diff options
Diffstat (limited to 'cpu/mpc86xx/spd_sdram.c')
-rw-r--r-- | cpu/mpc86xx/spd_sdram.c | 1324 |
1 files changed, 1324 insertions, 0 deletions
diff --git a/cpu/mpc86xx/spd_sdram.c b/cpu/mpc86xx/spd_sdram.c new file mode 100644 index 0000000..97bbf43 --- /dev/null +++ b/cpu/mpc86xx/spd_sdram.c @@ -0,0 +1,1324 @@ +/* + * Copyright 2004 Freescale Semiconductor. + * (C) Copyright 2003 Motorola Inc. + * Xianghua Xiao (X.Xiao@motorola.com) + * + * See file CREDITS for list of people who contributed to this + * project. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of + * the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, + * MA 02111-1307 USA + */ + +#include <common.h> +#include <asm/processor.h> +#include <i2c.h> +#include <spd.h> +#include <asm/mmu.h> + + +#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) +extern void dma_init(void); +extern uint dma_check(void); +extern int dma_xfer(void *dest, uint count, void *src); +#endif + +#ifdef CONFIG_SPD_EEPROM + +#ifndef CFG_READ_SPD +#define CFG_READ_SPD i2c_read +#endif + +/* + * Only one of the following three should be 1; others should be 0 + * By default the cache line interleaving is selected if + * the CONFIG_DDR_INTERLEAVE flag is defined + */ +#define CFG_PAGE_INTERLEAVING 0 +#define CFG_BANK_INTERLEAVING 0 +#define CFG_SUPER_BANK_INTERLEAVING 0 + +/* + * Convert picoseconds into clock cycles (rounding up if needed). + */ + +int +picos_to_clk(int picos) +{ + int clks; + + clks = picos / (2000000000 / (get_bus_freq(0) / 1000)); + if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) { + clks++; + } + + return clks; +} + + +/* + * Calculate the Density of each Physical Rank. + * Returned size is in bytes. + * + * Study these table from Byte 31 of JEDEC SPD Spec. + * + * DDR I DDR II + * Bit Size Size + * --- ----- ------ + * 7 high 512MB 512MB + * 6 256MB 256MB + * 5 128MB 128MB + * 4 64MB 16GB + * 3 32MB 8GB + * 2 16MB 4GB + * 1 2GB 2GB + * 0 low 1GB 1GB + * + * Reorder Table to be linear by stripping the bottom + * 2 or 5 bits off and shifting them up to the top. + */ + +unsigned int +compute_banksize(unsigned int mem_type, unsigned char row_dens) +{ + unsigned int bsize; + + if (mem_type == SPD_MEMTYPE_DDR) { + /* Bottom 2 bits up to the top. */ + bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; + debug("DDR: DDR I rank density = 0x%08x\n", bsize); + } else { + /* Bottom 5 bits up to the top. */ + bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27; + debug("DDR: DDR II rank density = 0x%08x\n", bsize); + } + return bsize; +} + + +/* + * Convert a two-nibble BCD value into a cycle time. + * While the spec calls for nano-seconds, picos are returned. + * + * This implements the tables for bytes 9, 23 and 25 for both + * DDR I and II. No allowance for distinguishing the invalid + * fields absent for DDR I yet present in DDR II is made. + * (That is, cycle times of .25, .33, .66 and .75 ns are + * allowed for both DDR II and I.) + */ + +unsigned int +convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val) +{ + /* + * Table look up the lower nibble, allow DDR I & II. + */ + unsigned int tenths_ps[16] = { + 0, + 100, + 200, + 300, + 400, + 500, + 600, + 700, + 800, + 900, + 250, + 330, + 660, + 750, + 0, /* undefined */ + 0 /* undefined */ + }; + + unsigned int whole_ns = (spd_val & 0xF0) >> 4; + unsigned int tenth_ns = spd_val & 0x0F; + unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns]; + + return ps; +} + + +/* + * Determine Refresh Rate. Ignore self refresh bit on DDR I. + * Table from SPD Spec, Byte 12, converted to picoseconds and + * filled in with "default" normal values. + */ +unsigned int determine_refresh_rate(unsigned int spd_refresh) +{ + unsigned int refresh_time_ns[8] = { + 15625000, /* 0 Normal 1.00x */ + 3900000, /* 1 Reduced .25x */ + 7800000, /* 2 Extended .50x */ + 31300000, /* 3 Extended 2.00x */ + 62500000, /* 4 Extended 4.00x */ + 125000000, /* 5 Extended 8.00x */ + 15625000, /* 6 Normal 1.00x filler */ + 15625000, /* 7 Normal 1.00x filler */ + }; + + return picos_to_clk(refresh_time_ns[spd_refresh & 0x7]); +} + + +long int +spd_init(unsigned char i2c_address, unsigned int ddr_num, + unsigned int dimm_num, unsigned int start_addr) +{ + volatile immap_t *immap = (immap_t *)CFG_IMMR; + volatile ccsr_ddr_t *ddr; + volatile ccsr_gur_t *gur = &immap->im_gur; + spd_eeprom_t spd; + unsigned int n_ranks; + unsigned int rank_density; + unsigned int odt_rd_cfg, odt_wr_cfg; + unsigned int odt_cfg, mode_odt_enable; + unsigned int refresh_clk; +#ifdef MPC86xx_DDR_SDRAM_CLK_CNTL + unsigned char clk_adjust; +#endif + unsigned int dqs_cfg; + unsigned char twr_clk, twtr_clk, twr_auto_clk; + unsigned int tCKmin_ps, tCKmax_ps; + unsigned int max_data_rate; + unsigned int busfreq; + unsigned sdram_cfg_1; + unsigned int memsize; + unsigned char caslat, caslat_ctrl; + unsigned int trfc, trfc_clk, trfc_low, trfc_high; + unsigned int trcd_clk; + unsigned int trtp_clk; + unsigned char cke_min_clk; + unsigned char add_lat; + unsigned char wr_lat; + unsigned char wr_data_delay; + unsigned char four_act; + unsigned char cpo; + unsigned char burst_len; + unsigned int mode_caslat; + unsigned char sdram_type; + unsigned char d_init; + unsigned int law_size; + volatile ccsr_local_mcm_t *mcm = &immap->im_local_mcm; + unsigned int tCycle_ps, modfreq; + + if (ddr_num == 1) + ddr = &immap->im_ddr1; + else + ddr = &immap->im_ddr2; + + /* + * Read SPD information. + */ + debug("Performing SPD read at I2C address 0x%02lx\n",i2c_address); + memset((void *)&spd, 0, sizeof(spd)); + CFG_READ_SPD(i2c_address, 0, 1, (uchar *) &spd, sizeof(spd)); + + /* + * Check for supported memory module types. + */ + if (spd.mem_type != SPD_MEMTYPE_DDR && + spd.mem_type != SPD_MEMTYPE_DDR2) { + debug("Warning: Unable to locate DDR I or DDR II module for DIMM %d of DDR controller %d.\n" + " Fundamental memory type is 0x%0x\n", + dimm_num, + ddr_num, + spd.mem_type); + return 0; + } + + debug("\nFound memory of type 0x%02lx ", spd.mem_type); + if (spd.mem_type == SPD_MEMTYPE_DDR) + debug("DDR I\n"); + else + debug("DDR II\n"); + + /* + * These test gloss over DDR I and II differences in interpretation + * of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks + * are not supported on DDR I; and not encoded on DDR II. + * + * Also note that the 8548 controller can support: + * 12 <= nrow <= 16 + * and + * 8 <= ncol <= 11 (still, for DDR) + * 6 <= ncol <= 9 (for FCRAM) + */ + if (spd.nrow_addr < 12 || spd.nrow_addr > 14) { + printf("DDR: Unsupported number of Row Addr lines: %d.\n", + spd.nrow_addr); + return 0; + } + if (spd.ncol_addr < 8 || spd.ncol_addr > 11) { + printf("DDR: Unsupported number of Column Addr lines: %d.\n", + spd.ncol_addr); + return 0; + } + + /* + * Determine the number of physical banks controlled by + * different Chip Select signals. This is not quite the + * same as the number of DIMM modules on the board. Feh. + */ + if (spd.mem_type == SPD_MEMTYPE_DDR) { + n_ranks = spd.nrows; + } else { + n_ranks = (spd.nrows & 0x7) + 1; + } + + debug("DDR: number of ranks = %d\n", n_ranks); + + if (n_ranks > 2) { + printf("DDR: Only 2 chip selects are supported: %d\n", + n_ranks); + return 0; + } + + /* + * Adjust DDR II IO voltage biasing. It just makes it work. + */ + if (spd.mem_type == SPD_MEMTYPE_DDR2) { + gur->ddrioovcr = (0 + | 0x80000000 /* Enable */ + | 0x10000000 /* VSEL to 1.8V */ + ); + } + + /* + * Determine the size of each Rank in bytes. + */ + rank_density = compute_banksize(spd.mem_type, spd.row_dens); + + debug("Start address for this controller is 0x%08lx\n", start_addr); + + /* + * ODT configuration recommendation from DDR Controller Chapter. + */ + odt_rd_cfg = 0; /* Never assert ODT */ + odt_wr_cfg = 0; /* Never assert ODT */ + if (spd.mem_type == SPD_MEMTYPE_DDR2) { + odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */ + } + +#ifdef CONFIG_DDR_INTERLEAVE + + if (dimm_num != 1) { + printf("For interleaving memory on HPCN, need to use DIMM 1 for DDR Controller %d !\n", ddr_num); + return 0; + } else { + /* + * Since interleaved memory only uses CS0, the + * memory sticks have to be identical in size and quantity + * of ranks. That essentially gives double the size on + * one rank, i.e on CS0 for both controllers put together. + * Confirm this??? + */ + rank_density *= 2; + + /* + * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg + */ + start_addr = 0; + ddr->cs0_bnds = (start_addr >> 8) + | (((start_addr + rank_density - 1) >> 24)); + /* + * Default interleaving mode to cache-line interleaving. + */ + ddr->cs0_config = ( 1 << 31 +#if (CFG_PAGE_INTERLEAVING == 1) + | (PAGE_INTERLEAVING) +#elif (CFG_BANK_INTERLEAVING == 1) + | (BANK_INTERLEAVING) +#elif (CFG_SUPER_BANK_INTERLEAVING == 1) + | (SUPER_BANK_INTERLEAVING) +#else + | (CACHE_LINE_INTERLEAVING) +#endif + | (odt_rd_cfg << 20) + | (odt_wr_cfg << 16) + | (spd.nrow_addr - 12) << 8 + | (spd.ncol_addr - 8) ); + + debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds); + debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config); + + /* + * Adjustment for dual rank memory to get correct memory + * size (return value of this function). + */ + if (n_ranks == 2) { + n_ranks = 1; + rank_density /= 2; + } else { + rank_density /= 2; + } + } +#else /* CONFIG_DDR_INTERLEAVE */ + + if (dimm_num == 1) { + /* + * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg + */ + ddr->cs0_bnds = (start_addr >> 8) + | (((start_addr + rank_density - 1) >> 24)); + + ddr->cs0_config = ( 1 << 31 + | (odt_rd_cfg << 20) + | (odt_wr_cfg << 16) + | (spd.nrow_addr - 12) << 8 + | (spd.ncol_addr - 8) ); + + debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds); + debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config); + + if (n_ranks == 2) { + /* + * Eg: Bounds: 0x1000_0000 to 0x1f00_0000, + * second 256 Meg + */ + ddr->cs1_bnds = (((start_addr + rank_density) >> 8) + | (( start_addr + 2*rank_density - 1) + >> 24)); + ddr->cs1_config = ( 1<<31 + | (odt_rd_cfg << 20) + | (odt_wr_cfg << 16) + | (spd.nrow_addr - 12) << 8 + | (spd.ncol_addr - 8) ); + debug("DDR: cs1_bnds = 0x%08x\n", ddr->cs1_bnds); + debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config); + } + + } else { + /* + * This is the 2nd DIMM slot for this controller + */ + /* + * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg + */ + ddr->cs2_bnds = (start_addr >> 8) + | (((start_addr + rank_density - 1) >> 24)); + + ddr->cs2_config = ( 1 << 31 + | (odt_rd_cfg << 20) + | (odt_wr_cfg << 16) + | (spd.nrow_addr - 12) << 8 + | (spd.ncol_addr - 8) ); + + debug("DDR: cs2_bnds = 0x%08x\n", ddr->cs2_bnds); + debug("DDR: cs2_config = 0x%08x\n", ddr->cs2_config); + + if (n_ranks == 2) { + /* + * Eg: Bounds: 0x1000_0000 to 0x1f00_0000, + * second 256 Meg + */ + ddr->cs3_bnds = (((start_addr + rank_density) >> 8) + | (( start_addr + 2*rank_density - 1) + >> 24)); + ddr->cs3_config = ( 1<<31 + | (odt_rd_cfg << 20) + | (odt_wr_cfg << 16) + | (spd.nrow_addr - 12) << 8 + | (spd.ncol_addr - 8) ); + debug("DDR: cs3_bnds = 0x%08x\n", ddr->cs3_bnds); + debug("DDR: cs3_config = 0x%08x\n", ddr->cs3_config); + } + } +#endif /* CONFIG_DDR_INTERLEAVE */ + + /* + * Find the largest CAS by locating the highest 1 bit + * in the spd.cas_lat field. Translate it to a DDR + * controller field value: + * + * CAS Lat DDR I DDR II Ctrl + * Clocks SPD Bit SPD Bit Value + * ------- ------- ------- ----- + * 1.0 0 0001 + * 1.5 1 0010 + * 2.0 2 2 0011 + * 2.5 3 0100 + * 3.0 4 3 0101 + * 3.5 5 0110 + * 4.0 4 0111 + * 4.5 1000 + * 5.0 5 1001 + */ + caslat = __ilog2(spd.cas_lat); + if ((spd.mem_type == SPD_MEMTYPE_DDR) + && (caslat > 5)) { + printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat); + return 0; + + } else if (spd.mem_type == SPD_MEMTYPE_DDR2 + && (caslat < 2 || caslat > 5)) { + printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n", + spd.cas_lat); + return 0; + } + debug("DDR: caslat SPD bit is %d\n", caslat); + + /* + * Calculate the Maximum Data Rate based on the Minimum Cycle time. + * The SPD clk_cycle field (tCKmin) is measured in tenths of + * nanoseconds and represented as BCD. + */ + tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle); + debug("DDR: tCKmin = %d ps\n", tCKmin_ps); + + /* + * Double-data rate, scaled 1000 to picoseconds, and back down to MHz. + */ + max_data_rate = 2 * 1000 * 1000 / tCKmin_ps; + debug("DDR: Module max data rate = %d Mhz\n", max_data_rate); + + + /* + * Adjust the CAS Latency to allow for bus speeds that + * are slower than the DDR module. + */ + busfreq = get_bus_freq(0) / 1000000; /* MHz */ + tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle3); + modfreq = 2 * 1000 * 1000 / tCycle_ps; + + if ((spd.mem_type == SPD_MEMTYPE_DDR2) && (busfreq < 266)) { + printf("DDR: platform frequency too low for correct DDR2 controller operation\n"); + return 0; + } else if (busfreq < 90) { + printf("DDR: platform frequency too low for correct DDR1 operation\n"); + return 0; + } + + if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 2)))) { + caslat -= 2; + } else { + tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle2); + modfreq = 2 * 1000 * 1000 / tCycle_ps; + if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 1)))) + caslat -= 1; + else if (busfreq > max_data_rate) { + printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n", + busfreq, max_data_rate); + return 0; + } + } + + /* + * Empirically set ~MCAS-to-preamble override for DDR 2. + * Your milage will vary. + */ + cpo = 0; + if (spd.mem_type == SPD_MEMTYPE_DDR2) { + if (busfreq <= 333) { + cpo = 0x7; + } else if (busfreq <= 400) { + cpo = 0x9; + } else { + cpo = 0xa; + } + } + + /* + * Convert caslat clocks to DDR controller value. + * Force caslat_ctrl to be DDR Controller field-sized. + */ + if (spd.mem_type == SPD_MEMTYPE_DDR) { + caslat_ctrl = (caslat + 1) & 0x07; + } else { + caslat_ctrl = (2 * caslat - 1) & 0x0f; + } + + debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n", + caslat, caslat_ctrl); + + /* + * Timing Config 0. + * Avoid writing for DDR I. The new PQ38 DDR controller + * dreams up non-zero default values to be backwards compatible. + */ + if (spd.mem_type == SPD_MEMTYPE_DDR2) { + unsigned char taxpd_clk = 8; /* By the book. */ + unsigned char tmrd_clk = 2; /* By the book. */ + unsigned char act_pd_exit = 2; /* Empirical? */ + unsigned char pre_pd_exit = 6; /* Empirical? */ + + ddr->timing_cfg_0 = (0 + | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */ + | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */ + | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */ + | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */ + ); + debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0); + + } + + + /* + * Some Timing Config 1 values now. + * Sneak Extended Refresh Recovery in here too. + */ + + /* + * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD, + * use conservative value. + * For DDR II, they are bytes 36 and 37, in quarter nanos. + */ + + if (spd.mem_type == SPD_MEMTYPE_DDR) { + twr_clk = 3; /* Clocks */ + twtr_clk = 1; /* Clocks */ + } else { + twr_clk = picos_to_clk(spd.twr * 250); + twtr_clk = picos_to_clk(spd.twtr * 250); + } + + /* + * Calculate Trfc, in picos. + * DDR I: Byte 42 straight up in ns. + * DDR II: Byte 40 and 42 swizzled some, in ns. + */ + if (spd.mem_type == SPD_MEMTYPE_DDR) { + trfc = spd.trfc * 1000; /* up to ps */ + } else { + unsigned int byte40_table_ps[8] = { + 0, + 250, + 330, + 500, + 660, + 750, + 0, + 0 + }; + + trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000 + + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7]; + } + trfc_clk = picos_to_clk(trfc); + + /* + * Trcd, Byte 29, from quarter nanos to ps and clocks. + */ + trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7; + + /* + * Convert trfc_clk to DDR controller fields. DDR I should + * fit in the REFREC field (16-19) of TIMING_CFG_1, but the + * 8548 controller has an extended REFREC field of three bits. + * The controller automatically adds 8 clocks to this value, + * so preadjust it down 8 first before splitting it up. + */ + trfc_low = (trfc_clk - 8) & 0xf; + trfc_high = ((trfc_clk - 8) >> 4) & 0x3; + + /* + * Sneak in some Extended Refresh Recovery. + */ + ddr->ext_refrec = (trfc_high << 16); + debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec); + + ddr->timing_cfg_1 = + (0 + | ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */ + | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */ + | (trcd_clk << 20) /* ACTTORW */ + | (caslat_ctrl << 16) /* CASLAT */ + | (trfc_low << 12) /* REFEC */ + | ((twr_clk & 0x07) << 8) /* WRRREC */ + | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */ + | ((twtr_clk & 0x07) << 0) /* WRTORD */ + ); + + debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1); + + + /* + * Timing_Config_2 + * Was: 0x00000800; + */ + + /* + * Additive Latency + * For DDR I, 0. + * For DDR II, with ODT enabled, use "a value" less than ACTTORW, + * which comes from Trcd, and also note that: + * add_lat + caslat must be >= 4 + */ + add_lat = 0; + if (spd.mem_type == SPD_MEMTYPE_DDR2 + && (odt_wr_cfg || odt_rd_cfg) + && (caslat < 4)) { + add_lat = 4 - caslat; + if (add_lat >= trcd_clk) { + add_lat = trcd_clk - 1; + } + } + + /* + * Write Data Delay + * Historically 0x2 == 4/8 clock delay. + * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266. + */ + wr_data_delay = 3; + + /* + * Write Latency + * Read to Precharge + * Minimum CKE Pulse Width. + * Four Activate Window + */ + if (spd.mem_type == SPD_MEMTYPE_DDR) { + /* + * This is a lie. It should really be 1, but if it is + * set to 1, bits overlap into the old controller's + * otherwise unused ACSM field. If we leave it 0, then + * the HW will magically treat it as 1 for DDR 1. Oh Yea. + */ + wr_lat = 0; + + trtp_clk = 2; /* By the book. */ + cke_min_clk = 1; /* By the book. */ + four_act = 1; /* By the book. */ + + } else { + wr_lat = caslat - 1; + + /* Convert SPD value from quarter nanos to picos. */ + trtp_clk = picos_to_clk(spd.trtp * 250); + + cke_min_clk = 3; /* By the book. */ + four_act = picos_to_clk(37500); /* By the book. 1k pages? */ + } + + ddr->timing_cfg_2 = (0 + | ((add_lat & 0x7) << 28) /* ADD_LAT */ + | ((cpo & 0x1f) << 23) /* CPO */ + | ((wr_lat & 0x7) << 19) /* WR_LAT */ + | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */ + | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */ + | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */ + | ((four_act & 0x1f) << 0) /* FOUR_ACT */ + ); + + debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2); + + + /* + * Determine the Mode Register Set. + * + * This is nominally part specific, but it appears to be + * consistent for all DDR I devices, and for all DDR II devices. + * + * caslat must be programmed + * burst length is always 4 + * burst type is sequential + * + * For DDR I: + * operating mode is "normal" + * + * For DDR II: + * other stuff + */ + + mode_caslat = 0; + + /* + * Table lookup from DDR I or II Device Operation Specs. + */ + if (spd.mem_type == SPD_MEMTYPE_DDR) { + if (1 <= caslat && caslat <= 4) { + unsigned char mode_caslat_table[4] = { + 0x5, /* 1.5 clocks */ + 0x2, /* 2.0 clocks */ + 0x6, /* 2.5 clocks */ + 0x3 /* 3.0 clocks */ + }; + mode_caslat = mode_caslat_table[caslat - 1]; + } else { + puts("DDR I: Only CAS Latencies of 1.5, 2.0, " + "2.5 and 3.0 clocks are supported.\n"); + return 0; + } + + } else { + if (2 <= caslat && caslat <= 5) { + mode_caslat = caslat; + } else { + puts("DDR II: Only CAS Latencies of 2.0, 3.0, " + "4.0 and 5.0 clocks are supported.\n"); + return 0; + } + } + + /* + * Encoded Burst Length of 4. + */ + burst_len = 2; /* Fiat. */ + + if (spd.mem_type == SPD_MEMTYPE_DDR) { + twr_auto_clk = 0; /* Historical */ + } else { + /* + * Determine tCK max in picos. Grab tWR and convert to picos. + * Auto-precharge write recovery is: + * WR = roundup(tWR_ns/tCKmax_ns). + * + * Ponder: Is twr_auto_clk different than twr_clk? + */ + tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax); + twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps; + } + + /* + * Mode Reg in bits 16 ~ 31, + * Extended Mode Reg 1 in bits 0 ~ 15. + */ + mode_odt_enable = 0x0; /* Default disabled */ + if (odt_wr_cfg || odt_rd_cfg) { + /* + * Bits 6 and 2 in Extended MRS(1) + * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules. + * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module. + */ + mode_odt_enable = 0x40; /* 150 Ohm */ + } + + ddr->sdram_mode_1 = + (0 + | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */ + | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */ + | (twr_auto_clk << 9) /* Write Recovery Autopre */ + | (mode_caslat << 4) /* caslat */ + | (burst_len << 0) /* Burst length */ + ); + + debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode_1); + + /* + * Clear EMRS2 and EMRS3. + */ + ddr->sdram_mode_2 = 0; + debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2); + + /* + * Determine Refresh Rate. + */ + refresh_clk = determine_refresh_rate(spd.refresh & 0x7); + + /* + * Set BSTOPRE to 0x100 for page mode + * If auto-charge is used, set BSTOPRE = 0 + */ + ddr->sdram_interval = + (0 + | (refresh_clk & 0x3fff) << 16 + | 0x100 + ); + debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval); + + + /* + * Is this an ECC DDR chip? + * But don't mess with it if the DDR controller will init mem. + */ +#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) + if (spd.config == 0x02) { + ddr->err_disable = 0x0000000d; + ddr->err_sbe = 0x00ff0000; + } + debug("DDR: err_disable = 0x%08x\n", ddr->err_disable); + debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe); +#endif + + asm volatile("sync;isync"); + udelay(500); + + /* + * SDRAM Cfg 2 + */ + + /* + * When ODT is enabled, Chap 9 suggests asserting ODT to + * internal IOs only during reads. + */ + odt_cfg = 0; + if (odt_rd_cfg | odt_wr_cfg) { + odt_cfg = 0x2; /* ODT to IOs during reads */ + } + + /* + * Try to use differential DQS with DDR II. + */ + if (spd.mem_type == SPD_MEMTYPE_DDR) { + dqs_cfg = 0; /* No Differential DQS for DDR I */ + } else { + dqs_cfg = 0x1; /* Differential DQS for DDR II */ + } + +#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) + /* + * Use the DDR controller to auto initialize memory. + */ + d_init = 1; + ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE; + debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init); +#else + /* + * Memory will be initialized via DMA, or not at all. + */ + d_init = 0; +#endif + + ddr->sdram_cfg_2 = (0 + | (dqs_cfg << 26) /* Differential DQS */ + | (odt_cfg << 21) /* ODT */ + | (d_init << 4) /* D_INIT auto init DDR */ + ); + + debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2); + + +#ifdef MPC86xx_DDR_SDRAM_CLK_CNTL + /* + * Setup the clock control. + * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1 + * SDRAM_CLK_CNTL[5-7] = Clock Adjust + * 0110 3/4 cycle late + * 0111 7/8 cycle late + */ + if (spd.mem_type == SPD_MEMTYPE_DDR) + clk_adjust = 0x6; + else + clk_adjust = 0x7; + + ddr->sdram_clk_cntl = (0 + | 0x80000000 + | (clk_adjust << 23) + ); + debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl); +#endif + + /* + * Figure out memory size in Megabytes. + */ + debug("# ranks = %d, rank_density = 0x%08lx\n", n_ranks, rank_density); + memsize = n_ranks * rank_density / 0x100000; + return memsize; +} + + +unsigned int enable_ddr(unsigned int ddr_num) +{ + volatile immap_t *immap = (immap_t *)CFG_IMMR; + spd_eeprom_t spd1,spd2; + volatile ccsr_ddr_t *ddr; + unsigned sdram_cfg_1; + unsigned char sdram_type, mem_type, config, mod_attr; + unsigned char d_init; + unsigned int no_dimm1=0, no_dimm2=0; + + /* Set up pointer to enable the current ddr controller */ + if (ddr_num == 1) + ddr = &immap->im_ddr1; + else + ddr = &immap->im_ddr2; + + /* + * Read both dimm slots and decide whether + * or not to enable this controller. + */ + memset((void *)&spd1,0,sizeof(spd1)); + memset((void *)&spd2,0,sizeof(spd2)); + + if (ddr_num == 1) { + CFG_READ_SPD(SPD_EEPROM_ADDRESS1, + 0, 1, (uchar *) &spd1, sizeof(spd1)); + CFG_READ_SPD(SPD_EEPROM_ADDRESS2, + 0, 1, (uchar *) &spd2, sizeof(spd2)); + } else { + CFG_READ_SPD(SPD_EEPROM_ADDRESS3, + 0, 1, (uchar *) &spd1, sizeof(spd1)); + CFG_READ_SPD(SPD_EEPROM_ADDRESS4, + 0, 1, (uchar *) &spd2, sizeof(spd2)); + } + + /* + * Check for supported memory module types. + */ + if (spd1.mem_type != SPD_MEMTYPE_DDR + && spd1.mem_type != SPD_MEMTYPE_DDR2) { + no_dimm1 = 1; + } else { + debug("\nFound memory of type 0x%02lx ",spd1.mem_type ); + if (spd1.mem_type == SPD_MEMTYPE_DDR) + debug("DDR I\n"); + else + debug("DDR II\n"); + } + + if (spd2.mem_type != SPD_MEMTYPE_DDR && + spd2.mem_type != SPD_MEMTYPE_DDR2) { + no_dimm2 = 1; + } else { + debug("\nFound memory of type 0x%02lx ",spd2.mem_type ); + if (spd2.mem_type == SPD_MEMTYPE_DDR) + debug("DDR I\n"); + else + debug("DDR II\n"); + } + +#ifdef CONFIG_DDR_INTERLEAVE + if (no_dimm1) { + printf("For interleaved operation memory modules need to be present in CS0 DIMM slots of both DDR controllers!\n"); + return 0; + } +#endif + + /* + * Memory is not present in DIMM1 and DIMM2 - so do not enable DDRn + */ + if (no_dimm1 && no_dimm2) { + printf("No memory modules found for DDR controller %d!!\n", ddr_num); + return 0; + } else { + mem_type = no_dimm2 ? spd1.mem_type : spd2.mem_type; + + /* + * Figure out the settings for the sdram_cfg register. + * Build up the entire register in 'sdram_cfg' before + * writing since the write into the register will + * actually enable the memory controller; all settings + * must be done before enabling. + * + * sdram_cfg[0] = 1 (ddr sdram logic enable) + * sdram_cfg[1] = 1 (self-refresh-enable) + * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM) + * 010 DDR 1 SDRAM + * 011 DDR 2 SDRAM + */ + sdram_type = (mem_type == SPD_MEMTYPE_DDR) ? 2 : 3; + sdram_cfg_1 = (0 + | (1 << 31) /* Enable */ + | (1 << 30) /* Self refresh */ + | (sdram_type << 24) /* SDRAM type */ + ); + + /* + * sdram_cfg[3] = RD_EN - registered DIMM enable + * A value of 0x26 indicates micron registered + * DIMMS (micron.com) + */ + mod_attr = no_dimm2 ? spd1.mod_attr : spd2.mod_attr; + if (mem_type == SPD_MEMTYPE_DDR && mod_attr == 0x26) { + sdram_cfg_1 |= 0x10000000; /* RD_EN */ + } + +#if defined(CONFIG_DDR_ECC) + + config = no_dimm2 ? spd1.config : spd2.config; + + /* + * If the user wanted ECC (enabled via sdram_cfg[2]) + */ + if (config == 0x02) { + ddr->err_disable = 0x00000000; + asm volatile("sync;isync;"); + ddr->err_sbe = 0x00ff0000; + ddr->err_int_en = 0x0000000d; + sdram_cfg_1 |= 0x20000000; /* ECC_EN */ + } +#endif + + /* + * Set 1T or 2T timing based on 1 or 2 modules + */ + { + if (!(no_dimm1 || no_dimm2)) { + /* + * 2T timing,because both DIMMS are present. + * Enable 2T timing by setting sdram_cfg[16]. + */ + sdram_cfg_1 |= 0x8000; /* 2T_EN */ + } + } + + /* + * 200 painful micro-seconds must elapse between + * the DDR clock setup and the DDR config enable. + */ + udelay(200); + + /* + * Go! + */ + ddr->sdram_cfg_1 = sdram_cfg_1; + + asm volatile("sync;isync"); + udelay(500); + + debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg_1); + + +#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) + d_init = 1; + debug("DDR: memory initializing\n"); + + /* + * Poll until memory is initialized. + * 512 Meg at 400 might hit this 200 times or so. + */ + while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) { + udelay(1000); + } + debug("DDR: memory initialized\n\n"); +#endif + + debug("Enabled DDR Controller %d\n", ddr_num); + return 1; + } +} + + +long int +spd_sdram(void) +{ + int memsize_ddr1_dimm1 = 0; + int memsize_ddr1_dimm2 = 0; + int memsize_ddr2_dimm1 = 0; + int memsize_ddr2_dimm2 = 0; + int memsize_total = 0; + int memsize_ddr1 = 0; + int memsize_ddr2 = 0; + unsigned int ddr1_enabled = 0; + unsigned int ddr2_enabled = 0; + unsigned int law_size_ddr1; + unsigned int law_size_ddr2; + volatile immap_t *immap = (immap_t *)CFG_IMMR; + volatile ccsr_ddr_t *ddr1 = &immap->im_ddr1; + volatile ccsr_ddr_t *ddr2 = &immap->im_ddr2; + volatile ccsr_local_mcm_t *mcm = &immap->im_local_mcm; + +#ifdef CONFIG_DDR_INTERLEAVE + unsigned int law_size_interleaved; + + memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1, + 1, 1, + (unsigned int)memsize_total * 1024*1024); + memsize_total += memsize_ddr1_dimm1; + + memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3, + 2, 1, + (unsigned int)memsize_total * 1024*1024); + memsize_total += memsize_ddr2_dimm1; + + if (memsize_ddr1_dimm1 != memsize_ddr2_dimm1) { + if (memsize_ddr1_dimm1 < memsize_ddr2_dimm1) + memsize_total -= memsize_ddr1_dimm1; + else + memsize_total -= memsize_ddr2_dimm1; + debug("Total memory available for interleaving 0x%08lx\n", + memsize_total * 1024 * 1024); + debug("Adjusting CS0_BNDS to account for unequal DIMM sizes in interleaved memory\n"); + ddr1->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24; + ddr2->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24; + debug("DDR1: cs0_bnds = 0x%08x\n", ddr1->cs0_bnds); + debug("DDR2: cs0_bnds = 0x%08x\n", ddr2->cs0_bnds); + } + + ddr1_enabled = enable_ddr(1); + ddr2_enabled = enable_ddr(2); + + /* + * Both controllers need to be enabled for interleaving. + */ + if (ddr1_enabled && ddr2_enabled) { + law_size_interleaved = 19 + __ilog2(memsize_total); + + /* + * Set up LAWBAR for DDR 1 space. + */ + mcm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff); + mcm->lawar1 = (LAWAR_EN + | LAWAR_TRGT_IF_DDR_INTERLEAVED + | (LAWAR_SIZE & law_size_interleaved)); + debug("DDR: LAWBAR1=0x%08x\n", mcm->lawbar1); + debug("DDR: LAWAR1=0x%08x\n", mcm->lawar1); + debug("Interleaved memory size is 0x%08lx\n", memsize_total); + +#ifdef CONFIG_DDR_INTERLEAVE +#if (CFG_PAGE_INTERLEAVING == 1) + printf("Page "); +#elif (CFG_BANK_INTERLEAVING == 1) + printf("Bank "); +#elif (CFG_SUPER_BANK_INTERLEAVING == 1) + printf("Super-bank "); +#else + printf("Cache-line "); +#endif +#endif + printf("Interleaved"); + return memsize_total * 1024 * 1024; + } else { + printf("Interleaved memory not enabled - check CS0 DIMM slots for both controllers.\n"); + return 0; + } + +#else + /* + * Call spd_sdram() routine to init ddr1 - pass I2c address, + * controller number, dimm number, and starting address. + */ + memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1, + 1, 1, + (unsigned int)memsize_total * 1024*1024); + memsize_total += memsize_ddr1_dimm1; + + memsize_ddr1_dimm2 = spd_init(SPD_EEPROM_ADDRESS2, + 1, 2, + (unsigned int)memsize_total * 1024*1024); + memsize_total += memsize_ddr1_dimm2; + + /* + * Enable the DDR controller - pass ddr controller number. + */ + ddr1_enabled = enable_ddr(1); + + /* Keep track of memory to be addressed by DDR1 */ + memsize_ddr1 = memsize_ddr1_dimm1 + memsize_ddr1_dimm2; + + /* + * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord. + */ + if (ddr1_enabled) { + law_size_ddr1 = 19 + __ilog2(memsize_ddr1); + + /* + * Set up LAWBAR for DDR 1 space. + */ + mcm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff); + mcm->lawar1 = (LAWAR_EN + | LAWAR_TRGT_IF_DDR1 + | (LAWAR_SIZE & law_size_ddr1)); + debug("DDR: LAWBAR1=0x%08x\n", mcm->lawbar1); + debug("DDR: LAWAR1=0x%08x\n", mcm->lawar1); + } + +#if (CONFIG_NUM_DDR_CONTROLLERS > 1) + memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3, + 2, 1, + (unsigned int)memsize_total * 1024*1024); + memsize_total += memsize_ddr2_dimm1; + + memsize_ddr2_dimm2 = spd_init(SPD_EEPROM_ADDRESS4, + 2, 2, + (unsigned int)memsize_total * 1024*1024); + memsize_total += memsize_ddr2_dimm2; + + ddr2_enabled = enable_ddr(2); + + /* Keep track of memory to be addressed by DDR2 */ + memsize_ddr2 = memsize_ddr2_dimm1 + memsize_ddr2_dimm2; + + if (ddr2_enabled) { + law_size_ddr2 = 19 + __ilog2(memsize_ddr2); + + /* + * Set up LAWBAR for DDR 2 space. + */ + if (ddr1_enabled) + mcm->lawbar8 = (((memsize_ddr1 * 1024 * 1024) >> 12) + & 0xfffff); + else + mcm->lawbar8 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff); + + mcm->lawar8 = (LAWAR_EN + | LAWAR_TRGT_IF_DDR2 + | (LAWAR_SIZE & law_size_ddr2)); + debug("\nDDR: LAWBAR8=0x%08x\n", mcm->lawbar8); + debug("DDR: LAWAR8=0x%08x\n", mcm->lawar8); + } +#endif /* CONFIG_NUM_DDR_CONTROLLERS > 1 */ + + debug("\nMemory sizes are DDR1 = 0x%08lx, DDR2 = 0x%08lx\n", + memsize_ddr1, memsize_ddr2); + + /* + * If neither DDR controller is enabled return 0. + */ + if (!ddr1_enabled && !ddr2_enabled) + return 0; + + printf("Non-interleaved"); + return memsize_total * 1024 * 1024; + +#endif /* CONFIG_DDR_INTERLEAVE */ +} + + +#endif /* CONFIG_SPD_EEPROM */ + + +#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) + +/* + * Initialize all of memory for ECC, then enable errors. + */ + +void +ddr_enable_ecc(unsigned int dram_size) +{ + uint *p = 0; + uint i = 0; + volatile immap_t *immap = (immap_t *)CFG_IMMR; + volatile ccsr_ddr_t *ddr1= &immap->im_ddr1; + + dma_init(); + + for (*p = 0; p < (uint *)(8 * 1024); p++) { + if (((unsigned int)p & 0x1f) == 0) { + ppcDcbz((unsigned long) p); + } + *p = (unsigned int)CONFIG_MEM_INIT_VALUE; + if (((unsigned int)p & 0x1c) == 0x1c) { + ppcDcbf((unsigned long) p); + } + } + + dma_xfer((uint *)0x002000, 0x002000, (uint *)0); /* 8K */ + dma_xfer((uint *)0x004000, 0x004000, (uint *)0); /* 16K */ + dma_xfer((uint *)0x008000, 0x008000, (uint *)0); /* 32K */ + dma_xfer((uint *)0x010000, 0x010000, (uint *)0); /* 64K */ + dma_xfer((uint *)0x020000, 0x020000, (uint *)0); /* 128k */ + dma_xfer((uint *)0x040000, 0x040000, (uint *)0); /* 256k */ + dma_xfer((uint *)0x080000, 0x080000, (uint *)0); /* 512k */ + dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */ + dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */ + dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */ + + for (i = 1; i < dram_size / 0x800000; i++) { + dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0); + } + + /* + * Enable errors for ECC. + */ + debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable); + ddr1->err_disable = 0x00000000; + asm volatile("sync;isync"); + debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable); +} + +#endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */ |