diff options
Diffstat (limited to 'cpu/mpc86xx/spd_sdram.c')
-rw-r--r-- | cpu/mpc86xx/spd_sdram.c | 1346 |
1 files changed, 0 insertions, 1346 deletions
diff --git a/cpu/mpc86xx/spd_sdram.c b/cpu/mpc86xx/spd_sdram.c deleted file mode 100644 index e26db7c..0000000 --- a/cpu/mpc86xx/spd_sdram.c +++ /dev/null @@ -1,1346 +0,0 @@ -/* - * Copyright 2004 Freescale Semiconductor. - * (C) Copyright 2003 Motorola Inc. - * Xianghua Xiao (X.Xiao@motorola.com) - * - * See file CREDITS for list of people who contributed to this - * project. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License as - * published by the Free Software Foundation; either version 2 of - * the License, or (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, - * MA 02111-1307 USA - */ - -#include <common.h> -#include <asm/processor.h> -#include <i2c.h> -#include <spd.h> -#include <asm/mmu.h> -#include <asm/fsl_law.h> - -#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) -extern void dma_init(void); -extern uint dma_check(void); -extern int dma_xfer(void *dest, uint count, void *src); -#endif - -#ifdef CONFIG_SPD_EEPROM - -#ifndef CFG_READ_SPD -#define CFG_READ_SPD i2c_read -#endif - -/* - * Only one of the following three should be 1; others should be 0 - * By default the cache line interleaving is selected if - * the CONFIG_DDR_INTERLEAVE flag is defined - */ -#define CFG_PAGE_INTERLEAVING 0 -#define CFG_BANK_INTERLEAVING 0 -#define CFG_SUPER_BANK_INTERLEAVING 0 - -/* - * Convert picoseconds into DRAM clock cycles (rounding up if needed). - */ - -static unsigned int -picos_to_clk(unsigned int picos) -{ - /* use unsigned long long to avoid rounding errors */ - const unsigned long long ULL_2e12 = 2000000000000ULL; - unsigned long long clks; - unsigned long long clks_temp; - - if (! picos) - return 0; - - clks = get_bus_freq(0) * (unsigned long long) picos; - clks_temp = clks; - clks = clks / ULL_2e12; - if (clks_temp % ULL_2e12) { - clks++; - } - - if (clks > 0xFFFFFFFFULL) { - clks = 0xFFFFFFFFULL; - } - - return (unsigned int) clks; -} - - -/* - * Calculate the Density of each Physical Rank. - * Returned size is in bytes. - * - * Study these table from Byte 31 of JEDEC SPD Spec. - * - * DDR I DDR II - * Bit Size Size - * --- ----- ------ - * 7 high 512MB 512MB - * 6 256MB 256MB - * 5 128MB 128MB - * 4 64MB 16GB - * 3 32MB 8GB - * 2 16MB 4GB - * 1 2GB 2GB - * 0 low 1GB 1GB - * - * Reorder Table to be linear by stripping the bottom - * 2 or 5 bits off and shifting them up to the top. - */ - -unsigned int -compute_banksize(unsigned int mem_type, unsigned char row_dens) -{ - unsigned int bsize; - - if (mem_type == SPD_MEMTYPE_DDR) { - /* Bottom 2 bits up to the top. */ - bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; - debug("DDR: DDR I rank density = 0x%08x\n", bsize); - } else { - /* Bottom 5 bits up to the top. */ - bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27; - debug("DDR: DDR II rank density = 0x%08x\n", bsize); - } - return bsize; -} - - -/* - * Convert a two-nibble BCD value into a cycle time. - * While the spec calls for nano-seconds, picos are returned. - * - * This implements the tables for bytes 9, 23 and 25 for both - * DDR I and II. No allowance for distinguishing the invalid - * fields absent for DDR I yet present in DDR II is made. - * (That is, cycle times of .25, .33, .66 and .75 ns are - * allowed for both DDR II and I.) - */ - -unsigned int -convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val) -{ - /* - * Table look up the lower nibble, allow DDR I & II. - */ - unsigned int tenths_ps[16] = { - 0, - 100, - 200, - 300, - 400, - 500, - 600, - 700, - 800, - 900, - 250, - 330, - 660, - 750, - 0, /* undefined */ - 0 /* undefined */ - }; - - unsigned int whole_ns = (spd_val & 0xF0) >> 4; - unsigned int tenth_ns = spd_val & 0x0F; - unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns]; - - return ps; -} - - -/* - * Determine Refresh Rate. Ignore self refresh bit on DDR I. - * Table from SPD Spec, Byte 12, converted to picoseconds and - * filled in with "default" normal values. - */ -unsigned int determine_refresh_rate(unsigned int spd_refresh) -{ - unsigned int refresh_time_ns[8] = { - 15625000, /* 0 Normal 1.00x */ - 3900000, /* 1 Reduced .25x */ - 7800000, /* 2 Extended .50x */ - 31300000, /* 3 Extended 2.00x */ - 62500000, /* 4 Extended 4.00x */ - 125000000, /* 5 Extended 8.00x */ - 15625000, /* 6 Normal 1.00x filler */ - 15625000, /* 7 Normal 1.00x filler */ - }; - - return picos_to_clk(refresh_time_ns[spd_refresh & 0x7]); -} - - -long int -spd_init(unsigned char i2c_address, unsigned int ddr_num, - unsigned int dimm_num, unsigned int start_addr) -{ - volatile immap_t *immap = (immap_t *)CFG_IMMR; - volatile ccsr_ddr_t *ddr; - volatile ccsr_gur_t *gur = &immap->im_gur; - spd_eeprom_t spd; - unsigned int n_ranks; - unsigned int rank_density; - unsigned int odt_rd_cfg, odt_wr_cfg, ba_bits; - unsigned int odt_cfg, mode_odt_enable; - unsigned int refresh_clk; -#ifdef MPC86xx_DDR_SDRAM_CLK_CNTL - unsigned char clk_adjust; -#endif - unsigned int dqs_cfg; - unsigned char twr_clk, twtr_clk, twr_auto_clk; - unsigned int tCKmin_ps, tCKmax_ps; - unsigned int max_data_rate; - unsigned int busfreq; - unsigned int memsize; - unsigned char caslat, caslat_ctrl; - unsigned int trfc, trfc_clk, trfc_low, trfc_high; - unsigned int trcd_clk; - unsigned int trtp_clk; - unsigned char cke_min_clk; - unsigned char add_lat; - unsigned char wr_lat; - unsigned char wr_data_delay; - unsigned char four_act; - unsigned char cpo; - unsigned char burst_len; - unsigned int mode_caslat; - unsigned char d_init; - unsigned int tCycle_ps, modfreq; - - if (ddr_num == 1) - ddr = &immap->im_ddr1; - else - ddr = &immap->im_ddr2; - - /* - * Read SPD information. - */ - debug("Performing SPD read at I2C address 0x%02lx\n",i2c_address); - memset((void *)&spd, 0, sizeof(spd)); - CFG_READ_SPD(i2c_address, 0, 1, (uchar *) &spd, sizeof(spd)); - - /* - * Check for supported memory module types. - */ - if (spd.mem_type != SPD_MEMTYPE_DDR && - spd.mem_type != SPD_MEMTYPE_DDR2) { - debug("Warning: Unable to locate DDR I or DDR II module for DIMM %d of DDR controller %d.\n" - " Fundamental memory type is 0x%0x\n", - dimm_num, - ddr_num, - spd.mem_type); - return 0; - } - - debug("\nFound memory of type 0x%02lx ", spd.mem_type); - if (spd.mem_type == SPD_MEMTYPE_DDR) - debug("DDR I\n"); - else - debug("DDR II\n"); - - /* - * These test gloss over DDR I and II differences in interpretation - * of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks - * are not supported on DDR I; and not encoded on DDR II. - * - * Also note that the 8548 controller can support: - * 12 <= nrow <= 16 - * and - * 8 <= ncol <= 11 (still, for DDR) - * 6 <= ncol <= 9 (for FCRAM) - */ - if (spd.nrow_addr < 12 || spd.nrow_addr > 14) { - printf("DDR: Unsupported number of Row Addr lines: %d.\n", - spd.nrow_addr); - return 0; - } - if (spd.ncol_addr < 8 || spd.ncol_addr > 11) { - printf("DDR: Unsupported number of Column Addr lines: %d.\n", - spd.ncol_addr); - return 0; - } - - /* - * Determine the number of physical banks controlled by - * different Chip Select signals. This is not quite the - * same as the number of DIMM modules on the board. Feh. - */ - if (spd.mem_type == SPD_MEMTYPE_DDR) { - n_ranks = spd.nrows; - } else { - n_ranks = (spd.nrows & 0x7) + 1; - } - - debug("DDR: number of ranks = %d\n", n_ranks); - - if (n_ranks > 2) { - printf("DDR: Only 2 chip selects are supported: %d\n", - n_ranks); - return 0; - } - - /* - * Adjust DDR II IO voltage biasing. Rev1 only - */ - if (((get_svr() & 0xf0) == 0x10) && (spd.mem_type == SPD_MEMTYPE_DDR2)) { - gur->ddrioovcr = (0 - | 0x80000000 /* Enable */ - | 0x10000000 /* VSEL to 1.8V */ - ); - } - - /* - * Determine the size of each Rank in bytes. - */ - rank_density = compute_banksize(spd.mem_type, spd.row_dens); - - debug("Start address for this controller is 0x%08lx\n", start_addr); - - /* - * ODT configuration recommendation from DDR Controller Chapter. - */ - odt_rd_cfg = 0; /* Never assert ODT */ - odt_wr_cfg = 0; /* Never assert ODT */ - if (spd.mem_type == SPD_MEMTYPE_DDR2) { - odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */ - } - - ba_bits = 0; - if (spd.nbanks == 0x8) - ba_bits = 1; - -#ifdef CONFIG_DDR_INTERLEAVE - - if (dimm_num != 1) { - printf("For interleaving memory on HPCN, need to use DIMM 1 for DDR Controller %d !\n", ddr_num); - return 0; - } else { - /* - * Since interleaved memory only uses CS0, the - * memory sticks have to be identical in size and quantity - * of ranks. That essentially gives double the size on - * one rank, i.e on CS0 for both controllers put together. - * Confirm this??? - */ - rank_density *= 2; - - /* - * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg - */ - start_addr = 0; - ddr->cs0_bnds = (start_addr >> 8) - | (((start_addr + rank_density - 1) >> 24)); - /* - * Default interleaving mode to cache-line interleaving. - */ - ddr->cs0_config = ( 1 << 31 -#if (CFG_PAGE_INTERLEAVING == 1) - | (PAGE_INTERLEAVING) -#elif (CFG_BANK_INTERLEAVING == 1) - | (BANK_INTERLEAVING) -#elif (CFG_SUPER_BANK_INTERLEAVING == 1) - | (SUPER_BANK_INTERLEAVING) -#else - | (CACHE_LINE_INTERLEAVING) -#endif - | (odt_rd_cfg << 20) - | (odt_wr_cfg << 16) - | (ba_bits << 14) - | (spd.nrow_addr - 12) << 8 - | (spd.ncol_addr - 8) ); - - debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds); - debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config); - - /* - * Adjustment for dual rank memory to get correct memory - * size (return value of this function). - */ - if (n_ranks == 2) { - n_ranks = 1; - rank_density /= 2; - } else { - rank_density /= 2; - } - } -#else /* CONFIG_DDR_INTERLEAVE */ - - if (dimm_num == 1) { - /* - * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg - */ - ddr->cs0_bnds = (start_addr >> 8) - | (((start_addr + rank_density - 1) >> 24)); - - ddr->cs0_config = ( 1 << 31 - | (odt_rd_cfg << 20) - | (odt_wr_cfg << 16) - | (ba_bits << 14) - | (spd.nrow_addr - 12) << 8 - | (spd.ncol_addr - 8) ); - - debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds); - debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config); - - if (n_ranks == 2) { - /* - * Eg: Bounds: 0x1000_0000 to 0x1f00_0000, - * second 256 Meg - */ - ddr->cs1_bnds = (((start_addr + rank_density) >> 8) - | (( start_addr + 2*rank_density - 1) - >> 24)); - ddr->cs1_config = ( 1<<31 - | (odt_rd_cfg << 20) - | (odt_wr_cfg << 16) - | (ba_bits << 14) - | (spd.nrow_addr - 12) << 8 - | (spd.ncol_addr - 8) ); - debug("DDR: cs1_bnds = 0x%08x\n", ddr->cs1_bnds); - debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config); - } - - } else { - /* - * This is the 2nd DIMM slot for this controller - */ - /* - * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg - */ - ddr->cs2_bnds = (start_addr >> 8) - | (((start_addr + rank_density - 1) >> 24)); - - ddr->cs2_config = ( 1 << 31 - | (odt_rd_cfg << 20) - | (odt_wr_cfg << 16) - | (ba_bits << 14) - | (spd.nrow_addr - 12) << 8 - | (spd.ncol_addr - 8) ); - - debug("DDR: cs2_bnds = 0x%08x\n", ddr->cs2_bnds); - debug("DDR: cs2_config = 0x%08x\n", ddr->cs2_config); - - if (n_ranks == 2) { - /* - * Eg: Bounds: 0x1000_0000 to 0x1f00_0000, - * second 256 Meg - */ - ddr->cs3_bnds = (((start_addr + rank_density) >> 8) - | (( start_addr + 2*rank_density - 1) - >> 24)); - ddr->cs3_config = ( 1<<31 - | (odt_rd_cfg << 20) - | (odt_wr_cfg << 16) - | (ba_bits << 14) - | (spd.nrow_addr - 12) << 8 - | (spd.ncol_addr - 8) ); - debug("DDR: cs3_bnds = 0x%08x\n", ddr->cs3_bnds); - debug("DDR: cs3_config = 0x%08x\n", ddr->cs3_config); - } - } -#endif /* CONFIG_DDR_INTERLEAVE */ - - /* - * Find the largest CAS by locating the highest 1 bit - * in the spd.cas_lat field. Translate it to a DDR - * controller field value: - * - * CAS Lat DDR I DDR II Ctrl - * Clocks SPD Bit SPD Bit Value - * ------- ------- ------- ----- - * 1.0 0 0001 - * 1.5 1 0010 - * 2.0 2 2 0011 - * 2.5 3 0100 - * 3.0 4 3 0101 - * 3.5 5 0110 - * 4.0 4 0111 - * 4.5 1000 - * 5.0 5 1001 - */ - caslat = __ilog2(spd.cas_lat); - if ((spd.mem_type == SPD_MEMTYPE_DDR) - && (caslat > 5)) { - printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat); - return 0; - - } else if (spd.mem_type == SPD_MEMTYPE_DDR2 - && (caslat < 2 || caslat > 5)) { - printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n", - spd.cas_lat); - return 0; - } - debug("DDR: caslat SPD bit is %d\n", caslat); - - /* - * Calculate the Maximum Data Rate based on the Minimum Cycle time. - * The SPD clk_cycle field (tCKmin) is measured in tenths of - * nanoseconds and represented as BCD. - */ - tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle); - debug("DDR: tCKmin = %d ps\n", tCKmin_ps); - - /* - * Double-data rate, scaled 1000 to picoseconds, and back down to MHz. - */ - max_data_rate = 2 * 1000 * 1000 / tCKmin_ps; - debug("DDR: Module max data rate = %d Mhz\n", max_data_rate); - - - /* - * Adjust the CAS Latency to allow for bus speeds that - * are slower than the DDR module. - */ - busfreq = get_bus_freq(0) / 1000000; /* MHz */ - tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle3); - modfreq = 2 * 1000 * 1000 / tCycle_ps; - - if ((spd.mem_type == SPD_MEMTYPE_DDR2) && (busfreq < 266)) { - printf("DDR: platform frequency too low for correct DDR2 controller operation\n"); - return 0; - } else if (busfreq < 90) { - printf("DDR: platform frequency too low for correct DDR1 operation\n"); - return 0; - } - - if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 2)))) { - caslat -= 2; - } else { - tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle2); - modfreq = 2 * 1000 * 1000 / tCycle_ps; - if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 1)))) - caslat -= 1; - else if (busfreq > max_data_rate) { - printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n", - busfreq, max_data_rate); - return 0; - } - } - - /* - * Empirically set ~MCAS-to-preamble override for DDR 2. - * Your milage will vary. - */ - cpo = 0; - if (spd.mem_type == SPD_MEMTYPE_DDR2) { - if (busfreq <= 333) { - cpo = 0x7; - } else if (busfreq <= 400) { - cpo = 0x9; - } else { - cpo = 0xa; - } - } - - /* - * Convert caslat clocks to DDR controller value. - * Force caslat_ctrl to be DDR Controller field-sized. - */ - if (spd.mem_type == SPD_MEMTYPE_DDR) { - caslat_ctrl = (caslat + 1) & 0x07; - } else { - caslat_ctrl = (2 * caslat - 1) & 0x0f; - } - - debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n", - caslat, caslat_ctrl); - - /* - * Timing Config 0. - * Avoid writing for DDR I. The new PQ38 DDR controller - * dreams up non-zero default values to be backwards compatible. - */ - if (spd.mem_type == SPD_MEMTYPE_DDR2) { - unsigned char taxpd_clk = 8; /* By the book. */ - unsigned char tmrd_clk = 2; /* By the book. */ - unsigned char act_pd_exit = 2; /* Empirical? */ - unsigned char pre_pd_exit = 6; /* Empirical? */ - - ddr->timing_cfg_0 = (0 - | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */ - | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */ - | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */ - | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */ - ); - debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0); - - } - - - /* - * Some Timing Config 1 values now. - * Sneak Extended Refresh Recovery in here too. - */ - - /* - * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD, - * use conservative value. - * For DDR II, they are bytes 36 and 37, in quarter nanos. - */ - - if (spd.mem_type == SPD_MEMTYPE_DDR) { - twr_clk = 3; /* Clocks */ - twtr_clk = 1; /* Clocks */ - } else { - twr_clk = picos_to_clk(spd.twr * 250); - twtr_clk = picos_to_clk(spd.twtr * 250); - } - - /* - * Calculate Trfc, in picos. - * DDR I: Byte 42 straight up in ns. - * DDR II: Byte 40 and 42 swizzled some, in ns. - */ - if (spd.mem_type == SPD_MEMTYPE_DDR) { - trfc = spd.trfc * 1000; /* up to ps */ - } else { - unsigned int byte40_table_ps[8] = { - 0, - 250, - 330, - 500, - 660, - 750, - 0, - 0 - }; - - trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000 - + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7]; - } - trfc_clk = picos_to_clk(trfc); - - /* - * Trcd, Byte 29, from quarter nanos to ps and clocks. - */ - trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7; - - /* - * Convert trfc_clk to DDR controller fields. DDR I should - * fit in the REFREC field (16-19) of TIMING_CFG_1, but the - * 8548 controller has an extended REFREC field of three bits. - * The controller automatically adds 8 clocks to this value, - * so preadjust it down 8 first before splitting it up. - */ - trfc_low = (trfc_clk - 8) & 0xf; - trfc_high = ((trfc_clk - 8) >> 4) & 0x3; - - /* - * Sneak in some Extended Refresh Recovery. - */ - ddr->timing_cfg_3 = (trfc_high << 16); - debug("DDR: timing_cfg_3 = 0x%08x\n", ddr->timing_cfg_3); - - ddr->timing_cfg_1 = - (0 - | ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */ - | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */ - | (trcd_clk << 20) /* ACTTORW */ - | (caslat_ctrl << 16) /* CASLAT */ - | (trfc_low << 12) /* REFEC */ - | ((twr_clk & 0x07) << 8) /* WRRREC */ - | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */ - | ((twtr_clk & 0x07) << 0) /* WRTORD */ - ); - - debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1); - - - /* - * Timing_Config_2 - * Was: 0x00000800; - */ - - /* - * Additive Latency - * For DDR I, 0. - * For DDR II, with ODT enabled, use "a value" less than ACTTORW, - * which comes from Trcd, and also note that: - * add_lat + caslat must be >= 4 - */ - add_lat = 0; - if (spd.mem_type == SPD_MEMTYPE_DDR2 - && (odt_wr_cfg || odt_rd_cfg) - && (caslat < 4)) { - add_lat = 4 - caslat; - if (add_lat >= trcd_clk) { - add_lat = trcd_clk - 1; - } - } - - /* - * Write Data Delay - * Historically 0x2 == 4/8 clock delay. - * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266. - */ - wr_data_delay = 3; - - /* - * Write Latency - * Read to Precharge - * Minimum CKE Pulse Width. - * Four Activate Window - */ - if (spd.mem_type == SPD_MEMTYPE_DDR) { - /* - * This is a lie. It should really be 1, but if it is - * set to 1, bits overlap into the old controller's - * otherwise unused ACSM field. If we leave it 0, then - * the HW will magically treat it as 1 for DDR 1. Oh Yea. - */ - wr_lat = 0; - - trtp_clk = 2; /* By the book. */ - cke_min_clk = 1; /* By the book. */ - four_act = 1; /* By the book. */ - - } else { - wr_lat = caslat - 1; - - /* Convert SPD value from quarter nanos to picos. */ - trtp_clk = picos_to_clk(spd.trtp * 250); - - cke_min_clk = 3; /* By the book. */ - four_act = picos_to_clk(37500); /* By the book. 1k pages? */ - } - - ddr->timing_cfg_2 = (0 - | ((add_lat & 0x7) << 28) /* ADD_LAT */ - | ((cpo & 0x1f) << 23) /* CPO */ - | ((wr_lat & 0x7) << 19) /* WR_LAT */ - | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */ - | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */ - | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */ - | ((four_act & 0x1f) << 0) /* FOUR_ACT */ - ); - - debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2); - - - /* - * Determine the Mode Register Set. - * - * This is nominally part specific, but it appears to be - * consistent for all DDR I devices, and for all DDR II devices. - * - * caslat must be programmed - * burst length is always 4 - * burst type is sequential - * - * For DDR I: - * operating mode is "normal" - * - * For DDR II: - * other stuff - */ - - mode_caslat = 0; - - /* - * Table lookup from DDR I or II Device Operation Specs. - */ - if (spd.mem_type == SPD_MEMTYPE_DDR) { - if (1 <= caslat && caslat <= 4) { - unsigned char mode_caslat_table[4] = { - 0x5, /* 1.5 clocks */ - 0x2, /* 2.0 clocks */ - 0x6, /* 2.5 clocks */ - 0x3 /* 3.0 clocks */ - }; - mode_caslat = mode_caslat_table[caslat - 1]; - } else { - puts("DDR I: Only CAS Latencies of 1.5, 2.0, " - "2.5 and 3.0 clocks are supported.\n"); - return 0; - } - - } else { - if (2 <= caslat && caslat <= 5) { - mode_caslat = caslat; - } else { - puts("DDR II: Only CAS Latencies of 2.0, 3.0, " - "4.0 and 5.0 clocks are supported.\n"); - return 0; - } - } - - /* - * Encoded Burst Length of 4. - */ - burst_len = 2; /* Fiat. */ - - if (spd.mem_type == SPD_MEMTYPE_DDR) { - twr_auto_clk = 0; /* Historical */ - } else { - /* - * Determine tCK max in picos. Grab tWR and convert to picos. - * Auto-precharge write recovery is: - * WR = roundup(tWR_ns/tCKmax_ns). - * - * Ponder: Is twr_auto_clk different than twr_clk? - */ - tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax); - twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps; - } - - /* - * Mode Reg in bits 16 ~ 31, - * Extended Mode Reg 1 in bits 0 ~ 15. - */ - mode_odt_enable = 0x0; /* Default disabled */ - if (odt_wr_cfg || odt_rd_cfg) { - /* - * Bits 6 and 2 in Extended MRS(1) - * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules. - * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module. - */ - mode_odt_enable = 0x40; /* 150 Ohm */ - } - - ddr->sdram_mode_1 = - (0 - | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */ - | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */ - | (twr_auto_clk << 9) /* Write Recovery Autopre */ - | (mode_caslat << 4) /* caslat */ - | (burst_len << 0) /* Burst length */ - ); - - debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode_1); - - /* - * Clear EMRS2 and EMRS3. - */ - ddr->sdram_mode_2 = 0; - debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2); - - /* - * Determine Refresh Rate. - */ - refresh_clk = determine_refresh_rate(spd.refresh & 0x7); - - /* - * Set BSTOPRE to 0x100 for page mode - * If auto-charge is used, set BSTOPRE = 0 - */ - ddr->sdram_interval = - (0 - | (refresh_clk & 0x3fff) << 16 - | 0x100 - ); - debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval); - - - /* - * Is this an ECC DDR chip? - * But don't mess with it if the DDR controller will init mem. - */ -#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) - if (spd.config == 0x02) { - ddr->err_disable = 0x0000000d; - ddr->err_sbe = 0x00ff0000; - } - debug("DDR: err_disable = 0x%08x\n", ddr->err_disable); - debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe); -#endif - - asm volatile("sync;isync"); - udelay(500); - - /* - * SDRAM Cfg 2 - */ - - /* - * When ODT is enabled, Chap 9 suggests asserting ODT to - * internal IOs only during reads. - */ - odt_cfg = 0; - if (odt_rd_cfg | odt_wr_cfg) { - odt_cfg = 0x2; /* ODT to IOs during reads */ - } - - /* - * Try to use differential DQS with DDR II. - */ - if (spd.mem_type == SPD_MEMTYPE_DDR) { - dqs_cfg = 0; /* No Differential DQS for DDR I */ - } else { - dqs_cfg = 0x1; /* Differential DQS for DDR II */ - } - -#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) - /* - * Use the DDR controller to auto initialize memory. - */ - d_init = 1; - ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE; - debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init); -#else - /* - * Memory will be initialized via DMA, or not at all. - */ - d_init = 0; -#endif - - ddr->sdram_cfg_2 = (0 - | (dqs_cfg << 26) /* Differential DQS */ - | (odt_cfg << 21) /* ODT */ - | (d_init << 4) /* D_INIT auto init DDR */ - ); - - debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2); - - -#ifdef MPC86xx_DDR_SDRAM_CLK_CNTL - /* - * Setup the clock control. - * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1 - * SDRAM_CLK_CNTL[5-7] = Clock Adjust - * 0110 3/4 cycle late - * 0111 7/8 cycle late - */ - if (spd.mem_type == SPD_MEMTYPE_DDR) - clk_adjust = 0x6; - else - clk_adjust = 0x7; - - ddr->sdram_clk_cntl = (0 - | 0x80000000 - | (clk_adjust << 23) - ); - debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl); -#endif - - /* - * Figure out memory size in Megabytes. - */ - debug("# ranks = %d, rank_density = 0x%08lx\n", n_ranks, rank_density); - memsize = n_ranks * rank_density / 0x100000; - return memsize; -} - - -unsigned int enable_ddr(unsigned int ddr_num) -{ - volatile immap_t *immap = (immap_t *)CFG_IMMR; - spd_eeprom_t spd1,spd2; - volatile ccsr_ddr_t *ddr; - unsigned sdram_cfg_1; - unsigned char sdram_type, mem_type, mod_attr; - unsigned char d_init; - unsigned int no_dimm1=0, no_dimm2=0; - - /* Set up pointer to enable the current ddr controller */ - if (ddr_num == 1) - ddr = &immap->im_ddr1; - else - ddr = &immap->im_ddr2; - - /* - * Read both dimm slots and decide whether - * or not to enable this controller. - */ - memset((void *)&spd1, 0, sizeof(spd1)); - memset((void *)&spd2, 0, sizeof(spd2)); - - if (ddr_num == 1) { - CFG_READ_SPD(SPD_EEPROM_ADDRESS1, - 0, 1, (uchar *) &spd1, sizeof(spd1)); -#if defined(SPD_EEPROM_ADDRESS2) - CFG_READ_SPD(SPD_EEPROM_ADDRESS2, - 0, 1, (uchar *) &spd2, sizeof(spd2)); -#endif - } else { -#if defined(SPD_EEPROM_ADDRESS3) - CFG_READ_SPD(SPD_EEPROM_ADDRESS3, - 0, 1, (uchar *) &spd1, sizeof(spd1)); -#endif -#if defined(SPD_EEPROM_ADDRESS4) - CFG_READ_SPD(SPD_EEPROM_ADDRESS4, - 0, 1, (uchar *) &spd2, sizeof(spd2)); -#endif - } - - /* - * Check for supported memory module types. - */ - if (spd1.mem_type != SPD_MEMTYPE_DDR - && spd1.mem_type != SPD_MEMTYPE_DDR2) { - no_dimm1 = 1; - } else { - debug("\nFound memory of type 0x%02lx ",spd1.mem_type ); - if (spd1.mem_type == SPD_MEMTYPE_DDR) - debug("DDR I\n"); - else - debug("DDR II\n"); - } - - if (spd2.mem_type != SPD_MEMTYPE_DDR && - spd2.mem_type != SPD_MEMTYPE_DDR2) { - no_dimm2 = 1; - } else { - debug("\nFound memory of type 0x%02lx ",spd2.mem_type ); - if (spd2.mem_type == SPD_MEMTYPE_DDR) - debug("DDR I\n"); - else - debug("DDR II\n"); - } - -#ifdef CONFIG_DDR_INTERLEAVE - if (no_dimm1) { - printf("For interleaved operation memory modules need to be present in CS0 DIMM slots of both DDR controllers!\n"); - return 0; - } -#endif - - /* - * Memory is not present in DIMM1 and DIMM2 - so do not enable DDRn - */ - if (no_dimm1 && no_dimm2) { - printf("No memory modules found for DDR controller %d!!\n", ddr_num); - return 0; - } else { - -#if defined(CONFIG_DDR_ECC) - unsigned char config; -#endif - mem_type = no_dimm2 ? spd1.mem_type : spd2.mem_type; - - /* - * Figure out the settings for the sdram_cfg register. - * Build up the entire register in 'sdram_cfg' before - * writing since the write into the register will - * actually enable the memory controller; all settings - * must be done before enabling. - * - * sdram_cfg[0] = 1 (ddr sdram logic enable) - * sdram_cfg[1] = 1 (self-refresh-enable) - * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM) - * 010 DDR 1 SDRAM - * 011 DDR 2 SDRAM - */ - sdram_type = (mem_type == SPD_MEMTYPE_DDR) ? 2 : 3; - sdram_cfg_1 = (0 - | (1 << 31) /* Enable */ - | (1 << 30) /* Self refresh */ - | (sdram_type << 24) /* SDRAM type */ - ); - - /* - * sdram_cfg[3] = RD_EN - registered DIMM enable - * A value of 0x26 indicates micron registered - * DIMMS (micron.com) - */ - mod_attr = no_dimm2 ? spd1.mod_attr : spd2.mod_attr; - if (mem_type == SPD_MEMTYPE_DDR && mod_attr == 0x26) { - sdram_cfg_1 |= 0x10000000; /* RD_EN */ - } - -#if defined(CONFIG_DDR_ECC) - - config = no_dimm2 ? spd1.config : spd2.config; - - /* - * If the user wanted ECC (enabled via sdram_cfg[2]) - */ - if (config == 0x02) { - ddr->err_disable = 0x00000000; - asm volatile("sync;isync;"); - ddr->err_sbe = 0x00ff0000; - ddr->err_int_en = 0x0000000d; - sdram_cfg_1 |= 0x20000000; /* ECC_EN */ - } -#endif - - /* - * Set 1T or 2T timing based on 1 or 2 modules - */ - { - if (!(no_dimm1 || no_dimm2)) { - /* - * 2T timing,because both DIMMS are present. - * Enable 2T timing by setting sdram_cfg[16]. - */ - sdram_cfg_1 |= 0x8000; /* 2T_EN */ - } - } - - /* - * 200 painful micro-seconds must elapse between - * the DDR clock setup and the DDR config enable. - */ - udelay(200); - - /* - * Go! - */ - ddr->sdram_cfg_1 = sdram_cfg_1; - - asm volatile("sync;isync"); - udelay(500); - - debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg_1); - - -#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) - d_init = 1; - debug("DDR: memory initializing\n"); - - /* - * Poll until memory is initialized. - * 512 Meg at 400 might hit this 200 times or so. - */ - while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) { - udelay(1000); - } - debug("DDR: memory initialized\n\n"); -#endif - - debug("Enabled DDR Controller %d\n", ddr_num); - return 1; - } -} - - -long int -spd_sdram(void) -{ - int memsize_ddr1_dimm1 = 0; - int memsize_ddr1_dimm2 = 0; - int memsize_ddr1 = 0; - unsigned int law_size_ddr1; -#ifdef CONFIG_DDR_INTERLEAVE - volatile immap_t *immap = (immap_t *)CFG_IMMR; - volatile ccsr_ddr_t *ddr1 = &immap->im_ddr1; -#endif - -#if (CONFIG_NUM_DDR_CONTROLLERS > 1) - int memsize_ddr2_dimm1 = 0; - int memsize_ddr2_dimm2 = 0; - int memsize_ddr2 = 0; - unsigned int law_size_ddr2; -#endif - - unsigned int ddr1_enabled = 0; - unsigned int ddr2_enabled = 0; - int memsize_total = 0; - -#ifdef CONFIG_DDR_INTERLEAVE - unsigned int law_size_interleaved; - volatile ccsr_ddr_t *ddr2 = &immap->im_ddr2; - - memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1, - 1, 1, - (unsigned int)memsize_total * 1024*1024); - memsize_total += memsize_ddr1_dimm1; - - memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3, - 2, 1, - (unsigned int)memsize_total * 1024*1024); - memsize_total += memsize_ddr2_dimm1; - - if (memsize_ddr1_dimm1 != memsize_ddr2_dimm1) { - if (memsize_ddr1_dimm1 < memsize_ddr2_dimm1) - memsize_total -= memsize_ddr1_dimm1; - else - memsize_total -= memsize_ddr2_dimm1; - debug("Total memory available for interleaving 0x%08lx\n", - memsize_total * 1024 * 1024); - debug("Adjusting CS0_BNDS to account for unequal DIMM sizes in interleaved memory\n"); - ddr1->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24; - ddr2->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24; - debug("DDR1: cs0_bnds = 0x%08x\n", ddr1->cs0_bnds); - debug("DDR2: cs0_bnds = 0x%08x\n", ddr2->cs0_bnds); - } - - ddr1_enabled = enable_ddr(1); - ddr2_enabled = enable_ddr(2); - - /* - * Both controllers need to be enabled for interleaving. - */ - if (ddr1_enabled && ddr2_enabled) { - law_size_interleaved = 19 + __ilog2(memsize_total); - - /* - * Set up LAWBAR for DDR 1 space. - */ -#ifdef CONFIG_FSL_LAW - set_next_law(CFG_DDR_SDRAM_BASE, law_size_interleaved, LAW_TRGT_IF_DDR_INTRLV); -#endif - debug("Interleaved memory size is 0x%08lx\n", memsize_total); - -#if (CFG_PAGE_INTERLEAVING == 1) - printf("Page "); -#elif (CFG_BANK_INTERLEAVING == 1) - printf("Bank "); -#elif (CFG_SUPER_BANK_INTERLEAVING == 1) - printf("Super-bank "); -#else - printf("Cache-line "); -#endif - printf("Interleaved"); - return memsize_total * 1024 * 1024; - } else { - printf("Interleaved memory not enabled - check CS0 DIMM slots for both controllers.\n"); - return 0; - } - -#else - /* - * Call spd_sdram() routine to init ddr1 - pass I2c address, - * controller number, dimm number, and starting address. - */ - memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1, - 1, 1, - (unsigned int)memsize_total * 1024*1024); - memsize_total += memsize_ddr1_dimm1; - -#if defined(SPD_EEPROM_ADDRESS2) - memsize_ddr1_dimm2 = spd_init(SPD_EEPROM_ADDRESS2, - 1, 2, - (unsigned int)memsize_total * 1024*1024); -#endif - memsize_total += memsize_ddr1_dimm2; - - /* - * Enable the DDR controller - pass ddr controller number. - */ - ddr1_enabled = enable_ddr(1); - - /* Keep track of memory to be addressed by DDR1 */ - memsize_ddr1 = memsize_ddr1_dimm1 + memsize_ddr1_dimm2; - - /* - * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord. - */ - if (ddr1_enabled) { - law_size_ddr1 = 19 + __ilog2(memsize_ddr1); - - /* - * Set up LAWBAR for DDR 1 space. - */ -#ifdef CONFIG_FSL_LAW - set_next_law(CFG_DDR_SDRAM_BASE, law_size_ddr1, LAW_TRGT_IF_DDR_1); -#endif - } - -#if (CONFIG_NUM_DDR_CONTROLLERS > 1) - memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3, - 2, 1, - (unsigned int)memsize_total * 1024*1024); - memsize_total += memsize_ddr2_dimm1; - - memsize_ddr2_dimm2 = spd_init(SPD_EEPROM_ADDRESS4, - 2, 2, - (unsigned int)memsize_total * 1024*1024); - memsize_total += memsize_ddr2_dimm2; - - ddr2_enabled = enable_ddr(2); - - /* Keep track of memory to be addressed by DDR2 */ - memsize_ddr2 = memsize_ddr2_dimm1 + memsize_ddr2_dimm2; - - if (ddr2_enabled) { - law_size_ddr2 = 19 + __ilog2(memsize_ddr2); - - /* - * Set up LAWBAR for DDR 2 space. - */ -#ifdef CONFIG_FSL_LAW - set_next_law( - (ddr1_enabled ? (memsize_ddr1 * 1024 * 1024) : CFG_DDR_SDRAM_BASE), - law_size_ddr2, LAW_TRGT_IF_DDR_2); -#endif - } - - debug("\nMemory size of DDR2 = 0x%08lx\n", memsize_ddr2); - -#endif /* CONFIG_NUM_DDR_CONTROLLERS > 1 */ - - debug("\nMemory size of DDR1 = 0x%08lx\n", memsize_ddr1); - - /* - * If neither DDR controller is enabled return 0. - */ - if (!ddr1_enabled && !ddr2_enabled) - return 0; - - printf("Non-interleaved"); - return memsize_total * 1024 * 1024; - -#endif /* CONFIG_DDR_INTERLEAVE */ -} - - -#endif /* CONFIG_SPD_EEPROM */ - - -#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) - -/* - * Initialize all of memory for ECC, then enable errors. - */ - -void -ddr_enable_ecc(unsigned int dram_size) -{ - uint *p = 0; - uint i = 0; - volatile immap_t *immap = (immap_t *)CFG_IMMR; - volatile ccsr_ddr_t *ddr1= &immap->im_ddr1; - - dma_init(); - - for (*p = 0; p < (uint *)(8 * 1024); p++) { - if (((unsigned int)p & 0x1f) == 0) { - ppcDcbz((unsigned long) p); - } - *p = (unsigned int)CONFIG_MEM_INIT_VALUE; - if (((unsigned int)p & 0x1c) == 0x1c) { - ppcDcbf((unsigned long) p); - } - } - - dma_xfer((uint *)0x002000, 0x002000, (uint *)0); /* 8K */ - dma_xfer((uint *)0x004000, 0x004000, (uint *)0); /* 16K */ - dma_xfer((uint *)0x008000, 0x008000, (uint *)0); /* 32K */ - dma_xfer((uint *)0x010000, 0x010000, (uint *)0); /* 64K */ - dma_xfer((uint *)0x020000, 0x020000, (uint *)0); /* 128k */ - dma_xfer((uint *)0x040000, 0x040000, (uint *)0); /* 256k */ - dma_xfer((uint *)0x080000, 0x080000, (uint *)0); /* 512k */ - dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */ - dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */ - dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */ - - for (i = 1; i < dram_size / 0x800000; i++) { - dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0); - } - - /* - * Enable errors for ECC. - */ - debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable); - ddr1->err_disable = 0x00000000; - asm volatile("sync;isync"); - debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable); -} - -#endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */ |