64(sdram_freq, t_rc_ps, ONE_BILLION) + 999) / 1000; + debug("t_rrd_ps = %d\n", t_rrd_ps); + t_rrd_clk = (MULDIV64(sdram_freq, t_rrd_ps, ONE_BILLION) + 999) / 1000; + debug("t_rtp_ps = %d\n", t_rtp_ps); + t_rtp_clk = (MULDIV64(sdram_freq, t_rtp_ps, ONE_BILLION) + 999) / 1000; + mtsdram(DDR0_04, DDR0_04_TRC_ENCODE(t_rc_clk) | + DDR0_04_TRRD_ENCODE(t_rrd_clk) | + DDR0_04_TRTP_ENCODE(t_rtp_clk)); +} + +static void program_ddr0_05(unsigned long dimm_ranks[], + unsigned char const iic0_dimm_addr[], + unsigned long num_dimm_banks, + unsigned long sdram_freq) +{ + unsigned long dimm_num; + unsigned long t_rp_ps = 0; + unsigned long t_ras_ps = 0; + unsigned long t_rp_clk; + unsigned long t_ras_clk; + u32 ddr0_05 = DDR0_05_TMRD_ENCODE(0x2) | DDR0_05_TEMRS_ENCODE(0x2); + + /*------------------------------------------------------------------ + * Handle the timing. We need to find the worst case timing of all + * the dimm modules installed. + *-----------------------------------------------------------------*/ + /* loop through all the DIMM slots on the board */ + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + /* If a dimm is installed in a particular slot ... */ + if (dimm_ranks[dimm_num]) { + unsigned long ps; + + /* tRP */ + ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 27); + t_rp_ps = max(t_rp_ps, ps); + /* tRAS */ + ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 30); + t_ras_ps = max(t_ras_ps, ps); + } + } + debug("t_rp_ps = %d\n", t_rp_ps); + t_rp_clk = (MULDIV64(sdram_freq, t_rp_ps, ONE_BILLION) + 999) / 1000; + debug("t_ras_ps = %d\n", t_ras_ps); + t_ras_clk = (MULDIV64(sdram_freq, t_ras_ps, ONE_BILLION) + 999) / 1000; + mtsdram(DDR0_05, ddr0_05 | DDR0_05_TRP_ENCODE(t_rp_clk) | + DDR0_05_TRAS_MIN_ENCODE(t_ras_clk)); +} + +static void program_ddr0_06(unsigned long dimm_ranks[], + unsigned char const iic0_dimm_addr[], + unsigned long num_dimm_banks, + unsigned long sdram_freq) +{ + unsigned long dimm_num; + unsigned char spd_40; + unsigned long t_wtr_ps = 0; + unsigned long t_rfc_ps = 0; + unsigned long t_wtr_clk; + unsigned long t_rfc_clk; + u32 ddr0_06 = + DDR0_06_WRITEINTERP_ENCODE(0x1) | DDR0_06_TDLL_ENCODE(200); + + /*------------------------------------------------------------------ + * Handle the timing. We need to find the worst case timing of all + * the dimm modules installed. + *-----------------------------------------------------------------*/ + /* loop through all the DIMM slots on the board */ + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + /* If a dimm is installed in a particular slot ... */ + if (dimm_ranks[dimm_num]) { + unsigned long ps; + + /* tWTR */ + ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 37); + t_wtr_ps = max(t_wtr_ps, ps); + /* tRFC */ + ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 42); + spd_40 = spd_read(iic0_dimm_addr[dimm_num], 40); + ps += 256000 * (spd_40 & 0x01); + switch ((spd_40 & 0x0E) >> 1) { + case 0x1: + ps += 250; + break; + case 0x2: + ps += 333; + break; + case 0x3: + ps += 500; + break; + case 0x4: + ps += 667; + break; + case 0x5: + ps += 750; + break; + } + t_rfc_ps = max(t_rfc_ps, ps); + } + } + debug("t_wtr_ps = %d\n", t_wtr_ps); + t_wtr_clk = (MULDIV64(sdram_freq, t_wtr_ps, ONE_BILLION) + 999) / 1000; + debug("t_rfc_ps = %d\n", t_rfc_ps); + t_rfc_clk = (MULDIV64(sdram_freq, t_rfc_ps, ONE_BILLION) + 999) / 1000; + mtsdram(DDR0_06, ddr0_06 | DDR0_06_TWTR_ENCODE(t_wtr_clk) | + DDR0_06_TRFC_ENCODE(t_rfc_clk)); +} + +static void program_ddr0_10(unsigned long dimm_ranks[], unsigned long ranks) +{ + unsigned long csmap; + + if (2 == ranks) { + /* Both chip selects in use */ + csmap = 0x03; + } else { + /* One chip select in use */ + csmap = (1 == dimm_ranks[0]) ? 0x1 : 0x2; + } + mtsdram(DDR0_10, DDR0_10_WRITE_MODEREG_ENCODE(0x0) | + DDR0_10_CS_MAP_ENCODE(csmap) | + DDR0_10_OCD_ADJUST_PUP_CS_0_ENCODE(0)); +} + +static void program_ddr0_11(unsigned long sdram_freq) +{ + unsigned long const t_xsnr_ps = 200000; /* 200 ns */ + unsigned long t_xsnr_clk; + + debug("t_xsnr_ps = %d\n", t_xsnr_ps); + t_xsnr_clk = + (MULDIV64(sdram_freq, t_xsnr_ps, ONE_BILLION) + 999) / 1000; + mtsdram(DDR0_11, DDR0_11_SREFRESH_ENCODE(0) | + DDR0_11_TXSNR_ENCODE(t_xsnr_clk) | DDR0_11_TXSR_ENCODE(200)); +} + +static void program_ddr0_22(unsigned long dimm_ranks[], + unsigned char const iic0_dimm_addr[], + unsigned long num_dimm_banks, unsigned long width) +{ +#if defined(CONFIG_DDR_ECC) + unsigned long dimm_num; + unsigned long ecc_available = width >= 64; + u32 ddr0_22 = DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) | + DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) | + DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS); + + /* loop through all the DIMM slots on the board */ + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + /* If a dimm is installed in a particular slot ... */ + if (dimm_ranks[dimm_num]) { + /* Check for ECC */ + if (0 == (spd_read(iic0_dimm_addr[dimm_num], 11) & + 0x02)) { + ecc_available = FALSE; + } + } + } + if (ecc_available) { + debug("ECC found on all DIMMs present\n"); + mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x3)); + } else { + debug("ECC not found on some or all DIMMs present\n"); + mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x0)); + } +#else + mtsdram(DDR0_22, DDR0_22_CTRL_RAW_ENCODE(0x0) | + DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) | + DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) | + DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS)); +#endif /* defined(CONFIG_DDR_ECC) */ +} + +static void program_ddr0_24(unsigned long ranks) +{ + u32 ddr0_24 = DDR0_24_RTT_PAD_TERMINATION_ENCODE(0x1) | /* 75 ohm */ + DDR0_24_ODT_RD_MAP_CS1_ENCODE(0x0); + + if (2 == ranks) { + /* Both chip selects in use */ + ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x1) | + DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x2); + } else { + /* One chip select in use */ + /* One of the two fields added to ddr0_24 is a "don't care" */ + ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x2) | + DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x1); + } + mtsdram(DDR0_24, ddr0_24); +} + +static void program_ddr0_26(unsigned long sdram_freq) +{ + unsigned long const t_ref_ps = 7800000; /* 7.8 us. refresh */ + /* TODO: check definition of tRAS_MAX */ + unsigned long const t_ras_max_ps = 9 * t_ref_ps; + unsigned long t_ras_max_clk; + unsigned long t_ref_clk; + + /* Round down t_ras_max_clk and t_ref_clk */ + debug("t_ras_max_ps = %d\n", t_ras_max_ps); + t_ras_max_clk = MULDIV64(sdram_freq, t_ras_max_ps, ONE_BILLION) / 1000; + debug("t_ref_ps = %d\n", t_ref_ps); + t_ref_clk = MULDIV64(sdram_freq, t_ref_ps, ONE_BILLION) / 1000; + mtsdram(DDR0_26, DDR0_26_TRAS_MAX_ENCODE(t_ras_max_clk) | + DDR0_26_TREF_ENCODE(t_ref_clk)); +} + +static void program_ddr0_27(unsigned long sdram_freq) +{ + unsigned long const t_init_ps = 200000000; /* 200 us. init */ + unsigned long t_init_clk; + + debug("t_init_ps = %d\n", t_init_ps); + t_init_clk = + (MULDIV64(sdram_freq, t_init_ps, ONE_BILLION) + 999) / 1000; + mtsdram(DDR0_27, DDR0_27_EMRS_DATA_ENCODE(0x0000) | + DDR0_27_TINIT_ENCODE(t_init_clk)); +} + +static void program_ddr0_43(unsigned long dimm_ranks[], + unsigned char const iic0_dimm_addr[], + unsigned long num_dimm_banks, + unsigned long sdram_freq, + unsigned long cols, unsigned long banks) +{ + unsigned long dimm_num; + unsigned long t_wr_ps = 0; + unsigned long t_wr_clk; + u32 ddr0_43 = DDR0_43_APREBIT_ENCODE(10) | + DDR0_43_COLUMN_SIZE_ENCODE(12 - cols) | + DDR0_43_EIGHT_BANK_MODE_ENCODE(8 == banks ? 1 : 0); + + /*------------------------------------------------------------------ + * Handle the timing. We need to find the worst case timing of all + * the dimm modules installed. + *-----------------------------------------------------------------*/ + /* loop through all the DIMM slots on the board */ + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + /* If a dimm is installed in a particular slot ... */ + if (dimm_ranks[dimm_num]) { + unsigned long ps; + + ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 36); + t_wr_ps = max(t_wr_ps, ps); + } + } + debug("t_wr_ps = %d\n", t_wr_ps); + t_wr_clk = (MULDIV64(sdram_freq, t_wr_ps, ONE_BILLION) + 999) / 1000; + mtsdram(DDR0_43, ddr0_43 | DDR0_43_TWR_ENCODE(t_wr_clk)); +} + +static void program_ddr0_44(unsigned long dimm_ranks[], + unsigned char const iic0_dimm_addr[], + unsigned long num_dimm_banks, + unsigned long sdram_freq) +{ + unsigned long dimm_num; + unsigned long t_rcd_ps = 0; + unsigned long t_rcd_clk; + + /*------------------------------------------------------------------ + * Handle the timing. We need to find the worst case timing of all + * the dimm modules installed. + *-----------------------------------------------------------------*/ + /* loop through all the DIMM slots on the board */ + for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { + /* If a dimm is installed in a particular slot ... */ + if (dimm_ranks[dimm_num]) { + unsigned long ps; + + ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 29); + t_rcd_ps = max(t_rcd_ps, ps); + } + } + debug("t_rcd_ps = %d\n", t_rcd_ps); + t_rcd_clk = (MULDIV64(sdram_freq, t_rcd_ps, ONE_BILLION) + 999) / 1000; + mtsdram(DDR0_44, DDR0_44_TRCD_ENCODE(t_rcd_clk)); +} + +/*-----------------------------------------------------------------------------+ + * initdram. Initializes the 440EPx/GPx DDR SDRAM controller. + * Note: This routine runs from flash with a stack set up in the chip's + * sram space. It is important that the routine does not require .sbss, .bss or + * .data sections. It also cannot call routines that require these sections. + *-----------------------------------------------------------------------------*/ +/*----------------------------------------------------------------------------- + * Function: initdram + * Description: Configures SDRAM memory banks for DDR operation. + * Auto Memory Configuration option reads the DDR SDRAM EEPROMs + * via the IIC bus and then configures the DDR SDRAM memory + * banks appropriately. If Auto Memory Configuration is + * not used, it is assumed that no DIMM is plugged + *-----------------------------------------------------------------------------*/ +long int initdram(int board_type) +{ + unsigned char const iic0_dimm_addr[] = SPD_EEPROM_ADDRESS; + unsigned long dimm_ranks[MAXDIMMS]; + unsigned long ranks; + unsigned long rows; + unsigned long banks; + unsigned long cols; + unsigned long width; + unsigned long const sdram_freq = get_bus_freq(0); + unsigned long const num_dimm_banks = sizeof(iic0_dimm_addr); /* on board dimm banks */ + unsigned long cas_latency = 0; /* to quiet initialization warning */ + unsigned long dram_size; + + debug("\nEntering initdram()\n"); + + /*------------------------------------------------------------------ + * Stop the DDR-SDRAM controller. + *-----------------------------------------------------------------*/ + mtsdram(DDR0_02, DDR0_02_START_ENCODE(0)); + + /* + * Make sure I2C controller is initialized + * before continuing. + */ + /* switch to correct I2C bus */ + I2C_SET_BUS(CFG_SPD_BUS_NUM); + i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); + + /*------------------------------------------------------------------ + * Clear out the serial presence detect buffers. + * Perform IIC reads from the dimm. Fill in the spds. + * Check to see if the dimm slots are populated + *-----------------------------------------------------------------*/ + get_spd_info(dimm_ranks, &ranks, iic0_dimm_addr, num_dimm_banks); + + /*------------------------------------------------------------------ + * Check the frequency supported for the dimms plugged. + *-----------------------------------------------------------------*/ + check_frequency(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); + + /*------------------------------------------------------------------ + * Check and get size information. + *-----------------------------------------------------------------*/ + get_dimm_size(dimm_ranks, iic0_dimm_addr, num_dimm_banks, &rows, &banks, + &cols, &width); + + /*------------------------------------------------------------------ + * Check the voltage type for the dimms plugged. + *-----------------------------------------------------------------*/ + check_voltage_type(dimm_ranks, iic0_dimm_addr, num_dimm_banks); + + /*------------------------------------------------------------------ + * Program registers for SDRAM controller. + *-----------------------------------------------------------------*/ + mtsdram(DDR0_00, DDR0_00_DLL_INCREMENT_ENCODE(0x19) | + DDR0_00_DLL_START_POINT_DECODE(0x0A)); + + mtsdram(DDR0_01, DDR0_01_PLB0_DB_CS_LOWER_ENCODE(0x01) | + DDR0_01_PLB0_DB_CS_UPPER_ENCODE(0x00) | + DDR0_01_INT_MASK_ENCODE(0xFF)); + + program_ddr0_03(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq, + rows, &cas_latency); + + program_ddr0_04(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); + + program_ddr0_05(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); + + program_ddr0_06(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); + + /*------------------------------------------------------------------ + * TODO: tFAW not found in SPD. Value of 13 taken from Sequoia + * board SDRAM, but may be overly concervate. + *-----------------------------------------------------------------*/ + mtsdram(DDR0_07, DDR0_07_NO_CMD_INIT_ENCODE(0) | + DDR0_07_TFAW_ENCODE(13) | + DDR0_07_AUTO_REFRESH_MODE_ENCODE(1) | + DDR0_07_AREFRESH_ENCODE(0)); + + mtsdram(DDR0_08, DDR0_08_WRLAT_ENCODE(cas_latency - 1) | + DDR0_08_TCPD_ENCODE(200) | DDR0_08_DQS_N_EN_ENCODE(0) | + DDR0_08_DDRII_ENCODE(1)); + + mtsdram(DDR0_09, DDR0_09_OCD_ADJUST_PDN_CS_0_ENCODE(0x00) | + DDR0_09_RTT_0_ENCODE(0x1) | + DDR0_09_WR_DQS_SHIFT_BYPASS_ENCODE(0x1D) | + DDR0_09_WR_DQS_SHIFT_ENCODE(DQS_OUT_SHIFT - 0x20)); + + program_ddr0_10(dimm_ranks, ranks); + + program_ddr0_11(sdram_freq); + + mtsdram(DDR0_12, DDR0_12_TCKE_ENCODE(3)); + + mtsdram(DDR0_14, DDR0_14_DLL_BYPASS_MODE_ENCODE(0) | + DDR0_14_REDUC_ENCODE(width <= 40 ? 1 : 0) | + DDR0_14_REG_DIMM_ENABLE_ENCODE(0)); + + mtsdram(DDR0_17, DDR0_17_DLL_DQS_DELAY_0_ENCODE(DLL_DQS_DELAY)); + + mtsdram(DDR0_18, DDR0_18_DLL_DQS_DELAY_4_ENCODE(DLL_DQS_DELAY) | + DDR0_18_DLL_DQS_DELAY_3_ENCODE(DLL_DQS_DELAY) | + DDR0_18_DLL_DQS_DELAY_2_ENCODE(DLL_DQS_DELAY) | + DDR0_18_DLL_DQS_DELAY_1_ENCODE(DLL_DQS_DELAY)); + + mtsdram(DDR0_19, DDR0_19_DLL_DQS_DELAY_8_ENCODE(DLL_DQS_DELAY) | + DDR0_19_DLL_DQS_DELAY_7_ENCODE(DLL_DQS_DELAY) | + DDR0_19_DLL_DQS_DELAY_6_ENCODE(DLL_DQS_DELAY) | + DDR0_19_DLL_DQS_DELAY_5_ENCODE(DLL_DQS_DELAY)); + + mtsdram(DDR0_20, DDR0_20_DLL_DQS_BYPASS_3_ENCODE(DLL_DQS_BYPASS) | + DDR0_20_DLL_DQS_BYPASS_2_ENCODE(DLL_DQS_BYPASS) | + DDR0_20_DLL_DQS_BYPASS_1_ENCODE(DLL_DQS_BYPASS) | + DDR0_20_DLL_DQS_BYPASS_0_ENCODE(DLL_DQS_BYPASS)); + + mtsdram(DDR0_21, DDR0_21_DLL_DQS_BYPASS_7_ENCODE(DLL_DQS_BYPASS) | + DDR0_21_DLL_DQS_BYPASS_6_ENCODE(DLL_DQS_BYPASS) | + DDR0_21_DLL_DQS_BYPASS_5_ENCODE(DLL_DQS_BYPASS) | + DDR0_21_DLL_DQS_BYPASS_4_ENCODE(DLL_DQS_BYPASS)); + + program_ddr0_22(dimm_ranks, iic0_dimm_addr, num_dimm_banks, width); + + mtsdram(DDR0_23, DDR0_23_ODT_RD_MAP_CS0_ENCODE(0x0) | + DDR0_23_FWC_ENCODE(0)); + + program_ddr0_24(ranks); + + program_ddr0_26(sdram_freq); + + program_ddr0_27(sdram_freq); + + mtsdram(DDR0_28, DDR0_28_EMRS3_DATA_ENCODE(0x0000) | + DDR0_28_EMRS2_DATA_ENCODE(0x0000)); + + mtsdram(DDR0_31, DDR0_31_XOR_CHECK_BITS_ENCODE(0x0000)); + + mtsdram(DDR0_42, DDR0_42_ADDR_PINS_DECODE(14 - rows) | + DDR0_42_CASLAT_LIN_GATE_ENCODE(2 * cas_latency)); + + program_ddr0_43(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq, + cols, banks); + + program_ddr0_44(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); + + denali_sdram_register_dump(); + + dram_size = (width >= 64) ? 8 : 4; + dram_size *= 1 << cols; + dram_size *= banks; + dram_size *= 1 << rows; + dram_size *= ranks; + debug("dram_size = %lu\n", dram_size); + + /* Start the SDRAM controler */ + mtsdram(DDR0_02, DDR0_02_START_ENCODE(1)); + denali_wait_for_dlllock(); + +#if defined(CONFIG_DDR_DATA_EYE) + /* -----------------------------------------------------------+ + * Perform data eye search if requested. + * ----------------------------------------------------------*/ + program_tlb(0, CFG_SDRAM_BASE, dram_size, TLB_WORD2_I_ENABLE); + denali_core_search_data_eye(); + denali_sdram_register_dump(); + remove_tlb(CFG_SDRAM_BASE, dram_size); +#endif + +#if defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) + program_tlb(0, CFG_SDRAM_BASE, dram_size, 0); + sync(); + eieio(); + /* Zero the memory */ + debug("Zeroing SDRAM..."); + dcbz_area(CFG_SDRAM_BASE, dram_size); + dflush(); + debug("Completed\n"); + sync(); + eieio(); + remove_tlb(CFG_SDRAM_BASE, dram_size); + +#if defined(CONFIG_DDR_ECC) + /* + * If ECC is enabled, clear and enable interrupts + */ + if (is_ecc_enabled()) { + u32 val; + + sync(); + eieio(); + /* Clear error status */ + mfsdram(DDR0_00, val); + mtsdram(DDR0_00, val | DDR0_00_INT_ACK_ALL); + /* Set 'int_mask' parameter to functionnal value */ + mfsdram(DDR0_01, val); + mtsdram(DDR0_01, (val & ~DDR0_01_INT_MASK_MASK) | + DDR0_01_INT_MASK_ALL_OFF); +#if defined(CONFIG_DDR_DATA_EYE) + /* + * Running denali_core_search_data_eye() when ECC is enabled + * causes non-ECC machine checks. This clears them. + */ + print_mcsr(); + mtspr(SPRN_MCSR, mfspr(SPRN_MCSR)); + print_mcsr(); +#endif + sync(); + eieio(); + } +#endif /* defined(CONFIG_DDR_ECC) */ +#endif /* defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) */ + + program_tlb(0, CFG_SDRAM_BASE, dram_size, MY_TLB_WORD2_I_ENABLE); + return dram_size; +} + +void board_add_ram_info(int use_default) +{ + u32 val; + + printf(" (ECC"); + if (!is_ecc_enabled()) { + printf(" not"); + } + printf(" enabled, %d MHz", (2 * get_bus_freq(0)) / 1000000); + + mfsdram(DDR0_03, val); + printf(", CL%d)", DDR0_03_CASLAT_LIN_DECODE(val) >> 1); +} +#endif /* CONFIG_SPD_EEPROM */ |