summaryrefslogtreecommitdiff
path: root/common
diff options
context:
space:
mode:
Diffstat (limited to 'common')
-rw-r--r--common/Makefile2
-rw-r--r--common/cmd_doc.c1644
-rw-r--r--common/cmd_jffs2.c15
-rw-r--r--common/cmd_mtdparts.c10
-rw-r--r--common/cmd_nand.c412
-rw-r--r--common/docecc.c513
-rw-r--r--common/env_nand.c4
7 files changed, 0 insertions, 2600 deletions
diff --git a/common/Makefile b/common/Makefile
index c8a997b..dd6636b 100644
--- a/common/Makefile
+++ b/common/Makefile
@@ -83,7 +83,6 @@ ifdef CONFIG_POST
COBJS-$(CONFIG_CMD_DIAG) += cmd_diag.o
endif
COBJS-$(CONFIG_CMD_DISPLAY) += cmd_display.o
-COBJS-$(CONFIG_CMD_DOC) += cmd_doc.o
COBJS-$(CONFIG_CMD_DTT) += cmd_dtt.o
COBJS-$(CONFIG_ENV_IS_IN_EEPROM) += cmd_eeprom.o
COBJS-$(CONFIG_CMD_EEPROM) += cmd_eeprom.o
@@ -150,7 +149,6 @@ COBJS-$(CONFIG_VFD) += cmd_vfd.o
# others
COBJS-$(CONFIG_DDR_SPD) += ddr_spd.o
-COBJS-$(CONFIG_CMD_DOC) += docecc.o
COBJS-$(CONFIG_HWCONFIG) += hwconfig.o
COBJS-$(CONFIG_CONSOLE_MUX) += iomux.o
COBJS-y += flash.o
diff --git a/common/cmd_doc.c b/common/cmd_doc.c
deleted file mode 100644
index 5cc90f0..0000000
--- a/common/cmd_doc.c
+++ /dev/null
@@ -1,1644 +0,0 @@
-/*
- * Driver for Disk-On-Chip 2000 and Millennium
- * (c) 1999 Machine Vision Holdings, Inc.
- * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
- *
- * $Id: doc2000.c,v 1.46 2001/10/02 15:05:13 dwmw2 Exp $
- */
-
-#include <common.h>
-#include <config.h>
-#include <command.h>
-#include <malloc.h>
-#include <asm/io.h>
-#include <linux/mtd/nftl.h>
-#include <linux/mtd/doc2000.h>
-
-#error This code is broken and will be removed outright in the next release.
-#error If you need diskonchip support, please update the Linux driver in
-#error drivers/mtd/nand/diskonchip.c to work with u-boot.
-
-/*
- * ! BROKEN !
- *
- * TODO: must be implemented and tested by someone with HW
- */
-#if 0
-#ifdef CONFIG_SYS_DOC_SUPPORT_2000
-#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
-#else
-#define DoC_is_2000(doc) (0)
-#endif
-
-#ifdef CONFIG_SYS_DOC_SUPPORT_MILLENNIUM
-#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
-#else
-#define DoC_is_Millennium(doc) (0)
-#endif
-
-/* CONFIG_SYS_DOC_PASSIVE_PROBE:
- In order to ensure that the BIOS checksum is correct at boot time, and
- hence that the onboard BIOS extension gets executed, the DiskOnChip
- goes into reset mode when it is read sequentially: all registers
- return 0xff until the chip is woken up again by writing to the
- DOCControl register.
-
- Unfortunately, this means that the probe for the DiskOnChip is unsafe,
- because one of the first things it does is write to where it thinks
- the DOCControl register should be - which may well be shared memory
- for another device. I've had machines which lock up when this is
- attempted. Hence the possibility to do a passive probe, which will fail
- to detect a chip in reset mode, but is at least guaranteed not to lock
- the machine.
-
- If you have this problem, uncomment the following line:
-#define CONFIG_SYS_DOC_PASSIVE_PROBE
-*/
-
-#undef DOC_DEBUG
-#undef ECC_DEBUG
-#undef PSYCHO_DEBUG
-#undef NFTL_DEBUG
-
-static struct DiskOnChip doc_dev_desc[CONFIG_SYS_MAX_DOC_DEVICE];
-
-/* Current DOC Device */
-static int curr_device = -1;
-
-/* Supported NAND flash devices */
-static struct nand_flash_dev nand_flash_ids[] = {
- {"Toshiba TC5816BDC", NAND_MFR_TOSHIBA, 0x64, 21, 1, 2, 0x1000, 0},
- {"Toshiba TC5832DC", NAND_MFR_TOSHIBA, 0x6b, 22, 0, 2, 0x2000, 0},
- {"Toshiba TH58V128DC", NAND_MFR_TOSHIBA, 0x73, 24, 0, 2, 0x4000, 0},
- {"Toshiba TC58256FT/DC", NAND_MFR_TOSHIBA, 0x75, 25, 0, 2, 0x4000, 0},
- {"Toshiba TH58512FT", NAND_MFR_TOSHIBA, 0x76, 26, 0, 3, 0x4000, 0},
- {"Toshiba TC58V32DC", NAND_MFR_TOSHIBA, 0xe5, 22, 0, 2, 0x2000, 0},
- {"Toshiba TC58V64AFT/DC", NAND_MFR_TOSHIBA, 0xe6, 23, 0, 2, 0x2000, 0},
- {"Toshiba TC58V16BDC", NAND_MFR_TOSHIBA, 0xea, 21, 1, 2, 0x1000, 0},
- {"Toshiba TH58100FT", NAND_MFR_TOSHIBA, 0x79, 27, 0, 3, 0x4000, 0},
- {"Samsung KM29N16000", NAND_MFR_SAMSUNG, 0x64, 21, 1, 2, 0x1000, 0},
- {"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0x6b, 22, 0, 2, 0x2000, 0},
- {"Samsung KM29U128T", NAND_MFR_SAMSUNG, 0x73, 24, 0, 2, 0x4000, 0},
- {"Samsung KM29U256T", NAND_MFR_SAMSUNG, 0x75, 25, 0, 2, 0x4000, 0},
- {"Samsung unknown 64Mb", NAND_MFR_SAMSUNG, 0x76, 26, 0, 3, 0x4000, 0},
- {"Samsung KM29W32000", NAND_MFR_SAMSUNG, 0xe3, 22, 0, 2, 0x2000, 0},
- {"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0xe5, 22, 0, 2, 0x2000, 0},
- {"Samsung KM29U64000", NAND_MFR_SAMSUNG, 0xe6, 23, 0, 2, 0x2000, 0},
- {"Samsung KM29W16000", NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000, 0},
- {"Samsung K9F5616Q0C", NAND_MFR_SAMSUNG, 0x45, 25, 0, 2, 0x4000, 1},
- {"Samsung K9K1216Q0C", NAND_MFR_SAMSUNG, 0x46, 26, 0, 3, 0x4000, 1},
- {"Samsung K9F1G08U0M", NAND_MFR_SAMSUNG, 0xf1, 27, 0, 2, 0, 0},
- {NULL,}
-};
-
-/* ------------------------------------------------------------------------- */
-
-int do_doc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
-{
- int rcode = 0;
-
- switch (argc) {
- case 0:
- case 1:
- cmd_usage(cmdtp);
- return 1;
- case 2:
- if (strcmp(argv[1],"info") == 0) {
- int i;
-
- putc ('\n');
-
- for (i=0; i<CONFIG_SYS_MAX_DOC_DEVICE; ++i) {
- if(doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN)
- continue; /* list only known devices */
- printf ("Device %d: ", i);
- doc_print(&doc_dev_desc[i]);
- }
- return 0;
-
- } else if (strcmp(argv[1],"device") == 0) {
- if ((curr_device < 0) || (curr_device >= CONFIG_SYS_MAX_DOC_DEVICE)) {
- puts ("\nno devices available\n");
- return 1;
- }
- printf ("\nDevice %d: ", curr_device);
- doc_print(&doc_dev_desc[curr_device]);
- return 0;
- }
- cmd_usage(cmdtp);
- return 1;
- case 3:
- if (strcmp(argv[1],"device") == 0) {
- int dev = (int)simple_strtoul(argv[2], NULL, 10);
-
- printf ("\nDevice %d: ", dev);
- if (dev >= CONFIG_SYS_MAX_DOC_DEVICE) {
- puts ("unknown device\n");
- return 1;
- }
- doc_print(&doc_dev_desc[dev]);
- /*doc_print (dev);*/
-
- if (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN) {
- return 1;
- }
-
- curr_device = dev;
-
- puts ("... is now current device\n");
-
- return 0;
- }
-
- cmd_usage(cmdtp);
- return 1;
- default:
- /* at least 4 args */
-
- if (strcmp(argv[1],"read") == 0 || strcmp(argv[1],"write") == 0) {
- ulong addr = simple_strtoul(argv[2], NULL, 16);
- ulong off = simple_strtoul(argv[3], NULL, 16);
- ulong size = simple_strtoul(argv[4], NULL, 16);
- int cmd = (strcmp(argv[1],"read") == 0);
- int ret, total;
-
- printf ("\nDOC %s: device %d offset %ld, size %ld ... ",
- cmd ? "read" : "write", curr_device, off, size);
-
- ret = doc_rw(doc_dev_desc + curr_device, cmd, off, size,
- (size_t *)&total, (u_char*)addr);
-
- printf ("%d bytes %s: %s\n", total, cmd ? "read" : "write",
- ret ? "ERROR" : "OK");
-
- return ret;
- } else if (strcmp(argv[1],"erase") == 0) {
- ulong off = simple_strtoul(argv[2], NULL, 16);
- ulong size = simple_strtoul(argv[3], NULL, 16);
- int ret;
-
- printf ("\nDOC erase: device %d offset %ld, size %ld ... ",
- curr_device, off, size);
-
- ret = doc_erase (doc_dev_desc + curr_device, off, size);
-
- printf("%s\n", ret ? "ERROR" : "OK");
-
- return ret;
- } else {
- cmd_usage(cmdtp);
- rcode = 1;
- }
-
- return rcode;
- }
-}
-U_BOOT_CMD(
- doc, 5, 1, do_doc,
- "Disk-On-Chip sub-system",
- "info - show available DOC devices\n"
- "doc device [dev] - show or set current device\n"
- "doc read addr off size\n"
- "doc write addr off size - read/write `size'"
- " bytes starting at offset `off'\n"
- " to/from memory address `addr'\n"
- "doc erase off size - erase `size' bytes of DOC from offset `off'"
-);
-
-int do_docboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
-{
- char *boot_device = NULL;
- char *ep;
- int dev;
- ulong cnt;
- ulong addr;
- ulong offset = 0;
- image_header_t *hdr;
- int rcode = 0;
-#if defined(CONFIG_FIT)
- const void *fit_hdr = NULL;
-#endif
-
- show_boot_progress (34);
- switch (argc) {
- case 1:
- addr = CONFIG_SYS_LOAD_ADDR;
- boot_device = getenv ("bootdevice");
- break;
- case 2:
- addr = simple_strtoul(argv[1], NULL, 16);
- boot_device = getenv ("bootdevice");
- break;
- case 3:
- addr = simple_strtoul(argv[1], NULL, 16);
- boot_device = argv[2];
- break;
- case 4:
- addr = simple_strtoul(argv[1], NULL, 16);
- boot_device = argv[2];
- offset = simple_strtoul(argv[3], NULL, 16);
- break;
- default:
- cmd_usage(cmdtp);
- show_boot_progress (-35);
- return 1;
- }
-
- show_boot_progress (35);
- if (!boot_device) {
- puts ("\n** No boot device **\n");
- show_boot_progress (-36);
- return 1;
- }
- show_boot_progress (36);
-
- dev = simple_strtoul(boot_device, &ep, 16);
-
- if ((dev >= CONFIG_SYS_MAX_DOC_DEVICE) ||
- (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN)) {
- printf ("\n** Device %d not available\n", dev);
- show_boot_progress (-37);
- return 1;
- }
- show_boot_progress (37);
-
- printf ("\nLoading from device %d: %s at 0x%lX (offset 0x%lX)\n",
- dev, doc_dev_desc[dev].name, doc_dev_desc[dev].physadr,
- offset);
-
- if (doc_rw (doc_dev_desc + dev, 1, offset,
- SECTORSIZE, NULL, (u_char *)addr)) {
- printf ("** Read error on %d\n", dev);
- show_boot_progress (-38);
- return 1;
- }
- show_boot_progress (38);
-
- switch (genimg_get_format ((void *)addr)) {
- case IMAGE_FORMAT_LEGACY:
- hdr = (image_header_t *)addr;
-
- image_print_contents (hdr);
-
- cnt = image_get_image_size (hdr);
- break;
-#if defined(CONFIG_FIT)
- case IMAGE_FORMAT_FIT:
- fit_hdr = (const void *)addr;
- puts ("Fit image detected...\n");
-
- cnt = fit_get_size (fit_hdr);
- break;
-#endif
- default:
- show_boot_progress (-39);
- puts ("** Unknown image type\n");
- return 1;
- }
- show_boot_progress (39);
-
- cnt -= SECTORSIZE;
- if (doc_rw (doc_dev_desc + dev, 1, offset + SECTORSIZE, cnt,
- NULL, (u_char *)(addr+SECTORSIZE))) {
- printf ("** Read error on %d\n", dev);
- show_boot_progress (-40);
- return 1;
- }
- show_boot_progress (40);
-
-#if defined(CONFIG_FIT)
- /* This cannot be done earlier, we need complete FIT image in RAM first */
- if (genimg_get_format ((void *)addr) == IMAGE_FORMAT_FIT) {
- if (!fit_check_format (fit_hdr)) {
- show_boot_progress (-130);
- puts ("** Bad FIT image format\n");
- return 1;
- }
- show_boot_progress (131);
- fit_print_contents (fit_hdr);
- }
-#endif
-
- /* Loading ok, update default load address */
-
- load_addr = addr;
-
- /* Check if we should attempt an auto-start */
- if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
- char *local_args[2];
- extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
-
- local_args[0] = argv[0];
- local_args[1] = NULL;
-
- printf ("Automatic boot of image at addr 0x%08lX ...\n", addr);
-
- do_bootm (cmdtp, 0, 1, local_args);
- rcode = 1;
- }
- return rcode;
-}
-
-U_BOOT_CMD(
- docboot, 4, 1, do_docboot,
- "boot from DOC device",
- "loadAddr dev"
-);
-
-int doc_rw (struct DiskOnChip* this, int cmd,
- loff_t from, size_t len,
- size_t * retlen, u_char * buf)
-{
- int noecc, ret = 0, n, total = 0;
- char eccbuf[6];
-
- while(len) {
- /* The ECC will not be calculated correctly if
- less than 512 is written or read */
- noecc = (from != (from | 0x1ff) + 1) || (len < 0x200);
-
- if (cmd)
- ret = doc_read_ecc(this, from, len,
- (size_t *)&n, (u_char*)buf,
- noecc ? (uchar *)NULL : (uchar *)eccbuf);
- else
- ret = doc_write_ecc(this, from, len,
- (size_t *)&n, (u_char*)buf,
- noecc ? (uchar *)NULL : (uchar *)eccbuf);
-
- if (ret)
- break;
-
- from += n;
- buf += n;
- total += n;
- len -= n;
- }
-
- if (retlen)
- *retlen = total;
-
- return ret;
-}
-
-void doc_print(struct DiskOnChip *this) {
- printf("%s at 0x%lX,\n"
- "\t %d chip%s %s, size %d MB, \n"
- "\t total size %ld MB, sector size %ld kB\n",
- this->name, this->physadr, this->numchips,
- this->numchips>1 ? "s" : "", this->chips_name,
- 1 << (this->chipshift - 20),
- this->totlen >> 20, this->erasesize >> 10);
-
- if (this->nftl_found) {
- struct NFTLrecord *nftl = &this->nftl;
- unsigned long bin_size, flash_size;
-
- bin_size = nftl->nb_boot_blocks * this->erasesize;
- flash_size = (nftl->nb_blocks - nftl->nb_boot_blocks) * this->erasesize;
-
- printf("\t NFTL boot record:\n"
- "\t Binary partition: size %ld%s\n"
- "\t Flash disk partition: size %ld%s, offset 0x%lx\n",
- bin_size > (1 << 20) ? bin_size >> 20 : bin_size >> 10,
- bin_size > (1 << 20) ? "MB" : "kB",
- flash_size > (1 << 20) ? flash_size >> 20 : flash_size >> 10,
- flash_size > (1 << 20) ? "MB" : "kB", bin_size);
- } else {
- puts ("\t No NFTL boot record found.\n");
- }
-}
-
-/* ------------------------------------------------------------------------- */
-
-/* This function is needed to avoid calls of the __ashrdi3 function. */
-static int shr(int val, int shift) {
- return val >> shift;
-}
-
-/* Perform the required delay cycles by reading from the appropriate register */
-static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
-{
- volatile char dummy;
- int i;
-
- for (i = 0; i < cycles; i++) {
- if (DoC_is_Millennium(doc))
- dummy = ReadDOC(doc->virtadr, NOP);
- else
- dummy = ReadDOC(doc->virtadr, DOCStatus);
- }
-
-}
-
-/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
-static int _DoC_WaitReady(struct DiskOnChip *doc)
-{
- unsigned long docptr = doc->virtadr;
- unsigned long start = get_timer(0);
-
-#ifdef PSYCHO_DEBUG
- puts ("_DoC_WaitReady called for out-of-line wait\n");
-#endif
-
- /* Out-of-line routine to wait for chip response */
- while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
-#ifdef CONFIG_SYS_DOC_SHORT_TIMEOUT
- /* it seems that after a certain time the DoC deasserts
- * the CDSN_CTRL_FR_B although it is not ready...
- * using a short timout solve this (timer increments every ms) */
- if (get_timer(start) > 10) {
- return DOC_ETIMEOUT;
- }
-#else
- if (get_timer(start) > 10 * 1000) {
- puts ("_DoC_WaitReady timed out.\n");
- return DOC_ETIMEOUT;
- }
-#endif
- udelay(1);
- }
-
- return 0;
-}
-
-static int DoC_WaitReady(struct DiskOnChip *doc)
-{
- unsigned long docptr = doc->virtadr;
- /* This is inline, to optimise the common case, where it's ready instantly */
- int ret = 0;
-
- /* 4 read form NOP register should be issued in prior to the read from CDSNControl
- see Software Requirement 11.4 item 2. */
- DoC_Delay(doc, 4);
-
- if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
- /* Call the out-of-line routine to wait */
- ret = _DoC_WaitReady(doc);
-
- /* issue 2 read from NOP register after reading from CDSNControl register
- see Software Requirement 11.4 item 2. */
- DoC_Delay(doc, 2);
-
- return ret;
-}
-
-/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
- bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
- required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
-
-static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command,
- unsigned char xtraflags)
-{
- unsigned long docptr = doc->virtadr;
-
- if (DoC_is_2000(doc))
- xtraflags |= CDSN_CTRL_FLASH_IO;
-
- /* Assert the CLE (Command Latch Enable) line to the flash chip */
- WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
- DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
-
- if (DoC_is_Millennium(doc))
- WriteDOC(command, docptr, CDSNSlowIO);
-
- /* Send the command */
- WriteDOC_(command, docptr, doc->ioreg);
-
- /* Lower the CLE line */
- WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
- DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
-
- /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
- return DoC_WaitReady(doc);
-}
-
-/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
- bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
- required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
-
-static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
- unsigned char xtraflags1, unsigned char xtraflags2)
-{
- unsigned long docptr;
- int i;
-
- docptr = doc->virtadr;
-
- if (DoC_is_2000(doc))
- xtraflags1 |= CDSN_CTRL_FLASH_IO;
-
- /* Assert the ALE (Address Latch Enable) line to the flash chip */
- WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
-
- DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
-
- /* Send the address */
- /* Devices with 256-byte page are addressed as:
- Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
- * there is no device on the market with page256
- and more than 24 bits.
- Devices with 512-byte page are addressed as:
- Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
- * 25-31 is sent only if the chip support it.
- * bit 8 changes the read command to be sent
- (NAND_CMD_READ0 or NAND_CMD_READ1).
- */
-
- if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
- if (DoC_is_Millennium(doc))
- WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
- WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
- }
-
- if (doc->page256) {
- ofs = ofs >> 8;
- } else {
- ofs = ofs >> 9;
- }
-
- if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
- for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
- if (DoC_is_Millennium(doc))
- WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
- WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
- }
- }
-
- DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */
-
- /* FIXME: The SlowIO's for millennium could be replaced by
- a single WritePipeTerm here. mf. */
-
- /* Lower the ALE line */
- WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
- CDSNControl);
-
- DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
-
- /* Wait for the chip to respond - Software requirement 11.4.1 */
- return DoC_WaitReady(doc);
-}
-
-/* Read a buffer from DoC, taking care of Millennium oddities */
-static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
-{
- volatile int dummy;
- int modulus = 0xffff;
- unsigned long docptr;
- int i;
-
- docptr = doc->virtadr;
-
- if (len <= 0)
- return;
-
- if (DoC_is_Millennium(doc)) {
- /* Read the data via the internal pipeline through CDSN IO register,
- see Pipelined Read Operations 11.3 */
- dummy = ReadDOC(docptr, ReadPipeInit);
-
- /* Millennium should use the LastDataRead register - Pipeline Reads */
- len--;
-
- /* This is needed for correctly ECC calculation */
- modulus = 0xff;
- }
-
- for (i = 0; i < len; i++)
- buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
-
- if (DoC_is_Millennium(doc)) {
- buf[i] = ReadDOC(docptr, LastDataRead);
- }
-}
-
-/* Write a buffer to DoC, taking care of Millennium oddities */
-static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
-{
- unsigned long docptr;
- int i;
-
- docptr = doc->virtadr;
-
- if (len <= 0)
- return;
-
- for (i = 0; i < len; i++)
- WriteDOC_(buf[i], docptr, doc->ioreg + i);
-
- if (DoC_is_Millennium(doc)) {
- WriteDOC(0x00, docptr, WritePipeTerm);
- }
-}
-
-
-/* DoC_SelectChip: Select a given flash chip within the current floor */
-
-static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
-{
- unsigned long docptr = doc->virtadr;
-
- /* Software requirement 11.4.4 before writing DeviceSelect */
- /* Deassert the CE line to eliminate glitches on the FCE# outputs */
- WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
- DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
-
- /* Select the individual flash chip requested */
- WriteDOC(chip, docptr, CDSNDeviceSelect);
- DoC_Delay(doc, 4);
-
- /* Reassert the CE line */
- WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
- CDSNControl);
- DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
-
- /* Wait for it to be ready */
- return DoC_WaitReady(doc);
-}
-
-/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
-
-static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
-{
- unsigned long docptr = doc->virtadr;
-
- /* Select the floor (bank) of chips required */
- WriteDOC(floor, docptr, FloorSelect);
-
- /* Wait for the chip to be ready */
- return DoC_WaitReady(doc);
-}
-
-/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
-
-static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
-{
- int mfr, id, i;
- volatile char dummy;
-
- /* Page in the required floor/chip */
- DoC_SelectFloor(doc, floor);
- DoC_SelectChip(doc, chip);
-
- /* Reset the chip */
- if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
-#ifdef DOC_DEBUG
- printf("DoC_Command (reset) for %d,%d returned true\n",
- floor, chip);
-#endif
- return 0;
- }
-
-
- /* Read the NAND chip ID: 1. Send ReadID command */
- if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
-#ifdef DOC_DEBUG
- printf("DoC_Command (ReadID) for %d,%d returned true\n",
- floor, chip);
-#endif
- return 0;
- }
-
- /* Read the NAND chip ID: 2. Send address byte zero */
- DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
-
- /* Read the manufacturer and device id codes from the device */
-
- /* CDSN Slow IO register see Software Requirement 11.4 item 5. */
- dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
- DoC_Delay(doc, 2);
- mfr = ReadDOC_(doc->virtadr, doc->ioreg);
-
- /* CDSN Slow IO register see Software Requirement 11.4 item 5. */
- dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
- DoC_Delay(doc, 2);
- id = ReadDOC_(doc->virtadr, doc->ioreg);
-
- /* No response - return failure */
- if (mfr == 0xff || mfr == 0)
- return 0;
-
- /* Check it's the same as the first chip we identified.
- * M-Systems say that any given DiskOnChip device should only
- * contain _one_ type of flash part, although that's not a
- * hardware restriction. */
- if (doc->mfr) {
- if (doc->mfr == mfr && doc->id == id)
- return 1; /* This is another the same the first */
- else
- printf("Flash chip at floor %d, chip %d is different:\n",
- floor, chip);
- }
-
- /* Print and store the manufacturer and ID codes. */
- for (i = 0; nand_flash_ids[i].name != NULL; i++) {
- if (mfr == nand_flash_ids[i].manufacture_id &&
- id == nand_flash_ids[i].model_id) {
-#ifdef DOC_DEBUG
- printf("Flash chip found: Manufacturer ID: %2.2X, "
- "Chip ID: %2.2X (%s)\n", mfr, id,
- nand_flash_ids[i].name);
-#endif
- if (!doc->mfr) {
- doc->mfr = mfr;
- doc->id = id;
- doc->chipshift =
- nand_flash_ids[i].chipshift;
- doc->page256 = nand_flash_ids[i].page256;
- doc->pageadrlen =
- nand_flash_ids[i].pageadrlen;
- doc->erasesize =
- nand_flash_ids[i].erasesize;
- doc->chips_name =
- nand_flash_ids[i].name;
- return 1;
- }
- return 0;
- }
- }
-
-
-#ifdef DOC_DEBUG
- /* We haven't fully identified the chip. Print as much as we know. */
- printf("Unknown flash chip found: %2.2X %2.2X\n",
- id, mfr);
-#endif
-
- return 0;
-}
-
-/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
-
-static void DoC_ScanChips(struct DiskOnChip *this)
-{
- int floor, chip;
- int numchips[MAX_FLOORS];
- int maxchips = MAX_CHIPS;
- int ret = 1;
-
- this->numchips = 0;
- this->mfr = 0;
- this->id = 0;
-
- if (DoC_is_Millennium(this))
- maxchips = MAX_CHIPS_MIL;
-
- /* For each floor, find the number of valid chips it contains */
- for (floor = 0; floor < MAX_FLOORS; floor++) {
- ret = 1;
- numchips[floor] = 0;
- for (chip = 0; chip < maxchips && ret != 0; chip++) {
-
- ret = DoC_IdentChip(this, floor, chip);
- if (ret) {
- numchips[floor]++;
- this->numchips++;
- }
- }
- }
-
- /* If there are none at all that we recognise, bail */
- if (!this->numchips) {
- puts ("No flash chips recognised.\n");
- return;
- }
-
- /* Allocate an array to hold the information for each chip */
- this->chips = malloc(sizeof(struct Nand) * this->numchips);
- if (!this->chips) {
- puts ("No memory for allocating chip info structures\n");
- return;
- }
-
- ret = 0;
-
- /* Fill out the chip array with {floor, chipno} for each
- * detected chip in the device. */
- for (floor = 0; floor < MAX_FLOORS; floor++) {
- for (chip = 0; chip < numchips[floor]; chip++) {
- this->chips[ret].floor = floor;
- this->chips[ret].chip = chip;
- this->chips[ret].curadr = 0;
- this->chips[ret].curmode = 0x50;
- ret++;
- }
- }
-
- /* Calculate and print the total size of the device */
- this->totlen = this->numchips * (1 << this->chipshift);
-
-#ifdef DOC_DEBUG
- printf("%d flash chips found. Total DiskOnChip size: %ld MB\n",
- this->numchips, this->totlen >> 20);
-#endif
-}
-
-/* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
- * various device information of the NFTL partition and Bad Unit Table. Update
- * the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[]
- * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
- */
-static int find_boot_record(struct NFTLrecord *nftl)
-{
- struct nftl_uci1 h1;
- struct nftl_oob oob;
- unsigned int block, boot_record_count = 0;
- int retlen;
- u8 buf[SECTORSIZE];
- struct NFTLMediaHeader *mh = &nftl->MediaHdr;
- unsigned int i;
-
- nftl->MediaUnit = BLOCK_NIL;
- nftl->SpareMediaUnit = BLOCK_NIL;
-
- /* search for a valid boot record */
- for (block = 0; block < nftl->nb_blocks; block++) {
- int ret;
-
- /* Check for ANAND header first. Then can whinge if it's found but later
- checks fail */
- if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize, SECTORSIZE,
- (size_t *)&retlen, buf, NULL))) {
- static int warncount = 5;
-
- if (warncount) {
- printf("Block read at 0x%x failed\n", block * nftl->EraseSize);
- if (!--warncount)
- puts ("Further failures for this block will not be printed\n");
- }
- continue;
- }
-
- if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
- /* ANAND\0 not found. Continue */
-#ifdef PSYCHO_DEBUG
- printf("ANAND header not found at 0x%x\n", block * nftl->EraseSize);
-#endif
- continue;
- }
-
-#ifdef NFTL_DEBUG
- printf("ANAND header found at 0x%x\n", block * nftl->EraseSize);
-#endif
-
- /* To be safer with BIOS, also use erase mark as discriminant */
- if ((ret = doc_read_oob(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8,
- 8, (size_t *)&retlen, (uchar *)&h1) < 0)) {
-#ifdef NFTL_DEBUG
- printf("ANAND header found at 0x%x, but OOB data read failed\n",
- block * nftl->EraseSize);
-#endif
- continue;
- }
-
- /* OK, we like it. */
-
- if (boot_record_count) {
- /* We've already processed one. So we just check if
- this one is the same as the first one we found */
- if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
-#ifdef NFTL_DEBUG
- printf("NFTL Media Headers at 0x%x and 0x%x disagree.\n",
- nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
-#endif
- /* if (debug) Print both side by side */
- return -1;
- }
- if (boot_record_count == 1)
- nftl->SpareMediaUnit = block;
-
- boot_record_count++;
- continue;
- }
-
- /* This is the first we've seen. Copy the media header structure into place */
- memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
-
- /* Do some sanity checks on it */
- if (mh->UnitSizeFactor == 0) {
-#ifdef NFTL_DEBUG
- puts ("UnitSizeFactor 0x00 detected.\n"
- "This violates the spec but we think we know what it means...\n");
-#endif
- } else if (mh->UnitSizeFactor != 0xff) {
- printf ("Sorry, we don't support UnitSizeFactor "
- "of != 1 yet.\n");
- return -1;
- }
-
- nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
- if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
- printf ("NFTL Media Header sanity check failed:\n"
- "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
- nftl->nb_boot_blocks, nftl->nb_blocks);
- return -1;
- }
-
- nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
- if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
- printf ("NFTL Media Header sanity check failed:\n"
- "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
- nftl->numvunits,
- nftl->nb_blocks,
- nftl->nb_boot_blocks);
- return -1;
- }
-
- nftl->nr_sects = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
-
- /* If we're not using the last sectors in the device for some reason,
- reduce nb_blocks accordingly so we forget they're there */
- nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
-
- /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
- for (i = 0; i < nftl->nb_blocks; i++) {
- if ((i & (SECTORSIZE - 1)) == 0) {
- /* read one sector for every SECTORSIZE of blocks */
- if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize +
- i + SECTORSIZE, SECTORSIZE,
- (size_t *)&retlen, buf, (uchar *)&oob)) < 0) {
- puts ("Read of bad sector table failed\n");
- return -1;
- }
- }
- /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
- if (buf[i & (SECTORSIZE - 1)] != 0xff)
- nftl->ReplUnitTable[i] = BLOCK_RESERVED;
- }
-
- nftl->MediaUnit = block;
- boot_record_count++;
-
- } /* foreach (block) */
-
- return boot_record_count?0:-1;
-}
-
-/* This routine is made available to other mtd code via
- * inter_module_register. It must only be accessed through
- * inter_module_get which will bump the use count of this module. The
- * addresses passed back in mtd are valid as long as the use count of
- * this module is non-zero, i.e. between inter_module_get and
- * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
- */
-static void DoC2k_init(struct DiskOnChip* this)
-{
- struct NFTLrecord *nftl;
-
- switch (this->ChipID) {
- case DOC_ChipID_Doc2k:
- this->name = "DiskOnChip 2000";
- this->ioreg = DoC_2k_CDSN_IO;
- break;
- case DOC_ChipID_DocMil:
- this->name = "DiskOnChip Millennium";
- this->ioreg = DoC_Mil_CDSN_IO;
- break;
- }
-
-#ifdef DOC_DEBUG
- printf("%s found at address 0x%lX\n", this->name,
- this->physadr);
-#endif
-
- this->totlen = 0;
- this->numchips = 0;
-
- this->curfloor = -1;
- this->curchip = -1;
-
- /* Ident all the chips present. */
- DoC_ScanChips(this);
- if ((!this->numchips) || (!this->chips))
- return;
-
- nftl = &this->nftl;
-
- /* Get physical parameters */
- nftl->EraseSize = this->erasesize;
- nftl->nb_blocks = this->totlen / this->erasesize;
- nftl->mtd = this;
-
- if (find_boot_record(nftl) != 0)
- this->nftl_found = 0;
- else
- this->nftl_found = 1;
-
- printf("%s @ 0x%lX, %ld MB\n", this->name, this->physadr, this->totlen >> 20);
-}
-
-int doc_read_ecc(struct DiskOnChip* this, loff_t from, size_t len,
- size_t * retlen, u_char * buf, u_char * eccbuf)
-{
- unsigned long docptr;
- struct Nand *mychip;
- unsigned char syndrome[6];
- volatile char dummy;
- int i, len256 = 0, ret=0;
-
- docptr = this->virtadr;
-
- /* Don't allow read past end of device */
- if (from >= this->totlen) {
- puts ("Out of flash\n");
- return DOC_EINVAL;
- }
-
- /* Don't allow a single read to cross a 512-byte block boundary */
- if (from + len > ((from | 0x1ff) + 1))
- len = ((from | 0x1ff) + 1) - from;
-
- /* The ECC will not be calculated correctly if less than 512 is read */
- if (len != 0x200 && eccbuf)
- printf("ECC needs a full sector read (adr: %lx size %lx)\n",
- (long) from, (long) len);
-
-#ifdef PSYCHO_DEBUG
- printf("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len);
-#endif
-
- /* Find the chip which is to be used and select it */
- mychip = &this->chips[shr(from, this->chipshift)];
-
- if (this->curfloor != mychip->floor) {
- DoC_SelectFloor(this, mychip->floor);
- DoC_SelectChip(this, mychip->chip);
- } else if (this->curchip != mychip->chip) {
- DoC_SelectChip(this, mychip->chip);
- }
-
- this->curfloor = mychip->floor;
- this->curchip = mychip->chip;
-
- DoC_Command(this,
- (!this->page256
- && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
- CDSN_CTRL_WP);
- DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
- CDSN_CTRL_ECC_IO);
-
- if (eccbuf) {
- /* Prime the ECC engine */
- WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
- WriteDOC(DOC_ECC_EN, docptr, ECCConf);
- } else {
- /* disable the ECC engine */
- WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
- WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
- }
-
- /* treat crossing 256-byte sector for 2M x 8bits devices */
- if (this->page256 && from + len > (from | 0xff) + 1) {
- len256 = (from | 0xff) + 1 - from;
- DoC_ReadBuf(this, buf, len256);
-
- DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
- DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
- CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
- }
-
- DoC_ReadBuf(this, &buf[len256], len - len256);
-
- /* Let the caller know we completed it */
- *retlen = len;
-
- if (eccbuf) {
- /* Read the ECC data through the DiskOnChip ECC logic */
- /* Note: this will work even with 2M x 8bit devices as */
- /* they have 8 bytes of OOB per 256 page. mf. */
- DoC_ReadBuf(this, eccbuf, 6);
-
- /* Flush the pipeline */
- if (DoC_is_Millennium(this)) {
- dummy = ReadDOC(docptr, ECCConf);
- dummy = ReadDOC(docptr, ECCConf);
- i = ReadDOC(docptr, ECCConf);
- } else {
- dummy = ReadDOC(docptr, 2k_ECCStatus);
- dummy = ReadDOC(docptr, 2k_ECCStatus);
- i = ReadDOC(docptr, 2k_ECCStatus);
- }
-
- /* Check the ECC Status */
- if (i & 0x80) {
- int nb_errors;
- /* There was an ECC error */
-#ifdef ECC_DEBUG
- printf("DiskOnChip ECC Error: Read at %lx\n", (long)from);
-#endif
- /* Read the ECC syndrom through the DiskOnChip ECC logic.
- These syndrome will be all ZERO when there is no error */
- for (i = 0; i < 6; i++) {
- syndrome[i] =
- ReadDOC(docptr, ECCSyndrome0 + i);
- }
- nb_errors = doc_decode_ecc(buf, syndrome);
-
-#ifdef ECC_DEBUG
- printf("Errors corrected: %x\n", nb_errors);
-#endif
- if (nb_errors < 0) {
- /* We return error, but have actually done the read. Not that
- this can be told to user-space, via sys_read(), but at least
- MTD-aware stuff can know about it by checking *retlen */
- printf("ECC Errors at %lx\n", (long)from);
- ret = DOC_EECC;
- }
- }
-
-#ifdef PSYCHO_DEBUG
- printf("ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
- (long)from, eccbuf[0], eccbuf[1], eccbuf[2],
- eccbuf[3], eccbuf[4], eccbuf[5]);
-#endif
-
- /* disable the ECC engine */
- WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
- }
-
- /* according to 11.4.1, we need to wait for the busy line
- * drop if we read to the end of the page. */
- if(0 == ((from + *retlen) & 0x1ff))
- {
- DoC_WaitReady(this);
- }
-
- return ret;
-}
-
-int doc_write_ecc(struct DiskOnChip* this, loff_t to, size_t len,
- size_t * retlen, const u_char * buf,
- u_char * eccbuf)
-{
- int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
- unsigned long docptr;
- volatile char dummy;
- int len256 = 0;
- struct Nand *mychip;
-
- docptr = this->virtadr;
-
- /* Don't allow write past end of device */
- if (to >= this->totlen) {
- puts ("Out of flash\n");
- return DOC_EINVAL;
- }
-
- /* Don't allow a single write to cross a 512-byte block boundary */
- if (to + len > ((to | 0x1ff) + 1))
- len = ((to | 0x1ff) + 1) - to;
-
- /* The ECC will not be calculated correctly if less than 512 is written */
- if (len != 0x200 && eccbuf)
- printf("ECC needs a full sector write (adr: %lx size %lx)\n",
- (long) to, (long) len);
-
- /* printf("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
-
- /* Find the chip which is to be used and select it */
- mychip = &this->chips[shr(to, this->chipshift)];
-
- if (this->curfloor != mychip->floor) {
- DoC_SelectFloor(this, mychip->floor);
- DoC_SelectChip(this, mychip->chip);
- } else if (this->curchip != mychip->chip) {
- DoC_SelectChip(this, mychip->chip);
- }
-
- this->curfloor = mychip->floor;
- this->curchip = mychip->chip;
-
- /* Set device to main plane of flash */
- DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
- DoC_Command(this,
- (!this->page256
- && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
- CDSN_CTRL_WP);
-
- DoC_Command(this, NAND_CMD_SEQIN, 0);
- DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
-
- if (eccbuf) {
- /* Prime the ECC engine */
- WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
- WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
- } else {
- /* disable the ECC engine */
- WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
- WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
- }
-
- /* treat crossing 256-byte sector for 2M x 8bits devices */
- if (this->page256 && to + len > (to | 0xff) + 1) {
- len256 = (to | 0xff) + 1 - to;
- DoC_WriteBuf(this, buf, len256);
-
- DoC_Command(this, NAND_CMD_PAGEPROG, 0);
-
- DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
- /* There's an implicit DoC_WaitReady() in DoC_Command */
-
- dummy = ReadDOC(docptr, CDSNSlowIO);
- DoC_Delay(this, 2);
-
- if (ReadDOC_(docptr, this->ioreg) & 1) {
- puts ("Error programming flash\n");
- /* Error in programming */
- *retlen = 0;
- return DOC_EIO;
- }
-
- DoC_Command(this, NAND_CMD_SEQIN, 0);
- DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
- CDSN_CTRL_ECC_IO);
- }
-
- DoC_WriteBuf(this, &buf[len256], len - len256);
-
- if (eccbuf) {
- WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr,
- CDSNControl);
-
- if (DoC_is_Millennium(this)) {
- WriteDOC(0, docptr, NOP);
- WriteDOC(0, docptr, NOP);
- WriteDOC(0, docptr, NOP);
- } else {
- WriteDOC_(0, docptr, this->ioreg);
- WriteDOC_(0, docptr, this->ioreg);
- WriteDOC_(0, docptr, this->ioreg);
- }
-
- /* Read the ECC data through the DiskOnChip ECC logic */
- for (di = 0; di < 6; di++) {
- eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
- }
-
- /* Reset the ECC engine */
- WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
-
-#ifdef PSYCHO_DEBUG
- printf
- ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
- (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
- eccbuf[4], eccbuf[5]);
-#endif
- }
-
- DoC_Command(this, NAND_CMD_PAGEPROG, 0);
-
- DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
- /* There's an implicit DoC_WaitReady() in DoC_Command */
-
- dummy = ReadDOC(docptr, CDSNSlowIO);
- DoC_Delay(this, 2);
-
- if (ReadDOC_(docptr, this->ioreg) & 1) {
- puts ("Error programming flash\n");
- /* Error in programming */
- *retlen = 0;
- return DOC_EIO;
- }
-
- /* Let the caller know we completed it */
- *retlen = len;
-
- if (eccbuf) {
- unsigned char x[8];
- size_t dummy;
- int ret;
-
- /* Write the ECC data to flash */
- for (di=0; di<6; di++)
- x[di] = eccbuf[di];
-
- x[6]=0x55;
- x[7]=0x55;
-
- ret = doc_write_oob(this, to, 8, &dummy, x);
- return ret;
- }
- return 0;
-}
-
-int doc_read_oob(struct DiskOnChip* this, loff_t ofs, size_t len,
- size_t * retlen, u_char * buf)
-{
- int len256 = 0, ret;
- unsigned long docptr;
- struct Nand *mychip;
-
- docptr = this->virtadr;
-
- mychip = &this->chips[shr(ofs, this->chipshift)];
-
- if (this->curfloor != mychip->floor) {
- DoC_SelectFloor(this, mychip->floor);
- DoC_SelectChip(this, mychip->chip);
- } else if (this->curchip != mychip->chip) {
- DoC_SelectChip(this, mychip->chip);
- }
- this->curfloor = mychip->floor;
- this->curchip = mychip->chip;
-
- /* update address for 2M x 8bit devices. OOB starts on the second */
- /* page to maintain compatibility with doc_read_ecc. */
- if (this->page256) {
- if (!(ofs & 0x8))
- ofs += 0x100;
- else
- ofs -= 0x8;
- }
-
- DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
- DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
-
- /* treat crossing 8-byte OOB data for 2M x 8bit devices */
- /* Note: datasheet says it should automaticaly wrap to the */
- /* next OOB block, but it didn't work here. mf. */
- if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
- len256 = (ofs | 0x7) + 1 - ofs;
- DoC_ReadBuf(this, buf, len256);
-
- DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
- DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
- CDSN_CTRL_WP, 0);
- }
-
- DoC_ReadBuf(this, &buf[len256], len - len256);
-
- *retlen = len;
- /* Reading the full OOB data drops us off of the end of the page,
- * causing the flash device to go into busy mode, so we need
- * to wait until ready 11.4.1 and Toshiba TC58256FT docs */
-
- ret = DoC_WaitReady(this);
-
- return ret;
-
-}
-
-int doc_write_oob(struct DiskOnChip* this, loff_t ofs, size_t len,
- size_t * retlen, const u_char * buf)
-{
- int len256 = 0;
- unsigned long docptr = this->virtadr;
- struct Nand *mychip = &this->chips[shr(ofs, this->chipshift)];
- volatile int dummy;
-
-#ifdef PSYCHO_DEBUG
- printf("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
- (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
- buf[8], buf[9], buf[14],buf[15]);
-#endif
-
- /* Find the chip which is to be used and select it */
- if (this->curfloor != mychip->floor) {
- DoC_SelectFloor(this, mychip->floor);
- DoC_SelectChip(this, mychip->chip);
- } else if (this->curchip != mychip->chip) {
- DoC_SelectChip(this, mychip->chip);
- }
- this->curfloor = mychip->floor;
- this->curchip = mychip->chip;
-
- /* disable the ECC engine */
- WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
- WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
-
- /* Reset the chip, see Software Requirement 11.4 item 1. */
- DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
-
- /* issue the Read2 command to set the pointer to the Spare Data Area. */
- DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
-
- /* update address for 2M x 8bit devices. OOB starts on the second */
- /* page to maintain compatibility with doc_read_ecc. */
- if (this->page256) {
- if (!(ofs & 0x8))
- ofs += 0x100;
- else
- ofs -= 0x8;
- }
-
- /* issue the Serial Data In command to initial the Page Program process */
- DoC_Command(this, NAND_CMD_SEQIN, 0);
- DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
-
- /* treat crossing 8-byte OOB data for 2M x 8bit devices */
- /* Note: datasheet says it should automaticaly wrap to the */
- /* next OOB block, but it didn't work here. mf. */
- if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
- len256 = (ofs | 0x7) + 1 - ofs;
- DoC_WriteBuf(this, buf, len256);
-
- DoC_Command(this, NAND_CMD_PAGEPROG, 0);
- DoC_Command(this, NAND_CMD_STATUS, 0);
- /* DoC_WaitReady() is implicit in DoC_Command */
-
- dummy = ReadDOC(docptr, CDSNSlowIO);
- DoC_Delay(this, 2);
-
- if (ReadDOC_(docptr, this->ioreg) & 1) {
- puts ("Error programming oob data\n");
- /* There was an error */
- *retlen = 0;
- return DOC_EIO;
- }
- DoC_Command(this, NAND_CMD_SEQIN, 0);
- DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
- }
-
- DoC_WriteBuf(this, &buf[len256], len - len256);
-
- DoC_Command(this, NAND_CMD_PAGEPROG, 0);
- DoC_Command(this, NAND_CMD_STATUS, 0);
- /* DoC_WaitReady() is implicit in DoC_Command */
-
- dummy = ReadDOC(docptr, CDSNSlowIO);
- DoC_Delay(this, 2);
-
- if (ReadDOC_(docptr, this->ioreg) & 1) {
- puts ("Error programming oob data\n");
- /* There was an error */
- *retlen = 0;
- return DOC_EIO;
- }
-
- *retlen = len;
- return 0;
-
-}
-
-int doc_erase(struct DiskOnChip* this, loff_t ofs, size_t len)
-{
- volatile int dummy;
- unsigned long docptr;
- struct Nand *mychip;
-
- if (ofs & (this->erasesize-1) || len & (this->erasesize-1)) {
- puts ("Offset and size must be sector aligned\n");
- return DOC_EINVAL;
- }
-
- docptr = this->virtadr;
-
- /* FIXME: Do this in the background. Use timers or schedule_task() */
- while(len) {
- mychip = &this->chips[shr(ofs, this->chipshift)];
-
- if (this->curfloor != mychip->floor) {
- DoC_SelectFloor(this, mychip->floor);
- DoC_SelectChip(this, mychip->chip);
- } else if (this->curchip != mychip->chip) {
- DoC_SelectChip(this, mychip->chip);
- }
- this->curfloor = mychip->floor;
- this->curchip = mychip->chip;
-
- DoC_Command(this, NAND_CMD_ERASE1, 0);
- DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
- DoC_Command(this, NAND_CMD_ERASE2, 0);
-
- DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
-
- dummy = ReadDOC(docptr, CDSNSlowIO);
- DoC_Delay(this, 2);
-
- if (ReadDOC_(docptr, this->ioreg) & 1) {
- printf("Error erasing at 0x%lx\n", (long)ofs);
- /* There was an error */
- goto callback;
- }
- ofs += this->erasesize;
- len -= this->erasesize;
- }
-
- callback:
- return 0;
-}
-
-static inline int doccheck(unsigned long potential, unsigned long physadr)
-{
- unsigned long window=potential;
- unsigned char tmp, ChipID;
-#ifndef DOC_PASSIVE_PROBE
- unsigned char tmp2;
-#endif
-
- /* Routine copied from the Linux DOC driver */
-
-#ifdef CONFIG_SYS_DOCPROBE_55AA
- /* Check for 0x55 0xAA signature at beginning of window,
- this is no longer true once we remove the IPL (for Millennium */
- if (ReadDOC(window, Sig1) != 0x55 || ReadDOC(window, Sig2) != 0xaa)
- return 0;
-#endif /* CONFIG_SYS_DOCPROBE_55AA */
-
-#ifndef DOC_PASSIVE_PROBE
- /* It's not possible to cleanly detect the DiskOnChip - the
- * bootup procedure will put the device into reset mode, and
- * it's not possible to talk to it without actually writing
- * to the DOCControl register. So we store the current contents
- * of the DOCControl register's location, in case we later decide
- * that it's not a DiskOnChip, and want to put it back how we
- * found it.
- */
- tmp2 = ReadDOC(window, DOCControl);
-
- /* Reset the DiskOnChip ASIC */
- WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
- window, DOCControl);
- WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
- window, DOCControl);
-
- /* Enable the DiskOnChip ASIC */
- WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
- window, DOCControl);
- WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
- window, DOCControl);
-#endif /* !DOC_PASSIVE_PROBE */
-
- ChipID = ReadDOC(window, ChipID);
-
- switch (ChipID) {
- case DOC_ChipID_Doc2k:
- /* Check the TOGGLE bit in the ECC register */
- tmp = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT;
- if ((ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT) != tmp)
- return ChipID;
- break;
-
- case DOC_ChipID_DocMil:
- /* Check the TOGGLE bit in the ECC register */
- tmp = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT;
- if ((ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT) != tmp)
- return ChipID;
- break;
-
- default:
-#ifndef CONFIG_SYS_DOCPROBE_55AA
-/*
- * if the ID isn't the DoC2000 or DoCMillenium ID, so we can assume
- * the DOC is missing
- */
-# if 0
- printf("Possible DiskOnChip with unknown ChipID %2.2X found at 0x%lx\n",
- ChipID, physadr);
-# endif
-#endif
-#ifndef DOC_PASSIVE_PROBE
- /* Put back the contents of the DOCControl register, in case it's not
- * actually a DiskOnChip.
- */
- WriteDOC(tmp2, window, DOCControl);
-#endif
- return 0;
- }
-
- puts ("DiskOnChip failed TOGGLE test, dropping.\n");
-
-#ifndef DOC_PASSIVE_PROBE
- /* Put back the contents of the DOCControl register: it's not a DiskOnChip */
- WriteDOC(tmp2, window, DOCControl);
-#endif
- return 0;
-}
-
-void doc_probe(unsigned long physadr)
-{
- struct DiskOnChip *this = NULL;
- int i=0, ChipID;
-
- if ((ChipID = doccheck(physadr, physadr))) {
-
- for (i=0; i<CONFIG_SYS_MAX_DOC_DEVICE; i++) {
- if (doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN) {
- this = doc_dev_desc + i;
- break;
- }
- }
-
- if (!this) {
- puts ("Cannot allocate memory for data structures.\n");
- return;
- }
-
- if (curr_device == -1)
- curr_device = i;
-
- memset((char *)this, 0, sizeof(struct DiskOnChip));
-
- this->virtadr = physadr;
- this->physadr = physadr;
- this->ChipID = ChipID;
-
- DoC2k_init(this);
- } else {
- puts ("No DiskOnChip found\n");
- }
-}
-#else
-void doc_probe(unsigned long physadr) {}
-#endif
diff --git a/common/cmd_jffs2.c b/common/cmd_jffs2.c
index 4db4a83..372ccb2 100644
--- a/common/cmd_jffs2.c
+++ b/common/cmd_jffs2.c
@@ -96,12 +96,8 @@
#include <cramfs/cramfs_fs.h>
#if defined(CONFIG_CMD_NAND)
-#ifdef CONFIG_NAND_LEGACY
-#include <linux/mtd/nand_legacy.h>
-#else /* !CONFIG_NAND_LEGACY */
#include <linux/mtd/nand.h>
#include <nand.h>
-#endif /* !CONFIG_NAND_LEGACY */
#endif
#if defined(CONFIG_CMD_ONENAND)
@@ -187,12 +183,7 @@ static int mtd_device_validate(u8 type, u8 num, u32 *size)
} else if (type == MTD_DEV_TYPE_NAND) {
#if defined(CONFIG_JFFS2_NAND) && defined(CONFIG_CMD_NAND)
if (num < CONFIG_SYS_MAX_NAND_DEVICE) {
-#ifndef CONFIG_NAND_LEGACY
*size = nand_info[num].size;
-#else
- extern struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE];
- *size = nand_dev_desc[num].totlen;
-#endif
return 0;
}
@@ -267,17 +258,11 @@ static int mtd_id_parse(const char *id, const char **ret_id, u8 *dev_type, u8 *d
static inline u32 get_part_sector_size_nand(struct mtdids *id)
{
#if defined(CONFIG_JFFS2_NAND) && defined(CONFIG_CMD_NAND)
-#if defined(CONFIG_NAND_LEGACY)
- extern struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE];
-
- return nand_dev_desc[id->num].erasesize;
-#else
nand_info_t *nand;
nand = &nand_info[id->num];
return nand->erasesize;
-#endif
#else
BUG();
return 0;
diff --git a/common/cmd_mtdparts.c b/common/cmd_mtdparts.c
index 2d1446e..665995d 100644
--- a/common/cmd_mtdparts.c
+++ b/common/cmd_mtdparts.c
@@ -94,12 +94,8 @@
#include <linux/mtd/mtd.h>
#if defined(CONFIG_CMD_NAND)
-#ifdef CONFIG_NAND_LEGACY
-#include <linux/mtd/nand_legacy.h>
-#else /* !CONFIG_NAND_LEGACY */
#include <linux/mtd/nand.h>
#include <nand.h>
-#endif /* !CONFIG_NAND_LEGACY */
#endif
#if defined(CONFIG_CMD_ONENAND)
@@ -462,9 +458,6 @@ static int part_del(struct mtd_device *dev, struct part_info *part)
}
}
-#ifdef CONFIG_NAND_LEGACY
- jffs2_free_cache(part);
-#endif
list_del(&part->link);
free(part);
dev->num_parts--;
@@ -491,9 +484,6 @@ static void part_delall(struct list_head *head)
list_for_each_safe(entry, n, head) {
part_tmp = list_entry(entry, struct part_info, link);
-#ifdef CONFIG_NAND_LEGACY
- jffs2_free_cache(part_tmp);
-#endif
list_del(entry);
free(part_tmp);
}
diff --git a/common/cmd_nand.c b/common/cmd_nand.c
index 2f70521..158a55f 100644
--- a/common/cmd_nand.c
+++ b/common/cmd_nand.c
@@ -11,7 +11,6 @@
#include <common.h>
-#ifndef CONFIG_NAND_LEGACY
/*
*
* New NAND support
@@ -688,414 +687,3 @@ U_BOOT_CMD(nboot, 4, 1, do_nandboot,
"[partition] | [[[loadAddr] dev] offset]"
);
#endif
-
-#else /* CONFIG_NAND_LEGACY */
-/*
- *
- * Legacy NAND support - to be phased out
- *
- */
-#include <command.h>
-#include <malloc.h>
-#include <asm/io.h>
-#include <watchdog.h>
-
-#ifdef CONFIG_show_boot_progress
-# include <status_led.h>
-# define show_boot_progress(arg) show_boot_progress(arg)
-#else
-# define show_boot_progress(arg)
-#endif
-
-#if defined(CONFIG_CMD_NAND)
-#include <linux/mtd/nand_legacy.h>
-#if 0
-#include <linux/mtd/nand_ids.h>
-#include <jffs2/jffs2.h>
-#endif
-
-#ifdef CONFIG_OMAP1510
-void archflashwp(void *archdata, int wp);
-#endif
-
-#define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1)))
-
-#undef NAND_DEBUG
-#undef PSYCHO_DEBUG
-
-/* ****************** WARNING *********************
- * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will
- * erase (or at least attempt to erase) blocks that are marked
- * bad. This can be very handy if you are _sure_ that the block
- * is OK, say because you marked a good block bad to test bad
- * block handling and you are done testing, or if you have
- * accidentally marked blocks bad.
- *
- * Erasing factory marked bad blocks is a _bad_ idea. If the
- * erase succeeds there is no reliable way to find them again,
- * and attempting to program or erase bad blocks can affect
- * the data in _other_ (good) blocks.
- */
-#define ALLOW_ERASE_BAD_DEBUG 0
-
-#define CONFIG_MTD_NAND_ECC /* enable ECC */
-#define CONFIG_MTD_NAND_ECC_JFFS2
-
-/* bits for nand_legacy_rw() `cmd'; or together as needed */
-#define NANDRW_READ 0x01
-#define NANDRW_WRITE 0x00
-#define NANDRW_JFFS2 0x02
-#define NANDRW_JFFS2_SKIP 0x04
-
-/*
- * Imports from nand_legacy.c
- */
-extern struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE];
-extern int curr_device;
-extern int nand_legacy_erase(struct nand_chip *nand, size_t ofs,
- size_t len, int clean);
-extern int nand_legacy_rw(struct nand_chip *nand, int cmd, size_t start,
- size_t len, size_t *retlen, u_char *buf);
-extern void nand_print(struct nand_chip *nand);
-extern void nand_print_bad(struct nand_chip *nand);
-extern int nand_read_oob(struct nand_chip *nand, size_t ofs,
- size_t len, size_t *retlen, u_char *buf);
-extern int nand_write_oob(struct nand_chip *nand, size_t ofs,
- size_t len, size_t *retlen, const u_char *buf);
-
-
-int do_nand (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
-{
- int rcode = 0;
-
- switch (argc) {
- case 0:
- case 1:
- cmd_usage(cmdtp);
- return 1;
- case 2:
- if (strcmp (argv[1], "info") == 0) {
- int i;
-
- putc ('\n');
-
- for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; ++i) {
- if (nand_dev_desc[i].ChipID ==
- NAND_ChipID_UNKNOWN)
- continue; /* list only known devices */
- printf ("Device %d: ", i);
- nand_print (&nand_dev_desc[i]);
- }
- return 0;
-
- } else if (strcmp (argv[1], "device") == 0) {
- if ((curr_device < 0)
- || (curr_device >= CONFIG_SYS_MAX_NAND_DEVICE)) {
- puts ("\nno devices available\n");
- return 1;
- }
- printf ("\nDevice %d: ", curr_device);
- nand_print (&nand_dev_desc[curr_device]);
- return 0;
-
- } else if (strcmp (argv[1], "bad") == 0) {
- if ((curr_device < 0)
- || (curr_device >= CONFIG_SYS_MAX_NAND_DEVICE)) {
- puts ("\nno devices available\n");
- return 1;
- }
- printf ("\nDevice %d bad blocks:\n", curr_device);
- nand_print_bad (&nand_dev_desc[curr_device]);
- return 0;
-
- }
- cmd_usage(cmdtp);
- return 1;
- case 3:
- if (strcmp (argv[1], "device") == 0) {
- int dev = (int) simple_strtoul (argv[2], NULL, 10);
-
- printf ("\nDevice %d: ", dev);
- if (dev >= CONFIG_SYS_MAX_NAND_DEVICE) {
- puts ("unknown device\n");
- return 1;
- }
- nand_print (&nand_dev_desc[dev]);
- /*nand_print (dev); */
-
- if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) {
- return 1;
- }
-
- curr_device = dev;
-
- puts ("... is now current device\n");
-
- return 0;
- } else if (strcmp (argv[1], "erase") == 0
- && strcmp (argv[2], "clean") == 0) {
- struct nand_chip *nand = &nand_dev_desc[curr_device];
- ulong off = 0;
- ulong size = nand->totlen;
- int ret;
-
- printf ("\nNAND erase: device %d offset %ld, size %ld ... ", curr_device, off, size);
-
- ret = nand_legacy_erase (nand, off, size, 1);
-
- printf ("%s\n", ret ? "ERROR" : "OK");
-
- return ret;
- }
-
- cmd_usage(cmdtp);
- return 1;
- default:
- /* at least 4 args */
-
- if (strncmp (argv[1], "read", 4) == 0 ||
- strncmp (argv[1], "write", 5) == 0) {
- ulong addr = simple_strtoul (argv[2], NULL, 16);
- off_t off = simple_strtoul (argv[3], NULL, 16);
- size_t size = simple_strtoul (argv[4], NULL, 16);
- int cmd = (strncmp (argv[1], "read", 4) == 0) ?
- NANDRW_READ : NANDRW_WRITE;
- size_t total;
- int ret;
- char *cmdtail = strchr (argv[1], '.');
-
- if (cmdtail && !strncmp (cmdtail, ".oob", 2)) {
- /* read out-of-band data */
- if (cmd & NANDRW_READ) {
- ret = nand_read_oob (nand_dev_desc + curr_device,
- off, size, &total,
- (u_char *) addr);
- } else {
- ret = nand_write_oob (nand_dev_desc + curr_device,
- off, size, &total,
- (u_char *) addr);
- }
- return ret;
- } else if (cmdtail && !strncmp (cmdtail, ".jffs2s", 7)) {
- cmd |= NANDRW_JFFS2; /* skip bad blocks (on read too) */
- if (cmd & NANDRW_READ)
- cmd |= NANDRW_JFFS2_SKIP; /* skip bad blocks (on read too) */
- } else if (cmdtail && !strncmp (cmdtail, ".jffs2", 2))
- cmd |= NANDRW_JFFS2; /* skip bad blocks */
-#ifdef SXNI855T
- /* need ".e" same as ".j" for compatibility with older units */
- else if (cmdtail && !strcmp (cmdtail, ".e"))
- cmd |= NANDRW_JFFS2; /* skip bad blocks */
-#endif
-#ifdef CONFIG_SYS_NAND_SKIP_BAD_DOT_I
- /* need ".i" same as ".jffs2s" for compatibility with older units (esd) */
- /* ".i" for image -> read skips bad block (no 0xff) */
- else if (cmdtail && !strcmp (cmdtail, ".i")) {
- cmd |= NANDRW_JFFS2; /* skip bad blocks (on read too) */
- if (cmd & NANDRW_READ)
- cmd |= NANDRW_JFFS2_SKIP; /* skip bad blocks (on read too) */
- }
-#endif /* CONFIG_SYS_NAND_SKIP_BAD_DOT_I */
- else if (cmdtail) {
- cmd_usage(cmdtp);
- return 1;
- }
-
- printf ("\nNAND %s: device %d offset %ld, size %lu ...\n",
- (cmd & NANDRW_READ) ? "read" : "write",
- curr_device, off, (ulong)size);
-
- ret = nand_legacy_rw (nand_dev_desc + curr_device,
- cmd, off, size,
- &total, (u_char *) addr);
-
- printf (" %d bytes %s: %s\n", total,
- (cmd & NANDRW_READ) ? "read" : "written",
- ret ? "ERROR" : "OK");
-
- return ret;
- } else if (strcmp (argv[1], "erase") == 0 &&
- (argc == 4 || strcmp ("clean", argv[2]) == 0)) {
- int clean = argc == 5;
- ulong off =
- simple_strtoul (argv[2 + clean], NULL, 16);
- ulong size =
- simple_strtoul (argv[3 + clean], NULL, 16);
- int ret;
-
- printf ("\nNAND erase: device %d offset %ld, size %ld ...\n",
- curr_device, off, size);
-
- ret = nand_legacy_erase (nand_dev_desc + curr_device,
- off, size, clean);
-
- printf ("%s\n", ret ? "ERROR" : "OK");
-
- return ret;
- } else {
- cmd_usage(cmdtp);
- rcode = 1;
- }
-
- return rcode;
- }
-}
-
-U_BOOT_CMD(
- nand, 5, 1, do_nand,
- "legacy NAND sub-system",
- "info - show available NAND devices\n"
- "nand device [dev] - show or set current device\n"
- "nand read[.jffs2[s]] addr off size\n"
- "nand write[.jffs2] addr off size - read/write `size' bytes starting\n"
- " at offset `off' to/from memory address `addr'\n"
- "nand erase [clean] [off size] - erase `size' bytes from\n"
- " offset `off' (entire device if not specified)\n"
- "nand bad - show bad blocks\n"
- "nand read.oob addr off size - read out-of-band data\n"
- "nand write.oob addr off size - read out-of-band data"
-);
-
-int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
-{
- char *boot_device = NULL;
- char *ep;
- int dev;
- ulong cnt;
- ulong addr;
- ulong offset = 0;
- image_header_t *hdr;
- int rcode = 0;
-#if defined(CONFIG_FIT)
- const void *fit_hdr = NULL;
-#endif
-
- show_boot_progress (52);
- switch (argc) {
- case 1:
- addr = CONFIG_SYS_LOAD_ADDR;
- boot_device = getenv ("bootdevice");
- break;
- case 2:
- addr = simple_strtoul(argv[1], NULL, 16);
- boot_device = getenv ("bootdevice");
- break;
- case 3:
- addr = simple_strtoul(argv[1], NULL, 16);
- boot_device = argv[2];
- break;
- case 4:
- addr = simple_strtoul(argv[1], NULL, 16);
- boot_device = argv[2];
- offset = simple_strtoul(argv[3], NULL, 16);
- break;
- default:
- cmd_usage(cmdtp);
- show_boot_progress (-53);
- return 1;
- }
-
- show_boot_progress (53);
- if (!boot_device) {
- puts ("\n** No boot device **\n");
- show_boot_progress (-54);
- return 1;
- }
- show_boot_progress (54);
-
- dev = simple_strtoul(boot_device, &ep, 16);
-
- if ((dev >= CONFIG_SYS_MAX_NAND_DEVICE) ||
- (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) {
- printf ("\n** Device %d not available\n", dev);
- show_boot_progress (-55);
- return 1;
- }
- show_boot_progress (55);
-
- printf ("\nLoading from device %d: %s at 0x%lx (offset 0x%lx)\n",
- dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR,
- offset);
-
- if (nand_legacy_rw (nand_dev_desc + dev, NANDRW_READ, offset,
- SECTORSIZE, NULL, (u_char *)addr)) {
- printf ("** Read error on %d\n", dev);
- show_boot_progress (-56);
- return 1;
- }
- show_boot_progress (56);
-
- switch (genimg_get_format ((void *)addr)) {
- case IMAGE_FORMAT_LEGACY:
- hdr = (image_header_t *)addr;
- image_print_contents (hdr);
-
- cnt = image_get_image_size (hdr);
- cnt -= SECTORSIZE;
- break;
-#if defined(CONFIG_FIT)
- case IMAGE_FORMAT_FIT:
- fit_hdr = (const void *)addr;
- puts ("Fit image detected...\n");
-
- cnt = fit_get_size (fit_hdr);
- break;
-#endif
- default:
- show_boot_progress (-57);
- puts ("** Unknown image type\n");
- return 1;
- }
- show_boot_progress (57);
-
- if (nand_legacy_rw (nand_dev_desc + dev, NANDRW_READ,
- offset + SECTORSIZE, cnt, NULL,
- (u_char *)(addr+SECTORSIZE))) {
- printf ("** Read error on %d\n", dev);
- show_boot_progress (-58);
- return 1;
- }
- show_boot_progress (58);
-
-#if defined(CONFIG_FIT)
- /* This cannot be done earlier, we need complete FIT image in RAM first */
- if (genimg_get_format ((void *)addr) == IMAGE_FORMAT_FIT) {
- if (!fit_check_format (fit_hdr)) {
- show_boot_progress (-150);
- puts ("** Bad FIT image format\n");
- return 1;
- }
- show_boot_progress (151);
- fit_print_contents (fit_hdr);
- }
-#endif
-
- /* Loading ok, update default load address */
-
- load_addr = addr;
-
- /* Check if we should attempt an auto-start */
- if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
- char *local_args[2];
- extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
-
- local_args[0] = argv[0];
- local_args[1] = NULL;
-
- printf ("Automatic boot of image at addr 0x%08lx ...\n", addr);
-
- do_bootm (cmdtp, 0, 1, local_args);
- rcode = 1;
- }
- return rcode;
-}
-
-U_BOOT_CMD(
- nboot, 4, 1, do_nandboot,
- "boot from NAND device",
- "loadAddr dev"
-);
-
-#endif
-
-#endif /* CONFIG_NAND_LEGACY */
diff --git a/common/docecc.c b/common/docecc.c
deleted file mode 100644
index 3412aff..0000000
--- a/common/docecc.c
+++ /dev/null
@@ -1,513 +0,0 @@
-/*
- * ECC algorithm for M-systems disk on chip. We use the excellent Reed
- * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
- * GNU GPL License. The rest is simply to convert the disk on chip
- * syndrom into a standard syndom.
- *
- * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
- * Copyright (C) 2000 Netgem S.A.
- *
- * $Id: docecc.c,v 1.4 2001/10/02 15:05:13 dwmw2 Exp $
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- */
-
-#include <config.h>
-#include <common.h>
-#include <malloc.h>
-
-#undef ECC_DEBUG
-#undef PSYCHO_DEBUG
-
-#include <linux/mtd/doc2000.h>
-
-/* need to undef it (from asm/termbits.h) */
-#undef B0
-
-#define MM 10 /* Symbol size in bits */
-#define KK (1023-4) /* Number of data symbols per block */
-#define B0 510 /* First root of generator polynomial, alpha form */
-#define PRIM 1 /* power of alpha used to generate roots of generator poly */
-#define NN ((1 << MM) - 1)
-
-typedef unsigned short dtype;
-
-/* 1+x^3+x^10 */
-static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
-
-/* This defines the type used to store an element of the Galois Field
- * used by the code. Make sure this is something larger than a char if
- * if anything larger than GF(256) is used.
- *
- * Note: unsigned char will work up to GF(256) but int seems to run
- * faster on the Pentium.
- */
-typedef int gf;
-
-/* No legal value in index form represents zero, so
- * we need a special value for this purpose
- */
-#define A0 (NN)
-
-/* Compute x % NN, where NN is 2**MM - 1,
- * without a slow divide
- */
-static inline gf
-modnn(int x)
-{
- while (x >= NN) {
- x -= NN;
- x = (x >> MM) + (x & NN);
- }
- return x;
-}
-
-#define CLEAR(a,n) {\
-int ci;\
-for(ci=(n)-1;ci >=0;ci--)\
-(a)[ci] = 0;\
-}
-
-#define COPY(a,b,n) {\
-int ci;\
-for(ci=(n)-1;ci >=0;ci--)\
-(a)[ci] = (b)[ci];\
-}
-
-#define COPYDOWN(a,b,n) {\
-int ci;\
-for(ci=(n)-1;ci >=0;ci--)\
-(a)[ci] = (b)[ci];\
-}
-
-#define Ldec 1
-
-/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
- lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
- polynomial form -> index form index_of[j=alpha**i] = i
- alpha=2 is the primitive element of GF(2**m)
- HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
- Let @ represent the primitive element commonly called "alpha" that
- is the root of the primitive polynomial p(x). Then in GF(2^m), for any
- 0 <= i <= 2^m-2,
- @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
- where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
- of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
- example the polynomial representation of @^5 would be given by the binary
- representation of the integer "alpha_to[5]".
- Similarily, index_of[] can be used as follows:
- As above, let @ represent the primitive element of GF(2^m) that is
- the root of the primitive polynomial p(x). In order to find the power
- of @ (alpha) that has the polynomial representation
- a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
- we consider the integer "i" whose binary representation with a(0) being LSB
- and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
- "index_of[i]". Now, @^index_of[i] is that element whose polynomial
- representation is (a(0),a(1),a(2),...,a(m-1)).
- NOTE:
- The element alpha_to[2^m-1] = 0 always signifying that the
- representation of "@^infinity" = 0 is (0,0,0,...,0).
- Similarily, the element index_of[0] = A0 always signifying
- that the power of alpha which has the polynomial representation
- (0,0,...,0) is "infinity".
-
-*/
-
-static void
-generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1])
-{
- register int i, mask;
-
- mask = 1;
- Alpha_to[MM] = 0;
- for (i = 0; i < MM; i++) {
- Alpha_to[i] = mask;
- Index_of[Alpha_to[i]] = i;
- /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
- if (Pp[i] != 0)
- Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */
- mask <<= 1; /* single left-shift */
- }
- Index_of[Alpha_to[MM]] = MM;
- /*
- * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
- * poly-repr of @^i shifted left one-bit and accounting for any @^MM
- * term that may occur when poly-repr of @^i is shifted.
- */
- mask >>= 1;
- for (i = MM + 1; i < NN; i++) {
- if (Alpha_to[i - 1] >= mask)
- Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
- else
- Alpha_to[i] = Alpha_to[i - 1] << 1;
- Index_of[Alpha_to[i]] = i;
- }
- Index_of[0] = A0;
- Alpha_to[NN] = 0;
-}
-
-/*
- * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
- * of the feedback shift register after having processed the data and
- * the ECC.
- *
- * Return number of symbols corrected, or -1 if codeword is illegal
- * or uncorrectable. If eras_pos is non-null, the detected error locations
- * are written back. NOTE! This array must be at least NN-KK elements long.
- * The corrected data are written in eras_val[]. They must be xor with the data
- * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
- *
- * First "no_eras" erasures are declared by the calling program. Then, the
- * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
- * If the number of channel errors is not greater than "t_after_eras" the
- * transmitted codeword will be recovered. Details of algorithm can be found
- * in R. Blahut's "Theory ... of Error-Correcting Codes".
-
- * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
- * will result. The decoder *could* check for this condition, but it would involve
- * extra time on every decoding operation.
- * */
-static int
-eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
- gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK],
- int no_eras)
-{
- int deg_lambda, el, deg_omega;
- int i, j, r,k;
- gf u,q,tmp,num1,num2,den,discr_r;
- gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly
- * and syndrome poly */
- gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
- gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
- int syn_error, count;
-
- syn_error = 0;
- for(i=0;i<NN-KK;i++)
- syn_error |= bb[i];
-
- if (!syn_error) {
- /* if remainder is zero, data[] is a codeword and there are no
- * errors to correct. So return data[] unmodified
- */
- count = 0;
- goto finish;
- }
-
- for(i=1;i<=NN-KK;i++){
- s[i] = bb[0];
- }
- for(j=1;j<NN-KK;j++){
- if(bb[j] == 0)
- continue;
- tmp = Index_of[bb[j]];
-
- for(i=1;i<=NN-KK;i++)
- s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
- }
-
- /* undo the feedback register implicit multiplication and convert
- syndromes to index form */
-
- for(i=1;i<=NN-KK;i++) {
- tmp = Index_of[s[i]];
- if (tmp != A0)
- tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);
- s[i] = tmp;
- }
-
- CLEAR(&lambda[1],NN-KK);
- lambda[0] = 1;
-
- if (no_eras > 0) {
- /* Init lambda to be the erasure locator polynomial */
- lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];
- for (i = 1; i < no_eras; i++) {
- u = modnn(PRIM*eras_pos[i]);
- for (j = i+1; j > 0; j--) {
- tmp = Index_of[lambda[j - 1]];
- if(tmp != A0)
- lambda[j] ^= Alpha_to[modnn(u + tmp)];
- }
- }
-#ifdef ECC_DEBUG
- /* Test code that verifies the erasure locator polynomial just constructed
- Needed only for decoder debugging. */
-
- /* find roots of the erasure location polynomial */
- for(i=1;i<=no_eras;i++)
- reg[i] = Index_of[lambda[i]];
- count = 0;
- for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
- q = 1;
- for (j = 1; j <= no_eras; j++)
- if (reg[j] != A0) {
- reg[j] = modnn(reg[j] + j);
- q ^= Alpha_to[reg[j]];
- }
- if (q != 0)
- continue;
- /* store root and error location number indices */
- root[count] = i;
- loc[count] = k;
- count++;
- }
- if (count != no_eras) {
- printf("\n lambda(x) is WRONG\n");
- count = -1;
- goto finish;
- }
-#ifdef PSYCHO_DEBUG
- printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
- for (i = 0; i < count; i++)
- printf("%d ", loc[i]);
- printf("\n");
-#endif
-#endif
- }
- for(i=0;i<NN-KK+1;i++)
- b[i] = Index_of[lambda[i]];
-
- /*
- * Begin Berlekamp-Massey algorithm to determine error+erasure
- * locator polynomial
- */
- r = no_eras;
- el = no_eras;
- while (++r <= NN-KK) { /* r is the step number */
- /* Compute discrepancy at the r-th step in poly-form */
- discr_r = 0;
- for (i = 0; i < r; i++){
- if ((lambda[i] != 0) && (s[r - i] != A0)) {
- discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
- }
- }
- discr_r = Index_of[discr_r]; /* Index form */
- if (discr_r == A0) {
- /* 2 lines below: B(x) <-- x*B(x) */
- COPYDOWN(&b[1],b,NN-KK);
- b[0] = A0;
- } else {
- /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
- t[0] = lambda[0];
- for (i = 0 ; i < NN-KK; i++) {
- if(b[i] != A0)
- t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
- else
- t[i+1] = lambda[i+1];
- }
- if (2 * el <= r + no_eras - 1) {
- el = r + no_eras - el;
- /*
- * 2 lines below: B(x) <-- inv(discr_r) *
- * lambda(x)
- */
- for (i = 0; i <= NN-KK; i++)
- b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
- } else {
- /* 2 lines below: B(x) <-- x*B(x) */
- COPYDOWN(&b[1],b,NN-KK);
- b[0] = A0;
- }
- COPY(lambda,t,NN-KK+1);
- }
- }
-
- /* Convert lambda to index form and compute deg(lambda(x)) */
- deg_lambda = 0;
- for(i=0;i<NN-KK+1;i++){
- lambda[i] = Index_of[lambda[i]];
- if(lambda[i] != A0)
- deg_lambda = i;
- }
- /*
- * Find roots of the error+erasure locator polynomial by Chien
- * Search
- */
- COPY(&reg[1],&lambda[1],NN-KK);
- count = 0; /* Number of roots of lambda(x) */
- for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
- q = 1;
- for (j = deg_lambda; j > 0; j--){
- if (reg[j] != A0) {
- reg[j] = modnn(reg[j] + j);
- q ^= Alpha_to[reg[j]];
- }
- }
- if (q != 0)
- continue;
- /* store root (index-form) and error location number */
- root[count] = i;
- loc[count] = k;
- /* If we've already found max possible roots,
- * abort the search to save time
- */
- if(++count == deg_lambda)
- break;
- }
- if (deg_lambda != count) {
- /*
- * deg(lambda) unequal to number of roots => uncorrectable
- * error detected
- */
- count = -1;
- goto finish;
- }
- /*
- * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
- * x**(NN-KK)). in index form. Also find deg(omega).
- */
- deg_omega = 0;
- for (i = 0; i < NN-KK;i++){
- tmp = 0;
- j = (deg_lambda < i) ? deg_lambda : i;
- for(;j >= 0; j--){
- if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
- tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
- }
- if(tmp != 0)
- deg_omega = i;
- omega[i] = Index_of[tmp];
- }
- omega[NN-KK] = A0;
-
- /*
- * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
- * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
- */
- for (j = count-1; j >=0; j--) {
- num1 = 0;
- for (i = deg_omega; i >= 0; i--) {
- if (omega[i] != A0)
- num1 ^= Alpha_to[modnn(omega[i] + i * root[j])];
- }
- num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
- den = 0;
-
- /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
- for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
- if(lambda[i+1] != A0)
- den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
- }
- if (den == 0) {
-#ifdef ECC_DEBUG
- printf("\n ERROR: denominator = 0\n");
-#endif
- /* Convert to dual- basis */
- count = -1;
- goto finish;
- }
- /* Apply error to data */
- if (num1 != 0) {
- eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
- } else {
- eras_val[j] = 0;
- }
- }
- finish:
- for(i=0;i<count;i++)
- eras_pos[i] = loc[i];
- return count;
-}
-
-/***************************************************************************/
-/* The DOC specific code begins here */
-
-#define SECTOR_SIZE 512
-/* The sector bytes are packed into NB_DATA MM bits words */
-#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
-
-/*
- * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
- * content of the feedback shift register applyied to the sector and
- * the ECC. Return the number of errors corrected (and correct them in
- * sector), or -1 if error
- */
-int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6])
-{
- int parity, i, nb_errors;
- gf bb[NN - KK + 1];
- gf error_val[NN-KK];
- int error_pos[NN-KK], pos, bitpos, index, val;
- dtype *Alpha_to, *Index_of;
-
- /* init log and exp tables here to save memory. However, it is slower */
- Alpha_to = malloc((NN + 1) * sizeof(dtype));
- if (!Alpha_to)
- return -1;
-
- Index_of = malloc((NN + 1) * sizeof(dtype));
- if (!Index_of) {
- free(Alpha_to);
- return -1;
- }
-
- generate_gf(Alpha_to, Index_of);
-
- parity = ecc1[1];
-
- bb[0] = (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);
- bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);
- bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);
- bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);
-
- nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,
- error_val, error_pos, 0);
- if (nb_errors <= 0)
- goto the_end;
-
- /* correct the errors */
- for(i=0;i<nb_errors;i++) {
- pos = error_pos[i];
- if (pos >= NB_DATA && pos < KK) {
- nb_errors = -1;
- goto the_end;
- }
- if (pos < NB_DATA) {
- /* extract bit position (MSB first) */
- pos = 10 * (NB_DATA - 1 - pos) - 6;
- /* now correct the following 10 bits. At most two bytes
- can be modified since pos is even */
- index = (pos >> 3) ^ 1;
- bitpos = pos & 7;
- if ((index >= 0 && index < SECTOR_SIZE) ||
- index == (SECTOR_SIZE + 1)) {
- val = error_val[i] >> (2 + bitpos);
- parity ^= val;
- if (index < SECTOR_SIZE)
- sector[index] ^= val;
- }
- index = ((pos >> 3) + 1) ^ 1;
- bitpos = (bitpos + 10) & 7;
- if (bitpos == 0)
- bitpos = 8;
- if ((index >= 0 && index < SECTOR_SIZE) ||
- index == (SECTOR_SIZE + 1)) {
- val = error_val[i] << (8 - bitpos);
- parity ^= val;
- if (index < SECTOR_SIZE)
- sector[index] ^= val;
- }
- }
- }
-
- /* use parity to test extra errors */
- if ((parity & 0xff) != 0)
- nb_errors = -1;
-
- the_end:
- free(Alpha_to);
- free(Index_of);
- return nb_errors;
-}
diff --git a/common/env_nand.c b/common/env_nand.c
index 90a1c45..8052fb7 100644
--- a/common/env_nand.c
+++ b/common/env_nand.c
@@ -57,10 +57,6 @@
#define CONFIG_ENV_RANGE CONFIG_ENV_SIZE
#endif
-int nand_legacy_rw (struct nand_chip* nand, int cmd,
- size_t start, size_t len,
- size_t * retlen, u_char * buf);
-
/* references to names in env_common.c */
extern uchar default_environment[];
extern int default_environment_size;