diff options
Diffstat (limited to 'common')
-rw-r--r-- | common/Makefile | 2 | ||||
-rw-r--r-- | common/cmd_doc.c | 1644 | ||||
-rw-r--r-- | common/cmd_jffs2.c | 15 | ||||
-rw-r--r-- | common/cmd_mtdparts.c | 10 | ||||
-rw-r--r-- | common/cmd_nand.c | 412 | ||||
-rw-r--r-- | common/docecc.c | 513 | ||||
-rw-r--r-- | common/env_nand.c | 4 |
7 files changed, 0 insertions, 2600 deletions
diff --git a/common/Makefile b/common/Makefile index c8a997b..dd6636b 100644 --- a/common/Makefile +++ b/common/Makefile @@ -83,7 +83,6 @@ ifdef CONFIG_POST COBJS-$(CONFIG_CMD_DIAG) += cmd_diag.o endif COBJS-$(CONFIG_CMD_DISPLAY) += cmd_display.o -COBJS-$(CONFIG_CMD_DOC) += cmd_doc.o COBJS-$(CONFIG_CMD_DTT) += cmd_dtt.o COBJS-$(CONFIG_ENV_IS_IN_EEPROM) += cmd_eeprom.o COBJS-$(CONFIG_CMD_EEPROM) += cmd_eeprom.o @@ -150,7 +149,6 @@ COBJS-$(CONFIG_VFD) += cmd_vfd.o # others COBJS-$(CONFIG_DDR_SPD) += ddr_spd.o -COBJS-$(CONFIG_CMD_DOC) += docecc.o COBJS-$(CONFIG_HWCONFIG) += hwconfig.o COBJS-$(CONFIG_CONSOLE_MUX) += iomux.o COBJS-y += flash.o diff --git a/common/cmd_doc.c b/common/cmd_doc.c deleted file mode 100644 index 5cc90f0..0000000 --- a/common/cmd_doc.c +++ /dev/null @@ -1,1644 +0,0 @@ -/* - * Driver for Disk-On-Chip 2000 and Millennium - * (c) 1999 Machine Vision Holdings, Inc. - * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> - * - * $Id: doc2000.c,v 1.46 2001/10/02 15:05:13 dwmw2 Exp $ - */ - -#include <common.h> -#include <config.h> -#include <command.h> -#include <malloc.h> -#include <asm/io.h> -#include <linux/mtd/nftl.h> -#include <linux/mtd/doc2000.h> - -#error This code is broken and will be removed outright in the next release. -#error If you need diskonchip support, please update the Linux driver in -#error drivers/mtd/nand/diskonchip.c to work with u-boot. - -/* - * ! BROKEN ! - * - * TODO: must be implemented and tested by someone with HW - */ -#if 0 -#ifdef CONFIG_SYS_DOC_SUPPORT_2000 -#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k) -#else -#define DoC_is_2000(doc) (0) -#endif - -#ifdef CONFIG_SYS_DOC_SUPPORT_MILLENNIUM -#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil) -#else -#define DoC_is_Millennium(doc) (0) -#endif - -/* CONFIG_SYS_DOC_PASSIVE_PROBE: - In order to ensure that the BIOS checksum is correct at boot time, and - hence that the onboard BIOS extension gets executed, the DiskOnChip - goes into reset mode when it is read sequentially: all registers - return 0xff until the chip is woken up again by writing to the - DOCControl register. - - Unfortunately, this means that the probe for the DiskOnChip is unsafe, - because one of the first things it does is write to where it thinks - the DOCControl register should be - which may well be shared memory - for another device. I've had machines which lock up when this is - attempted. Hence the possibility to do a passive probe, which will fail - to detect a chip in reset mode, but is at least guaranteed not to lock - the machine. - - If you have this problem, uncomment the following line: -#define CONFIG_SYS_DOC_PASSIVE_PROBE -*/ - -#undef DOC_DEBUG -#undef ECC_DEBUG -#undef PSYCHO_DEBUG -#undef NFTL_DEBUG - -static struct DiskOnChip doc_dev_desc[CONFIG_SYS_MAX_DOC_DEVICE]; - -/* Current DOC Device */ -static int curr_device = -1; - -/* Supported NAND flash devices */ -static struct nand_flash_dev nand_flash_ids[] = { - {"Toshiba TC5816BDC", NAND_MFR_TOSHIBA, 0x64, 21, 1, 2, 0x1000, 0}, - {"Toshiba TC5832DC", NAND_MFR_TOSHIBA, 0x6b, 22, 0, 2, 0x2000, 0}, - {"Toshiba TH58V128DC", NAND_MFR_TOSHIBA, 0x73, 24, 0, 2, 0x4000, 0}, - {"Toshiba TC58256FT/DC", NAND_MFR_TOSHIBA, 0x75, 25, 0, 2, 0x4000, 0}, - {"Toshiba TH58512FT", NAND_MFR_TOSHIBA, 0x76, 26, 0, 3, 0x4000, 0}, - {"Toshiba TC58V32DC", NAND_MFR_TOSHIBA, 0xe5, 22, 0, 2, 0x2000, 0}, - {"Toshiba TC58V64AFT/DC", NAND_MFR_TOSHIBA, 0xe6, 23, 0, 2, 0x2000, 0}, - {"Toshiba TC58V16BDC", NAND_MFR_TOSHIBA, 0xea, 21, 1, 2, 0x1000, 0}, - {"Toshiba TH58100FT", NAND_MFR_TOSHIBA, 0x79, 27, 0, 3, 0x4000, 0}, - {"Samsung KM29N16000", NAND_MFR_SAMSUNG, 0x64, 21, 1, 2, 0x1000, 0}, - {"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0x6b, 22, 0, 2, 0x2000, 0}, - {"Samsung KM29U128T", NAND_MFR_SAMSUNG, 0x73, 24, 0, 2, 0x4000, 0}, - {"Samsung KM29U256T", NAND_MFR_SAMSUNG, 0x75, 25, 0, 2, 0x4000, 0}, - {"Samsung unknown 64Mb", NAND_MFR_SAMSUNG, 0x76, 26, 0, 3, 0x4000, 0}, - {"Samsung KM29W32000", NAND_MFR_SAMSUNG, 0xe3, 22, 0, 2, 0x2000, 0}, - {"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0xe5, 22, 0, 2, 0x2000, 0}, - {"Samsung KM29U64000", NAND_MFR_SAMSUNG, 0xe6, 23, 0, 2, 0x2000, 0}, - {"Samsung KM29W16000", NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000, 0}, - {"Samsung K9F5616Q0C", NAND_MFR_SAMSUNG, 0x45, 25, 0, 2, 0x4000, 1}, - {"Samsung K9K1216Q0C", NAND_MFR_SAMSUNG, 0x46, 26, 0, 3, 0x4000, 1}, - {"Samsung K9F1G08U0M", NAND_MFR_SAMSUNG, 0xf1, 27, 0, 2, 0, 0}, - {NULL,} -}; - -/* ------------------------------------------------------------------------- */ - -int do_doc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) -{ - int rcode = 0; - - switch (argc) { - case 0: - case 1: - cmd_usage(cmdtp); - return 1; - case 2: - if (strcmp(argv[1],"info") == 0) { - int i; - - putc ('\n'); - - for (i=0; i<CONFIG_SYS_MAX_DOC_DEVICE; ++i) { - if(doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN) - continue; /* list only known devices */ - printf ("Device %d: ", i); - doc_print(&doc_dev_desc[i]); - } - return 0; - - } else if (strcmp(argv[1],"device") == 0) { - if ((curr_device < 0) || (curr_device >= CONFIG_SYS_MAX_DOC_DEVICE)) { - puts ("\nno devices available\n"); - return 1; - } - printf ("\nDevice %d: ", curr_device); - doc_print(&doc_dev_desc[curr_device]); - return 0; - } - cmd_usage(cmdtp); - return 1; - case 3: - if (strcmp(argv[1],"device") == 0) { - int dev = (int)simple_strtoul(argv[2], NULL, 10); - - printf ("\nDevice %d: ", dev); - if (dev >= CONFIG_SYS_MAX_DOC_DEVICE) { - puts ("unknown device\n"); - return 1; - } - doc_print(&doc_dev_desc[dev]); - /*doc_print (dev);*/ - - if (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN) { - return 1; - } - - curr_device = dev; - - puts ("... is now current device\n"); - - return 0; - } - - cmd_usage(cmdtp); - return 1; - default: - /* at least 4 args */ - - if (strcmp(argv[1],"read") == 0 || strcmp(argv[1],"write") == 0) { - ulong addr = simple_strtoul(argv[2], NULL, 16); - ulong off = simple_strtoul(argv[3], NULL, 16); - ulong size = simple_strtoul(argv[4], NULL, 16); - int cmd = (strcmp(argv[1],"read") == 0); - int ret, total; - - printf ("\nDOC %s: device %d offset %ld, size %ld ... ", - cmd ? "read" : "write", curr_device, off, size); - - ret = doc_rw(doc_dev_desc + curr_device, cmd, off, size, - (size_t *)&total, (u_char*)addr); - - printf ("%d bytes %s: %s\n", total, cmd ? "read" : "write", - ret ? "ERROR" : "OK"); - - return ret; - } else if (strcmp(argv[1],"erase") == 0) { - ulong off = simple_strtoul(argv[2], NULL, 16); - ulong size = simple_strtoul(argv[3], NULL, 16); - int ret; - - printf ("\nDOC erase: device %d offset %ld, size %ld ... ", - curr_device, off, size); - - ret = doc_erase (doc_dev_desc + curr_device, off, size); - - printf("%s\n", ret ? "ERROR" : "OK"); - - return ret; - } else { - cmd_usage(cmdtp); - rcode = 1; - } - - return rcode; - } -} -U_BOOT_CMD( - doc, 5, 1, do_doc, - "Disk-On-Chip sub-system", - "info - show available DOC devices\n" - "doc device [dev] - show or set current device\n" - "doc read addr off size\n" - "doc write addr off size - read/write `size'" - " bytes starting at offset `off'\n" - " to/from memory address `addr'\n" - "doc erase off size - erase `size' bytes of DOC from offset `off'" -); - -int do_docboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) -{ - char *boot_device = NULL; - char *ep; - int dev; - ulong cnt; - ulong addr; - ulong offset = 0; - image_header_t *hdr; - int rcode = 0; -#if defined(CONFIG_FIT) - const void *fit_hdr = NULL; -#endif - - show_boot_progress (34); - switch (argc) { - case 1: - addr = CONFIG_SYS_LOAD_ADDR; - boot_device = getenv ("bootdevice"); - break; - case 2: - addr = simple_strtoul(argv[1], NULL, 16); - boot_device = getenv ("bootdevice"); - break; - case 3: - addr = simple_strtoul(argv[1], NULL, 16); - boot_device = argv[2]; - break; - case 4: - addr = simple_strtoul(argv[1], NULL, 16); - boot_device = argv[2]; - offset = simple_strtoul(argv[3], NULL, 16); - break; - default: - cmd_usage(cmdtp); - show_boot_progress (-35); - return 1; - } - - show_boot_progress (35); - if (!boot_device) { - puts ("\n** No boot device **\n"); - show_boot_progress (-36); - return 1; - } - show_boot_progress (36); - - dev = simple_strtoul(boot_device, &ep, 16); - - if ((dev >= CONFIG_SYS_MAX_DOC_DEVICE) || - (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN)) { - printf ("\n** Device %d not available\n", dev); - show_boot_progress (-37); - return 1; - } - show_boot_progress (37); - - printf ("\nLoading from device %d: %s at 0x%lX (offset 0x%lX)\n", - dev, doc_dev_desc[dev].name, doc_dev_desc[dev].physadr, - offset); - - if (doc_rw (doc_dev_desc + dev, 1, offset, - SECTORSIZE, NULL, (u_char *)addr)) { - printf ("** Read error on %d\n", dev); - show_boot_progress (-38); - return 1; - } - show_boot_progress (38); - - switch (genimg_get_format ((void *)addr)) { - case IMAGE_FORMAT_LEGACY: - hdr = (image_header_t *)addr; - - image_print_contents (hdr); - - cnt = image_get_image_size (hdr); - break; -#if defined(CONFIG_FIT) - case IMAGE_FORMAT_FIT: - fit_hdr = (const void *)addr; - puts ("Fit image detected...\n"); - - cnt = fit_get_size (fit_hdr); - break; -#endif - default: - show_boot_progress (-39); - puts ("** Unknown image type\n"); - return 1; - } - show_boot_progress (39); - - cnt -= SECTORSIZE; - if (doc_rw (doc_dev_desc + dev, 1, offset + SECTORSIZE, cnt, - NULL, (u_char *)(addr+SECTORSIZE))) { - printf ("** Read error on %d\n", dev); - show_boot_progress (-40); - return 1; - } - show_boot_progress (40); - -#if defined(CONFIG_FIT) - /* This cannot be done earlier, we need complete FIT image in RAM first */ - if (genimg_get_format ((void *)addr) == IMAGE_FORMAT_FIT) { - if (!fit_check_format (fit_hdr)) { - show_boot_progress (-130); - puts ("** Bad FIT image format\n"); - return 1; - } - show_boot_progress (131); - fit_print_contents (fit_hdr); - } -#endif - - /* Loading ok, update default load address */ - - load_addr = addr; - - /* Check if we should attempt an auto-start */ - if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) { - char *local_args[2]; - extern int do_bootm (cmd_tbl_t *, int, int, char *[]); - - local_args[0] = argv[0]; - local_args[1] = NULL; - - printf ("Automatic boot of image at addr 0x%08lX ...\n", addr); - - do_bootm (cmdtp, 0, 1, local_args); - rcode = 1; - } - return rcode; -} - -U_BOOT_CMD( - docboot, 4, 1, do_docboot, - "boot from DOC device", - "loadAddr dev" -); - -int doc_rw (struct DiskOnChip* this, int cmd, - loff_t from, size_t len, - size_t * retlen, u_char * buf) -{ - int noecc, ret = 0, n, total = 0; - char eccbuf[6]; - - while(len) { - /* The ECC will not be calculated correctly if - less than 512 is written or read */ - noecc = (from != (from | 0x1ff) + 1) || (len < 0x200); - - if (cmd) - ret = doc_read_ecc(this, from, len, - (size_t *)&n, (u_char*)buf, - noecc ? (uchar *)NULL : (uchar *)eccbuf); - else - ret = doc_write_ecc(this, from, len, - (size_t *)&n, (u_char*)buf, - noecc ? (uchar *)NULL : (uchar *)eccbuf); - - if (ret) - break; - - from += n; - buf += n; - total += n; - len -= n; - } - - if (retlen) - *retlen = total; - - return ret; -} - -void doc_print(struct DiskOnChip *this) { - printf("%s at 0x%lX,\n" - "\t %d chip%s %s, size %d MB, \n" - "\t total size %ld MB, sector size %ld kB\n", - this->name, this->physadr, this->numchips, - this->numchips>1 ? "s" : "", this->chips_name, - 1 << (this->chipshift - 20), - this->totlen >> 20, this->erasesize >> 10); - - if (this->nftl_found) { - struct NFTLrecord *nftl = &this->nftl; - unsigned long bin_size, flash_size; - - bin_size = nftl->nb_boot_blocks * this->erasesize; - flash_size = (nftl->nb_blocks - nftl->nb_boot_blocks) * this->erasesize; - - printf("\t NFTL boot record:\n" - "\t Binary partition: size %ld%s\n" - "\t Flash disk partition: size %ld%s, offset 0x%lx\n", - bin_size > (1 << 20) ? bin_size >> 20 : bin_size >> 10, - bin_size > (1 << 20) ? "MB" : "kB", - flash_size > (1 << 20) ? flash_size >> 20 : flash_size >> 10, - flash_size > (1 << 20) ? "MB" : "kB", bin_size); - } else { - puts ("\t No NFTL boot record found.\n"); - } -} - -/* ------------------------------------------------------------------------- */ - -/* This function is needed to avoid calls of the __ashrdi3 function. */ -static int shr(int val, int shift) { - return val >> shift; -} - -/* Perform the required delay cycles by reading from the appropriate register */ -static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles) -{ - volatile char dummy; - int i; - - for (i = 0; i < cycles; i++) { - if (DoC_is_Millennium(doc)) - dummy = ReadDOC(doc->virtadr, NOP); - else - dummy = ReadDOC(doc->virtadr, DOCStatus); - } - -} - -/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ -static int _DoC_WaitReady(struct DiskOnChip *doc) -{ - unsigned long docptr = doc->virtadr; - unsigned long start = get_timer(0); - -#ifdef PSYCHO_DEBUG - puts ("_DoC_WaitReady called for out-of-line wait\n"); -#endif - - /* Out-of-line routine to wait for chip response */ - while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { -#ifdef CONFIG_SYS_DOC_SHORT_TIMEOUT - /* it seems that after a certain time the DoC deasserts - * the CDSN_CTRL_FR_B although it is not ready... - * using a short timout solve this (timer increments every ms) */ - if (get_timer(start) > 10) { - return DOC_ETIMEOUT; - } -#else - if (get_timer(start) > 10 * 1000) { - puts ("_DoC_WaitReady timed out.\n"); - return DOC_ETIMEOUT; - } -#endif - udelay(1); - } - - return 0; -} - -static int DoC_WaitReady(struct DiskOnChip *doc) -{ - unsigned long docptr = doc->virtadr; - /* This is inline, to optimise the common case, where it's ready instantly */ - int ret = 0; - - /* 4 read form NOP register should be issued in prior to the read from CDSNControl - see Software Requirement 11.4 item 2. */ - DoC_Delay(doc, 4); - - if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) - /* Call the out-of-line routine to wait */ - ret = _DoC_WaitReady(doc); - - /* issue 2 read from NOP register after reading from CDSNControl register - see Software Requirement 11.4 item 2. */ - DoC_Delay(doc, 2); - - return ret; -} - -/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to - bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is - required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ - -static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command, - unsigned char xtraflags) -{ - unsigned long docptr = doc->virtadr; - - if (DoC_is_2000(doc)) - xtraflags |= CDSN_CTRL_FLASH_IO; - - /* Assert the CLE (Command Latch Enable) line to the flash chip */ - WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - if (DoC_is_Millennium(doc)) - WriteDOC(command, docptr, CDSNSlowIO); - - /* Send the command */ - WriteDOC_(command, docptr, doc->ioreg); - - /* Lower the CLE line */ - WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */ - return DoC_WaitReady(doc); -} - -/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to - bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is - required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ - -static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs, - unsigned char xtraflags1, unsigned char xtraflags2) -{ - unsigned long docptr; - int i; - - docptr = doc->virtadr; - - if (DoC_is_2000(doc)) - xtraflags1 |= CDSN_CTRL_FLASH_IO; - - /* Assert the ALE (Address Latch Enable) line to the flash chip */ - WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); - - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Send the address */ - /* Devices with 256-byte page are addressed as: - Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) - * there is no device on the market with page256 - and more than 24 bits. - Devices with 512-byte page are addressed as: - Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) - * 25-31 is sent only if the chip support it. - * bit 8 changes the read command to be sent - (NAND_CMD_READ0 or NAND_CMD_READ1). - */ - - if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) { - if (DoC_is_Millennium(doc)) - WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); - WriteDOC_(ofs & 0xff, docptr, doc->ioreg); - } - - if (doc->page256) { - ofs = ofs >> 8; - } else { - ofs = ofs >> 9; - } - - if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { - for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) { - if (DoC_is_Millennium(doc)) - WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); - WriteDOC_(ofs & 0xff, docptr, doc->ioreg); - } - } - - DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */ - - /* FIXME: The SlowIO's for millennium could be replaced by - a single WritePipeTerm here. mf. */ - - /* Lower the ALE line */ - WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, - CDSNControl); - - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Wait for the chip to respond - Software requirement 11.4.1 */ - return DoC_WaitReady(doc); -} - -/* Read a buffer from DoC, taking care of Millennium oddities */ -static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len) -{ - volatile int dummy; - int modulus = 0xffff; - unsigned long docptr; - int i; - - docptr = doc->virtadr; - - if (len <= 0) - return; - - if (DoC_is_Millennium(doc)) { - /* Read the data via the internal pipeline through CDSN IO register, - see Pipelined Read Operations 11.3 */ - dummy = ReadDOC(docptr, ReadPipeInit); - - /* Millennium should use the LastDataRead register - Pipeline Reads */ - len--; - - /* This is needed for correctly ECC calculation */ - modulus = 0xff; - } - - for (i = 0; i < len; i++) - buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus)); - - if (DoC_is_Millennium(doc)) { - buf[i] = ReadDOC(docptr, LastDataRead); - } -} - -/* Write a buffer to DoC, taking care of Millennium oddities */ -static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len) -{ - unsigned long docptr; - int i; - - docptr = doc->virtadr; - - if (len <= 0) - return; - - for (i = 0; i < len; i++) - WriteDOC_(buf[i], docptr, doc->ioreg + i); - - if (DoC_is_Millennium(doc)) { - WriteDOC(0x00, docptr, WritePipeTerm); - } -} - - -/* DoC_SelectChip: Select a given flash chip within the current floor */ - -static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip) -{ - unsigned long docptr = doc->virtadr; - - /* Software requirement 11.4.4 before writing DeviceSelect */ - /* Deassert the CE line to eliminate glitches on the FCE# outputs */ - WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Select the individual flash chip requested */ - WriteDOC(chip, docptr, CDSNDeviceSelect); - DoC_Delay(doc, 4); - - /* Reassert the CE line */ - WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr, - CDSNControl); - DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ - - /* Wait for it to be ready */ - return DoC_WaitReady(doc); -} - -/* DoC_SelectFloor: Select a given floor (bank of flash chips) */ - -static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor) -{ - unsigned long docptr = doc->virtadr; - - /* Select the floor (bank) of chips required */ - WriteDOC(floor, docptr, FloorSelect); - - /* Wait for the chip to be ready */ - return DoC_WaitReady(doc); -} - -/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ - -static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) -{ - int mfr, id, i; - volatile char dummy; - - /* Page in the required floor/chip */ - DoC_SelectFloor(doc, floor); - DoC_SelectChip(doc, chip); - - /* Reset the chip */ - if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) { -#ifdef DOC_DEBUG - printf("DoC_Command (reset) for %d,%d returned true\n", - floor, chip); -#endif - return 0; - } - - - /* Read the NAND chip ID: 1. Send ReadID command */ - if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) { -#ifdef DOC_DEBUG - printf("DoC_Command (ReadID) for %d,%d returned true\n", - floor, chip); -#endif - return 0; - } - - /* Read the NAND chip ID: 2. Send address byte zero */ - DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0); - - /* Read the manufacturer and device id codes from the device */ - - /* CDSN Slow IO register see Software Requirement 11.4 item 5. */ - dummy = ReadDOC(doc->virtadr, CDSNSlowIO); - DoC_Delay(doc, 2); - mfr = ReadDOC_(doc->virtadr, doc->ioreg); - - /* CDSN Slow IO register see Software Requirement 11.4 item 5. */ - dummy = ReadDOC(doc->virtadr, CDSNSlowIO); - DoC_Delay(doc, 2); - id = ReadDOC_(doc->virtadr, doc->ioreg); - - /* No response - return failure */ - if (mfr == 0xff || mfr == 0) - return 0; - - /* Check it's the same as the first chip we identified. - * M-Systems say that any given DiskOnChip device should only - * contain _one_ type of flash part, although that's not a - * hardware restriction. */ - if (doc->mfr) { - if (doc->mfr == mfr && doc->id == id) - return 1; /* This is another the same the first */ - else - printf("Flash chip at floor %d, chip %d is different:\n", - floor, chip); - } - - /* Print and store the manufacturer and ID codes. */ - for (i = 0; nand_flash_ids[i].name != NULL; i++) { - if (mfr == nand_flash_ids[i].manufacture_id && - id == nand_flash_ids[i].model_id) { -#ifdef DOC_DEBUG - printf("Flash chip found: Manufacturer ID: %2.2X, " - "Chip ID: %2.2X (%s)\n", mfr, id, - nand_flash_ids[i].name); -#endif - if (!doc->mfr) { - doc->mfr = mfr; - doc->id = id; - doc->chipshift = - nand_flash_ids[i].chipshift; - doc->page256 = nand_flash_ids[i].page256; - doc->pageadrlen = - nand_flash_ids[i].pageadrlen; - doc->erasesize = - nand_flash_ids[i].erasesize; - doc->chips_name = - nand_flash_ids[i].name; - return 1; - } - return 0; - } - } - - -#ifdef DOC_DEBUG - /* We haven't fully identified the chip. Print as much as we know. */ - printf("Unknown flash chip found: %2.2X %2.2X\n", - id, mfr); -#endif - - return 0; -} - -/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ - -static void DoC_ScanChips(struct DiskOnChip *this) -{ - int floor, chip; - int numchips[MAX_FLOORS]; - int maxchips = MAX_CHIPS; - int ret = 1; - - this->numchips = 0; - this->mfr = 0; - this->id = 0; - - if (DoC_is_Millennium(this)) - maxchips = MAX_CHIPS_MIL; - - /* For each floor, find the number of valid chips it contains */ - for (floor = 0; floor < MAX_FLOORS; floor++) { - ret = 1; - numchips[floor] = 0; - for (chip = 0; chip < maxchips && ret != 0; chip++) { - - ret = DoC_IdentChip(this, floor, chip); - if (ret) { - numchips[floor]++; - this->numchips++; - } - } - } - - /* If there are none at all that we recognise, bail */ - if (!this->numchips) { - puts ("No flash chips recognised.\n"); - return; - } - - /* Allocate an array to hold the information for each chip */ - this->chips = malloc(sizeof(struct Nand) * this->numchips); - if (!this->chips) { - puts ("No memory for allocating chip info structures\n"); - return; - } - - ret = 0; - - /* Fill out the chip array with {floor, chipno} for each - * detected chip in the device. */ - for (floor = 0; floor < MAX_FLOORS; floor++) { - for (chip = 0; chip < numchips[floor]; chip++) { - this->chips[ret].floor = floor; - this->chips[ret].chip = chip; - this->chips[ret].curadr = 0; - this->chips[ret].curmode = 0x50; - ret++; - } - } - - /* Calculate and print the total size of the device */ - this->totlen = this->numchips * (1 << this->chipshift); - -#ifdef DOC_DEBUG - printf("%d flash chips found. Total DiskOnChip size: %ld MB\n", - this->numchips, this->totlen >> 20); -#endif -} - -/* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the - * various device information of the NFTL partition and Bad Unit Table. Update - * the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[] - * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c - */ -static int find_boot_record(struct NFTLrecord *nftl) -{ - struct nftl_uci1 h1; - struct nftl_oob oob; - unsigned int block, boot_record_count = 0; - int retlen; - u8 buf[SECTORSIZE]; - struct NFTLMediaHeader *mh = &nftl->MediaHdr; - unsigned int i; - - nftl->MediaUnit = BLOCK_NIL; - nftl->SpareMediaUnit = BLOCK_NIL; - - /* search for a valid boot record */ - for (block = 0; block < nftl->nb_blocks; block++) { - int ret; - - /* Check for ANAND header first. Then can whinge if it's found but later - checks fail */ - if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize, SECTORSIZE, - (size_t *)&retlen, buf, NULL))) { - static int warncount = 5; - - if (warncount) { - printf("Block read at 0x%x failed\n", block * nftl->EraseSize); - if (!--warncount) - puts ("Further failures for this block will not be printed\n"); - } - continue; - } - - if (retlen < 6 || memcmp(buf, "ANAND", 6)) { - /* ANAND\0 not found. Continue */ -#ifdef PSYCHO_DEBUG - printf("ANAND header not found at 0x%x\n", block * nftl->EraseSize); -#endif - continue; - } - -#ifdef NFTL_DEBUG - printf("ANAND header found at 0x%x\n", block * nftl->EraseSize); -#endif - - /* To be safer with BIOS, also use erase mark as discriminant */ - if ((ret = doc_read_oob(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8, - 8, (size_t *)&retlen, (uchar *)&h1) < 0)) { -#ifdef NFTL_DEBUG - printf("ANAND header found at 0x%x, but OOB data read failed\n", - block * nftl->EraseSize); -#endif - continue; - } - - /* OK, we like it. */ - - if (boot_record_count) { - /* We've already processed one. So we just check if - this one is the same as the first one we found */ - if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) { -#ifdef NFTL_DEBUG - printf("NFTL Media Headers at 0x%x and 0x%x disagree.\n", - nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize); -#endif - /* if (debug) Print both side by side */ - return -1; - } - if (boot_record_count == 1) - nftl->SpareMediaUnit = block; - - boot_record_count++; - continue; - } - - /* This is the first we've seen. Copy the media header structure into place */ - memcpy(mh, buf, sizeof(struct NFTLMediaHeader)); - - /* Do some sanity checks on it */ - if (mh->UnitSizeFactor == 0) { -#ifdef NFTL_DEBUG - puts ("UnitSizeFactor 0x00 detected.\n" - "This violates the spec but we think we know what it means...\n"); -#endif - } else if (mh->UnitSizeFactor != 0xff) { - printf ("Sorry, we don't support UnitSizeFactor " - "of != 1 yet.\n"); - return -1; - } - - nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN); - if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) { - printf ("NFTL Media Header sanity check failed:\n" - "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n", - nftl->nb_boot_blocks, nftl->nb_blocks); - return -1; - } - - nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize; - if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) { - printf ("NFTL Media Header sanity check failed:\n" - "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n", - nftl->numvunits, - nftl->nb_blocks, - nftl->nb_boot_blocks); - return -1; - } - - nftl->nr_sects = nftl->numvunits * (nftl->EraseSize / SECTORSIZE); - - /* If we're not using the last sectors in the device for some reason, - reduce nb_blocks accordingly so we forget they're there */ - nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN); - - /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */ - for (i = 0; i < nftl->nb_blocks; i++) { - if ((i & (SECTORSIZE - 1)) == 0) { - /* read one sector for every SECTORSIZE of blocks */ - if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize + - i + SECTORSIZE, SECTORSIZE, - (size_t *)&retlen, buf, (uchar *)&oob)) < 0) { - puts ("Read of bad sector table failed\n"); - return -1; - } - } - /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */ - if (buf[i & (SECTORSIZE - 1)] != 0xff) - nftl->ReplUnitTable[i] = BLOCK_RESERVED; - } - - nftl->MediaUnit = block; - boot_record_count++; - - } /* foreach (block) */ - - return boot_record_count?0:-1; -} - -/* This routine is made available to other mtd code via - * inter_module_register. It must only be accessed through - * inter_module_get which will bump the use count of this module. The - * addresses passed back in mtd are valid as long as the use count of - * this module is non-zero, i.e. between inter_module_get and - * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. - */ -static void DoC2k_init(struct DiskOnChip* this) -{ - struct NFTLrecord *nftl; - - switch (this->ChipID) { - case DOC_ChipID_Doc2k: - this->name = "DiskOnChip 2000"; - this->ioreg = DoC_2k_CDSN_IO; - break; - case DOC_ChipID_DocMil: - this->name = "DiskOnChip Millennium"; - this->ioreg = DoC_Mil_CDSN_IO; - break; - } - -#ifdef DOC_DEBUG - printf("%s found at address 0x%lX\n", this->name, - this->physadr); -#endif - - this->totlen = 0; - this->numchips = 0; - - this->curfloor = -1; - this->curchip = -1; - - /* Ident all the chips present. */ - DoC_ScanChips(this); - if ((!this->numchips) || (!this->chips)) - return; - - nftl = &this->nftl; - - /* Get physical parameters */ - nftl->EraseSize = this->erasesize; - nftl->nb_blocks = this->totlen / this->erasesize; - nftl->mtd = this; - - if (find_boot_record(nftl) != 0) - this->nftl_found = 0; - else - this->nftl_found = 1; - - printf("%s @ 0x%lX, %ld MB\n", this->name, this->physadr, this->totlen >> 20); -} - -int doc_read_ecc(struct DiskOnChip* this, loff_t from, size_t len, - size_t * retlen, u_char * buf, u_char * eccbuf) -{ - unsigned long docptr; - struct Nand *mychip; - unsigned char syndrome[6]; - volatile char dummy; - int i, len256 = 0, ret=0; - - docptr = this->virtadr; - - /* Don't allow read past end of device */ - if (from >= this->totlen) { - puts ("Out of flash\n"); - return DOC_EINVAL; - } - - /* Don't allow a single read to cross a 512-byte block boundary */ - if (from + len > ((from | 0x1ff) + 1)) - len = ((from | 0x1ff) + 1) - from; - - /* The ECC will not be calculated correctly if less than 512 is read */ - if (len != 0x200 && eccbuf) - printf("ECC needs a full sector read (adr: %lx size %lx)\n", - (long) from, (long) len); - -#ifdef PSYCHO_DEBUG - printf("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); -#endif - - /* Find the chip which is to be used and select it */ - mychip = &this->chips[shr(from, this->chipshift)]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - DoC_Command(this, - (!this->page256 - && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, - CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP, - CDSN_CTRL_ECC_IO); - - if (eccbuf) { - /* Prime the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, ECCConf); - WriteDOC(DOC_ECC_EN, docptr, ECCConf); - } else { - /* disable the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, ECCConf); - WriteDOC(DOC_ECC_DIS, docptr, ECCConf); - } - - /* treat crossing 256-byte sector for 2M x 8bits devices */ - if (this->page256 && from + len > (from | 0xff) + 1) { - len256 = (from | 0xff) + 1 - from; - DoC_ReadBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, from + len256, - CDSN_CTRL_WP, CDSN_CTRL_ECC_IO); - } - - DoC_ReadBuf(this, &buf[len256], len - len256); - - /* Let the caller know we completed it */ - *retlen = len; - - if (eccbuf) { - /* Read the ECC data through the DiskOnChip ECC logic */ - /* Note: this will work even with 2M x 8bit devices as */ - /* they have 8 bytes of OOB per 256 page. mf. */ - DoC_ReadBuf(this, eccbuf, 6); - - /* Flush the pipeline */ - if (DoC_is_Millennium(this)) { - dummy = ReadDOC(docptr, ECCConf); - dummy = ReadDOC(docptr, ECCConf); - i = ReadDOC(docptr, ECCConf); - } else { - dummy = ReadDOC(docptr, 2k_ECCStatus); - dummy = ReadDOC(docptr, 2k_ECCStatus); - i = ReadDOC(docptr, 2k_ECCStatus); - } - - /* Check the ECC Status */ - if (i & 0x80) { - int nb_errors; - /* There was an ECC error */ -#ifdef ECC_DEBUG - printf("DiskOnChip ECC Error: Read at %lx\n", (long)from); -#endif - /* Read the ECC syndrom through the DiskOnChip ECC logic. - These syndrome will be all ZERO when there is no error */ - for (i = 0; i < 6; i++) { - syndrome[i] = - ReadDOC(docptr, ECCSyndrome0 + i); - } - nb_errors = doc_decode_ecc(buf, syndrome); - -#ifdef ECC_DEBUG - printf("Errors corrected: %x\n", nb_errors); -#endif - if (nb_errors < 0) { - /* We return error, but have actually done the read. Not that - this can be told to user-space, via sys_read(), but at least - MTD-aware stuff can know about it by checking *retlen */ - printf("ECC Errors at %lx\n", (long)from); - ret = DOC_EECC; - } - } - -#ifdef PSYCHO_DEBUG - printf("ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long)from, eccbuf[0], eccbuf[1], eccbuf[2], - eccbuf[3], eccbuf[4], eccbuf[5]); -#endif - - /* disable the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr , ECCConf); - } - - /* according to 11.4.1, we need to wait for the busy line - * drop if we read to the end of the page. */ - if(0 == ((from + *retlen) & 0x1ff)) - { - DoC_WaitReady(this); - } - - return ret; -} - -int doc_write_ecc(struct DiskOnChip* this, loff_t to, size_t len, - size_t * retlen, const u_char * buf, - u_char * eccbuf) -{ - int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */ - unsigned long docptr; - volatile char dummy; - int len256 = 0; - struct Nand *mychip; - - docptr = this->virtadr; - - /* Don't allow write past end of device */ - if (to >= this->totlen) { - puts ("Out of flash\n"); - return DOC_EINVAL; - } - - /* Don't allow a single write to cross a 512-byte block boundary */ - if (to + len > ((to | 0x1ff) + 1)) - len = ((to | 0x1ff) + 1) - to; - - /* The ECC will not be calculated correctly if less than 512 is written */ - if (len != 0x200 && eccbuf) - printf("ECC needs a full sector write (adr: %lx size %lx)\n", - (long) to, (long) len); - - /* printf("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */ - - /* Find the chip which is to be used and select it */ - mychip = &this->chips[shr(to, this->chipshift)]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* Set device to main plane of flash */ - DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); - DoC_Command(this, - (!this->page256 - && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, - CDSN_CTRL_WP); - - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO); - - if (eccbuf) { - /* Prime the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, ECCConf); - WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); - } else { - /* disable the ECC engine */ - WriteDOC(DOC_ECC_RESET, docptr, ECCConf); - WriteDOC(DOC_ECC_DIS, docptr, ECCConf); - } - - /* treat crossing 256-byte sector for 2M x 8bits devices */ - if (this->page256 && to + len > (to | 0xff) + 1) { - len256 = (to | 0xff) + 1 - to; - DoC_WriteBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - - DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); - /* There's an implicit DoC_WaitReady() in DoC_Command */ - - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - - if (ReadDOC_(docptr, this->ioreg) & 1) { - puts ("Error programming flash\n"); - /* Error in programming */ - *retlen = 0; - return DOC_EIO; - } - - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0, - CDSN_CTRL_ECC_IO); - } - - DoC_WriteBuf(this, &buf[len256], len - len256); - - if (eccbuf) { - WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, - CDSNControl); - - if (DoC_is_Millennium(this)) { - WriteDOC(0, docptr, NOP); - WriteDOC(0, docptr, NOP); - WriteDOC(0, docptr, NOP); - } else { - WriteDOC_(0, docptr, this->ioreg); - WriteDOC_(0, docptr, this->ioreg); - WriteDOC_(0, docptr, this->ioreg); - } - - /* Read the ECC data through the DiskOnChip ECC logic */ - for (di = 0; di < 6; di++) { - eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di); - } - - /* Reset the ECC engine */ - WriteDOC(DOC_ECC_DIS, docptr, ECCConf); - -#ifdef PSYCHO_DEBUG - printf - ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", - (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], - eccbuf[4], eccbuf[5]); -#endif - } - - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - - DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); - /* There's an implicit DoC_WaitReady() in DoC_Command */ - - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - - if (ReadDOC_(docptr, this->ioreg) & 1) { - puts ("Error programming flash\n"); - /* Error in programming */ - *retlen = 0; - return DOC_EIO; - } - - /* Let the caller know we completed it */ - *retlen = len; - - if (eccbuf) { - unsigned char x[8]; - size_t dummy; - int ret; - - /* Write the ECC data to flash */ - for (di=0; di<6; di++) - x[di] = eccbuf[di]; - - x[6]=0x55; - x[7]=0x55; - - ret = doc_write_oob(this, to, 8, &dummy, x); - return ret; - } - return 0; -} - -int doc_read_oob(struct DiskOnChip* this, loff_t ofs, size_t len, - size_t * retlen, u_char * buf) -{ - int len256 = 0, ret; - unsigned long docptr; - struct Nand *mychip; - - docptr = this->virtadr; - - mychip = &this->chips[shr(ofs, this->chipshift)]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* update address for 2M x 8bit devices. OOB starts on the second */ - /* page to maintain compatibility with doc_read_ecc. */ - if (this->page256) { - if (!(ofs & 0x8)) - ofs += 0x100; - else - ofs -= 0x8; - } - - DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0); - - /* treat crossing 8-byte OOB data for 2M x 8bit devices */ - /* Note: datasheet says it should automaticaly wrap to the */ - /* next OOB block, but it didn't work here. mf. */ - if (this->page256 && ofs + len > (ofs | 0x7) + 1) { - len256 = (ofs | 0x7) + 1 - ofs; - DoC_ReadBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), - CDSN_CTRL_WP, 0); - } - - DoC_ReadBuf(this, &buf[len256], len - len256); - - *retlen = len; - /* Reading the full OOB data drops us off of the end of the page, - * causing the flash device to go into busy mode, so we need - * to wait until ready 11.4.1 and Toshiba TC58256FT docs */ - - ret = DoC_WaitReady(this); - - return ret; - -} - -int doc_write_oob(struct DiskOnChip* this, loff_t ofs, size_t len, - size_t * retlen, const u_char * buf) -{ - int len256 = 0; - unsigned long docptr = this->virtadr; - struct Nand *mychip = &this->chips[shr(ofs, this->chipshift)]; - volatile int dummy; - -#ifdef PSYCHO_DEBUG - printf("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n", - (long)ofs, len, buf[0], buf[1], buf[2], buf[3], - buf[8], buf[9], buf[14],buf[15]); -#endif - - /* Find the chip which is to be used and select it */ - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - /* disable the ECC engine */ - WriteDOC (DOC_ECC_RESET, docptr, ECCConf); - WriteDOC (DOC_ECC_DIS, docptr, ECCConf); - - /* Reset the chip, see Software Requirement 11.4 item 1. */ - DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); - - /* issue the Read2 command to set the pointer to the Spare Data Area. */ - DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); - - /* update address for 2M x 8bit devices. OOB starts on the second */ - /* page to maintain compatibility with doc_read_ecc. */ - if (this->page256) { - if (!(ofs & 0x8)) - ofs += 0x100; - else - ofs -= 0x8; - } - - /* issue the Serial Data In command to initial the Page Program process */ - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0); - - /* treat crossing 8-byte OOB data for 2M x 8bit devices */ - /* Note: datasheet says it should automaticaly wrap to the */ - /* next OOB block, but it didn't work here. mf. */ - if (this->page256 && ofs + len > (ofs | 0x7) + 1) { - len256 = (ofs | 0x7) + 1 - ofs; - DoC_WriteBuf(this, buf, len256); - - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - DoC_Command(this, NAND_CMD_STATUS, 0); - /* DoC_WaitReady() is implicit in DoC_Command */ - - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - - if (ReadDOC_(docptr, this->ioreg) & 1) { - puts ("Error programming oob data\n"); - /* There was an error */ - *retlen = 0; - return DOC_EIO; - } - DoC_Command(this, NAND_CMD_SEQIN, 0); - DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0); - } - - DoC_WriteBuf(this, &buf[len256], len - len256); - - DoC_Command(this, NAND_CMD_PAGEPROG, 0); - DoC_Command(this, NAND_CMD_STATUS, 0); - /* DoC_WaitReady() is implicit in DoC_Command */ - - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - - if (ReadDOC_(docptr, this->ioreg) & 1) { - puts ("Error programming oob data\n"); - /* There was an error */ - *retlen = 0; - return DOC_EIO; - } - - *retlen = len; - return 0; - -} - -int doc_erase(struct DiskOnChip* this, loff_t ofs, size_t len) -{ - volatile int dummy; - unsigned long docptr; - struct Nand *mychip; - - if (ofs & (this->erasesize-1) || len & (this->erasesize-1)) { - puts ("Offset and size must be sector aligned\n"); - return DOC_EINVAL; - } - - docptr = this->virtadr; - - /* FIXME: Do this in the background. Use timers or schedule_task() */ - while(len) { - mychip = &this->chips[shr(ofs, this->chipshift)]; - - if (this->curfloor != mychip->floor) { - DoC_SelectFloor(this, mychip->floor); - DoC_SelectChip(this, mychip->chip); - } else if (this->curchip != mychip->chip) { - DoC_SelectChip(this, mychip->chip); - } - this->curfloor = mychip->floor; - this->curchip = mychip->chip; - - DoC_Command(this, NAND_CMD_ERASE1, 0); - DoC_Address(this, ADDR_PAGE, ofs, 0, 0); - DoC_Command(this, NAND_CMD_ERASE2, 0); - - DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); - - dummy = ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(this, 2); - - if (ReadDOC_(docptr, this->ioreg) & 1) { - printf("Error erasing at 0x%lx\n", (long)ofs); - /* There was an error */ - goto callback; - } - ofs += this->erasesize; - len -= this->erasesize; - } - - callback: - return 0; -} - -static inline int doccheck(unsigned long potential, unsigned long physadr) -{ - unsigned long window=potential; - unsigned char tmp, ChipID; -#ifndef DOC_PASSIVE_PROBE - unsigned char tmp2; -#endif - - /* Routine copied from the Linux DOC driver */ - -#ifdef CONFIG_SYS_DOCPROBE_55AA - /* Check for 0x55 0xAA signature at beginning of window, - this is no longer true once we remove the IPL (for Millennium */ - if (ReadDOC(window, Sig1) != 0x55 || ReadDOC(window, Sig2) != 0xaa) - return 0; -#endif /* CONFIG_SYS_DOCPROBE_55AA */ - -#ifndef DOC_PASSIVE_PROBE - /* It's not possible to cleanly detect the DiskOnChip - the - * bootup procedure will put the device into reset mode, and - * it's not possible to talk to it without actually writing - * to the DOCControl register. So we store the current contents - * of the DOCControl register's location, in case we later decide - * that it's not a DiskOnChip, and want to put it back how we - * found it. - */ - tmp2 = ReadDOC(window, DOCControl); - - /* Reset the DiskOnChip ASIC */ - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, - window, DOCControl); - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, - window, DOCControl); - - /* Enable the DiskOnChip ASIC */ - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, - window, DOCControl); - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, - window, DOCControl); -#endif /* !DOC_PASSIVE_PROBE */ - - ChipID = ReadDOC(window, ChipID); - - switch (ChipID) { - case DOC_ChipID_Doc2k: - /* Check the TOGGLE bit in the ECC register */ - tmp = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT; - if ((ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT) != tmp) - return ChipID; - break; - - case DOC_ChipID_DocMil: - /* Check the TOGGLE bit in the ECC register */ - tmp = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT; - if ((ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT) != tmp) - return ChipID; - break; - - default: -#ifndef CONFIG_SYS_DOCPROBE_55AA -/* - * if the ID isn't the DoC2000 or DoCMillenium ID, so we can assume - * the DOC is missing - */ -# if 0 - printf("Possible DiskOnChip with unknown ChipID %2.2X found at 0x%lx\n", - ChipID, physadr); -# endif -#endif -#ifndef DOC_PASSIVE_PROBE - /* Put back the contents of the DOCControl register, in case it's not - * actually a DiskOnChip. - */ - WriteDOC(tmp2, window, DOCControl); -#endif - return 0; - } - - puts ("DiskOnChip failed TOGGLE test, dropping.\n"); - -#ifndef DOC_PASSIVE_PROBE - /* Put back the contents of the DOCControl register: it's not a DiskOnChip */ - WriteDOC(tmp2, window, DOCControl); -#endif - return 0; -} - -void doc_probe(unsigned long physadr) -{ - struct DiskOnChip *this = NULL; - int i=0, ChipID; - - if ((ChipID = doccheck(physadr, physadr))) { - - for (i=0; i<CONFIG_SYS_MAX_DOC_DEVICE; i++) { - if (doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN) { - this = doc_dev_desc + i; - break; - } - } - - if (!this) { - puts ("Cannot allocate memory for data structures.\n"); - return; - } - - if (curr_device == -1) - curr_device = i; - - memset((char *)this, 0, sizeof(struct DiskOnChip)); - - this->virtadr = physadr; - this->physadr = physadr; - this->ChipID = ChipID; - - DoC2k_init(this); - } else { - puts ("No DiskOnChip found\n"); - } -} -#else -void doc_probe(unsigned long physadr) {} -#endif diff --git a/common/cmd_jffs2.c b/common/cmd_jffs2.c index 4db4a83..372ccb2 100644 --- a/common/cmd_jffs2.c +++ b/common/cmd_jffs2.c @@ -96,12 +96,8 @@ #include <cramfs/cramfs_fs.h> #if defined(CONFIG_CMD_NAND) -#ifdef CONFIG_NAND_LEGACY -#include <linux/mtd/nand_legacy.h> -#else /* !CONFIG_NAND_LEGACY */ #include <linux/mtd/nand.h> #include <nand.h> -#endif /* !CONFIG_NAND_LEGACY */ #endif #if defined(CONFIG_CMD_ONENAND) @@ -187,12 +183,7 @@ static int mtd_device_validate(u8 type, u8 num, u32 *size) } else if (type == MTD_DEV_TYPE_NAND) { #if defined(CONFIG_JFFS2_NAND) && defined(CONFIG_CMD_NAND) if (num < CONFIG_SYS_MAX_NAND_DEVICE) { -#ifndef CONFIG_NAND_LEGACY *size = nand_info[num].size; -#else - extern struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE]; - *size = nand_dev_desc[num].totlen; -#endif return 0; } @@ -267,17 +258,11 @@ static int mtd_id_parse(const char *id, const char **ret_id, u8 *dev_type, u8 *d static inline u32 get_part_sector_size_nand(struct mtdids *id) { #if defined(CONFIG_JFFS2_NAND) && defined(CONFIG_CMD_NAND) -#if defined(CONFIG_NAND_LEGACY) - extern struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE]; - - return nand_dev_desc[id->num].erasesize; -#else nand_info_t *nand; nand = &nand_info[id->num]; return nand->erasesize; -#endif #else BUG(); return 0; diff --git a/common/cmd_mtdparts.c b/common/cmd_mtdparts.c index 2d1446e..665995d 100644 --- a/common/cmd_mtdparts.c +++ b/common/cmd_mtdparts.c @@ -94,12 +94,8 @@ #include <linux/mtd/mtd.h> #if defined(CONFIG_CMD_NAND) -#ifdef CONFIG_NAND_LEGACY -#include <linux/mtd/nand_legacy.h> -#else /* !CONFIG_NAND_LEGACY */ #include <linux/mtd/nand.h> #include <nand.h> -#endif /* !CONFIG_NAND_LEGACY */ #endif #if defined(CONFIG_CMD_ONENAND) @@ -462,9 +458,6 @@ static int part_del(struct mtd_device *dev, struct part_info *part) } } -#ifdef CONFIG_NAND_LEGACY - jffs2_free_cache(part); -#endif list_del(&part->link); free(part); dev->num_parts--; @@ -491,9 +484,6 @@ static void part_delall(struct list_head *head) list_for_each_safe(entry, n, head) { part_tmp = list_entry(entry, struct part_info, link); -#ifdef CONFIG_NAND_LEGACY - jffs2_free_cache(part_tmp); -#endif list_del(entry); free(part_tmp); } diff --git a/common/cmd_nand.c b/common/cmd_nand.c index 2f70521..158a55f 100644 --- a/common/cmd_nand.c +++ b/common/cmd_nand.c @@ -11,7 +11,6 @@ #include <common.h> -#ifndef CONFIG_NAND_LEGACY /* * * New NAND support @@ -688,414 +687,3 @@ U_BOOT_CMD(nboot, 4, 1, do_nandboot, "[partition] | [[[loadAddr] dev] offset]" ); #endif - -#else /* CONFIG_NAND_LEGACY */ -/* - * - * Legacy NAND support - to be phased out - * - */ -#include <command.h> -#include <malloc.h> -#include <asm/io.h> -#include <watchdog.h> - -#ifdef CONFIG_show_boot_progress -# include <status_led.h> -# define show_boot_progress(arg) show_boot_progress(arg) -#else -# define show_boot_progress(arg) -#endif - -#if defined(CONFIG_CMD_NAND) -#include <linux/mtd/nand_legacy.h> -#if 0 -#include <linux/mtd/nand_ids.h> -#include <jffs2/jffs2.h> -#endif - -#ifdef CONFIG_OMAP1510 -void archflashwp(void *archdata, int wp); -#endif - -#define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1))) - -#undef NAND_DEBUG -#undef PSYCHO_DEBUG - -/* ****************** WARNING ********************* - * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will - * erase (or at least attempt to erase) blocks that are marked - * bad. This can be very handy if you are _sure_ that the block - * is OK, say because you marked a good block bad to test bad - * block handling and you are done testing, or if you have - * accidentally marked blocks bad. - * - * Erasing factory marked bad blocks is a _bad_ idea. If the - * erase succeeds there is no reliable way to find them again, - * and attempting to program or erase bad blocks can affect - * the data in _other_ (good) blocks. - */ -#define ALLOW_ERASE_BAD_DEBUG 0 - -#define CONFIG_MTD_NAND_ECC /* enable ECC */ -#define CONFIG_MTD_NAND_ECC_JFFS2 - -/* bits for nand_legacy_rw() `cmd'; or together as needed */ -#define NANDRW_READ 0x01 -#define NANDRW_WRITE 0x00 -#define NANDRW_JFFS2 0x02 -#define NANDRW_JFFS2_SKIP 0x04 - -/* - * Imports from nand_legacy.c - */ -extern struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE]; -extern int curr_device; -extern int nand_legacy_erase(struct nand_chip *nand, size_t ofs, - size_t len, int clean); -extern int nand_legacy_rw(struct nand_chip *nand, int cmd, size_t start, - size_t len, size_t *retlen, u_char *buf); -extern void nand_print(struct nand_chip *nand); -extern void nand_print_bad(struct nand_chip *nand); -extern int nand_read_oob(struct nand_chip *nand, size_t ofs, - size_t len, size_t *retlen, u_char *buf); -extern int nand_write_oob(struct nand_chip *nand, size_t ofs, - size_t len, size_t *retlen, const u_char *buf); - - -int do_nand (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[]) -{ - int rcode = 0; - - switch (argc) { - case 0: - case 1: - cmd_usage(cmdtp); - return 1; - case 2: - if (strcmp (argv[1], "info") == 0) { - int i; - - putc ('\n'); - - for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; ++i) { - if (nand_dev_desc[i].ChipID == - NAND_ChipID_UNKNOWN) - continue; /* list only known devices */ - printf ("Device %d: ", i); - nand_print (&nand_dev_desc[i]); - } - return 0; - - } else if (strcmp (argv[1], "device") == 0) { - if ((curr_device < 0) - || (curr_device >= CONFIG_SYS_MAX_NAND_DEVICE)) { - puts ("\nno devices available\n"); - return 1; - } - printf ("\nDevice %d: ", curr_device); - nand_print (&nand_dev_desc[curr_device]); - return 0; - - } else if (strcmp (argv[1], "bad") == 0) { - if ((curr_device < 0) - || (curr_device >= CONFIG_SYS_MAX_NAND_DEVICE)) { - puts ("\nno devices available\n"); - return 1; - } - printf ("\nDevice %d bad blocks:\n", curr_device); - nand_print_bad (&nand_dev_desc[curr_device]); - return 0; - - } - cmd_usage(cmdtp); - return 1; - case 3: - if (strcmp (argv[1], "device") == 0) { - int dev = (int) simple_strtoul (argv[2], NULL, 10); - - printf ("\nDevice %d: ", dev); - if (dev >= CONFIG_SYS_MAX_NAND_DEVICE) { - puts ("unknown device\n"); - return 1; - } - nand_print (&nand_dev_desc[dev]); - /*nand_print (dev); */ - - if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) { - return 1; - } - - curr_device = dev; - - puts ("... is now current device\n"); - - return 0; - } else if (strcmp (argv[1], "erase") == 0 - && strcmp (argv[2], "clean") == 0) { - struct nand_chip *nand = &nand_dev_desc[curr_device]; - ulong off = 0; - ulong size = nand->totlen; - int ret; - - printf ("\nNAND erase: device %d offset %ld, size %ld ... ", curr_device, off, size); - - ret = nand_legacy_erase (nand, off, size, 1); - - printf ("%s\n", ret ? "ERROR" : "OK"); - - return ret; - } - - cmd_usage(cmdtp); - return 1; - default: - /* at least 4 args */ - - if (strncmp (argv[1], "read", 4) == 0 || - strncmp (argv[1], "write", 5) == 0) { - ulong addr = simple_strtoul (argv[2], NULL, 16); - off_t off = simple_strtoul (argv[3], NULL, 16); - size_t size = simple_strtoul (argv[4], NULL, 16); - int cmd = (strncmp (argv[1], "read", 4) == 0) ? - NANDRW_READ : NANDRW_WRITE; - size_t total; - int ret; - char *cmdtail = strchr (argv[1], '.'); - - if (cmdtail && !strncmp (cmdtail, ".oob", 2)) { - /* read out-of-band data */ - if (cmd & NANDRW_READ) { - ret = nand_read_oob (nand_dev_desc + curr_device, - off, size, &total, - (u_char *) addr); - } else { - ret = nand_write_oob (nand_dev_desc + curr_device, - off, size, &total, - (u_char *) addr); - } - return ret; - } else if (cmdtail && !strncmp (cmdtail, ".jffs2s", 7)) { - cmd |= NANDRW_JFFS2; /* skip bad blocks (on read too) */ - if (cmd & NANDRW_READ) - cmd |= NANDRW_JFFS2_SKIP; /* skip bad blocks (on read too) */ - } else if (cmdtail && !strncmp (cmdtail, ".jffs2", 2)) - cmd |= NANDRW_JFFS2; /* skip bad blocks */ -#ifdef SXNI855T - /* need ".e" same as ".j" for compatibility with older units */ - else if (cmdtail && !strcmp (cmdtail, ".e")) - cmd |= NANDRW_JFFS2; /* skip bad blocks */ -#endif -#ifdef CONFIG_SYS_NAND_SKIP_BAD_DOT_I - /* need ".i" same as ".jffs2s" for compatibility with older units (esd) */ - /* ".i" for image -> read skips bad block (no 0xff) */ - else if (cmdtail && !strcmp (cmdtail, ".i")) { - cmd |= NANDRW_JFFS2; /* skip bad blocks (on read too) */ - if (cmd & NANDRW_READ) - cmd |= NANDRW_JFFS2_SKIP; /* skip bad blocks (on read too) */ - } -#endif /* CONFIG_SYS_NAND_SKIP_BAD_DOT_I */ - else if (cmdtail) { - cmd_usage(cmdtp); - return 1; - } - - printf ("\nNAND %s: device %d offset %ld, size %lu ...\n", - (cmd & NANDRW_READ) ? "read" : "write", - curr_device, off, (ulong)size); - - ret = nand_legacy_rw (nand_dev_desc + curr_device, - cmd, off, size, - &total, (u_char *) addr); - - printf (" %d bytes %s: %s\n", total, - (cmd & NANDRW_READ) ? "read" : "written", - ret ? "ERROR" : "OK"); - - return ret; - } else if (strcmp (argv[1], "erase") == 0 && - (argc == 4 || strcmp ("clean", argv[2]) == 0)) { - int clean = argc == 5; - ulong off = - simple_strtoul (argv[2 + clean], NULL, 16); - ulong size = - simple_strtoul (argv[3 + clean], NULL, 16); - int ret; - - printf ("\nNAND erase: device %d offset %ld, size %ld ...\n", - curr_device, off, size); - - ret = nand_legacy_erase (nand_dev_desc + curr_device, - off, size, clean); - - printf ("%s\n", ret ? "ERROR" : "OK"); - - return ret; - } else { - cmd_usage(cmdtp); - rcode = 1; - } - - return rcode; - } -} - -U_BOOT_CMD( - nand, 5, 1, do_nand, - "legacy NAND sub-system", - "info - show available NAND devices\n" - "nand device [dev] - show or set current device\n" - "nand read[.jffs2[s]] addr off size\n" - "nand write[.jffs2] addr off size - read/write `size' bytes starting\n" - " at offset `off' to/from memory address `addr'\n" - "nand erase [clean] [off size] - erase `size' bytes from\n" - " offset `off' (entire device if not specified)\n" - "nand bad - show bad blocks\n" - "nand read.oob addr off size - read out-of-band data\n" - "nand write.oob addr off size - read out-of-band data" -); - -int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) -{ - char *boot_device = NULL; - char *ep; - int dev; - ulong cnt; - ulong addr; - ulong offset = 0; - image_header_t *hdr; - int rcode = 0; -#if defined(CONFIG_FIT) - const void *fit_hdr = NULL; -#endif - - show_boot_progress (52); - switch (argc) { - case 1: - addr = CONFIG_SYS_LOAD_ADDR; - boot_device = getenv ("bootdevice"); - break; - case 2: - addr = simple_strtoul(argv[1], NULL, 16); - boot_device = getenv ("bootdevice"); - break; - case 3: - addr = simple_strtoul(argv[1], NULL, 16); - boot_device = argv[2]; - break; - case 4: - addr = simple_strtoul(argv[1], NULL, 16); - boot_device = argv[2]; - offset = simple_strtoul(argv[3], NULL, 16); - break; - default: - cmd_usage(cmdtp); - show_boot_progress (-53); - return 1; - } - - show_boot_progress (53); - if (!boot_device) { - puts ("\n** No boot device **\n"); - show_boot_progress (-54); - return 1; - } - show_boot_progress (54); - - dev = simple_strtoul(boot_device, &ep, 16); - - if ((dev >= CONFIG_SYS_MAX_NAND_DEVICE) || - (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) { - printf ("\n** Device %d not available\n", dev); - show_boot_progress (-55); - return 1; - } - show_boot_progress (55); - - printf ("\nLoading from device %d: %s at 0x%lx (offset 0x%lx)\n", - dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR, - offset); - - if (nand_legacy_rw (nand_dev_desc + dev, NANDRW_READ, offset, - SECTORSIZE, NULL, (u_char *)addr)) { - printf ("** Read error on %d\n", dev); - show_boot_progress (-56); - return 1; - } - show_boot_progress (56); - - switch (genimg_get_format ((void *)addr)) { - case IMAGE_FORMAT_LEGACY: - hdr = (image_header_t *)addr; - image_print_contents (hdr); - - cnt = image_get_image_size (hdr); - cnt -= SECTORSIZE; - break; -#if defined(CONFIG_FIT) - case IMAGE_FORMAT_FIT: - fit_hdr = (const void *)addr; - puts ("Fit image detected...\n"); - - cnt = fit_get_size (fit_hdr); - break; -#endif - default: - show_boot_progress (-57); - puts ("** Unknown image type\n"); - return 1; - } - show_boot_progress (57); - - if (nand_legacy_rw (nand_dev_desc + dev, NANDRW_READ, - offset + SECTORSIZE, cnt, NULL, - (u_char *)(addr+SECTORSIZE))) { - printf ("** Read error on %d\n", dev); - show_boot_progress (-58); - return 1; - } - show_boot_progress (58); - -#if defined(CONFIG_FIT) - /* This cannot be done earlier, we need complete FIT image in RAM first */ - if (genimg_get_format ((void *)addr) == IMAGE_FORMAT_FIT) { - if (!fit_check_format (fit_hdr)) { - show_boot_progress (-150); - puts ("** Bad FIT image format\n"); - return 1; - } - show_boot_progress (151); - fit_print_contents (fit_hdr); - } -#endif - - /* Loading ok, update default load address */ - - load_addr = addr; - - /* Check if we should attempt an auto-start */ - if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) { - char *local_args[2]; - extern int do_bootm (cmd_tbl_t *, int, int, char *[]); - - local_args[0] = argv[0]; - local_args[1] = NULL; - - printf ("Automatic boot of image at addr 0x%08lx ...\n", addr); - - do_bootm (cmdtp, 0, 1, local_args); - rcode = 1; - } - return rcode; -} - -U_BOOT_CMD( - nboot, 4, 1, do_nandboot, - "boot from NAND device", - "loadAddr dev" -); - -#endif - -#endif /* CONFIG_NAND_LEGACY */ diff --git a/common/docecc.c b/common/docecc.c deleted file mode 100644 index 3412aff..0000000 --- a/common/docecc.c +++ /dev/null @@ -1,513 +0,0 @@ -/* - * ECC algorithm for M-systems disk on chip. We use the excellent Reed - * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the - * GNU GPL License. The rest is simply to convert the disk on chip - * syndrom into a standard syndom. - * - * Author: Fabrice Bellard (fabrice.bellard@netgem.com) - * Copyright (C) 2000 Netgem S.A. - * - * $Id: docecc.c,v 1.4 2001/10/02 15:05:13 dwmw2 Exp $ - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - */ - -#include <config.h> -#include <common.h> -#include <malloc.h> - -#undef ECC_DEBUG -#undef PSYCHO_DEBUG - -#include <linux/mtd/doc2000.h> - -/* need to undef it (from asm/termbits.h) */ -#undef B0 - -#define MM 10 /* Symbol size in bits */ -#define KK (1023-4) /* Number of data symbols per block */ -#define B0 510 /* First root of generator polynomial, alpha form */ -#define PRIM 1 /* power of alpha used to generate roots of generator poly */ -#define NN ((1 << MM) - 1) - -typedef unsigned short dtype; - -/* 1+x^3+x^10 */ -static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; - -/* This defines the type used to store an element of the Galois Field - * used by the code. Make sure this is something larger than a char if - * if anything larger than GF(256) is used. - * - * Note: unsigned char will work up to GF(256) but int seems to run - * faster on the Pentium. - */ -typedef int gf; - -/* No legal value in index form represents zero, so - * we need a special value for this purpose - */ -#define A0 (NN) - -/* Compute x % NN, where NN is 2**MM - 1, - * without a slow divide - */ -static inline gf -modnn(int x) -{ - while (x >= NN) { - x -= NN; - x = (x >> MM) + (x & NN); - } - return x; -} - -#define CLEAR(a,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = 0;\ -} - -#define COPY(a,b,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = (b)[ci];\ -} - -#define COPYDOWN(a,b,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = (b)[ci];\ -} - -#define Ldec 1 - -/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m] - lookup tables: index->polynomial form alpha_to[] contains j=alpha**i; - polynomial form -> index form index_of[j=alpha**i] = i - alpha=2 is the primitive element of GF(2**m) - HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: - Let @ represent the primitive element commonly called "alpha" that - is the root of the primitive polynomial p(x). Then in GF(2^m), for any - 0 <= i <= 2^m-2, - @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) - where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation - of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for - example the polynomial representation of @^5 would be given by the binary - representation of the integer "alpha_to[5]". - Similarily, index_of[] can be used as follows: - As above, let @ represent the primitive element of GF(2^m) that is - the root of the primitive polynomial p(x). In order to find the power - of @ (alpha) that has the polynomial representation - a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) - we consider the integer "i" whose binary representation with a(0) being LSB - and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry - "index_of[i]". Now, @^index_of[i] is that element whose polynomial - representation is (a(0),a(1),a(2),...,a(m-1)). - NOTE: - The element alpha_to[2^m-1] = 0 always signifying that the - representation of "@^infinity" = 0 is (0,0,0,...,0). - Similarily, the element index_of[0] = A0 always signifying - that the power of alpha which has the polynomial representation - (0,0,...,0) is "infinity". - -*/ - -static void -generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1]) -{ - register int i, mask; - - mask = 1; - Alpha_to[MM] = 0; - for (i = 0; i < MM; i++) { - Alpha_to[i] = mask; - Index_of[Alpha_to[i]] = i; - /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ - if (Pp[i] != 0) - Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */ - mask <<= 1; /* single left-shift */ - } - Index_of[Alpha_to[MM]] = MM; - /* - * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by - * poly-repr of @^i shifted left one-bit and accounting for any @^MM - * term that may occur when poly-repr of @^i is shifted. - */ - mask >>= 1; - for (i = MM + 1; i < NN; i++) { - if (Alpha_to[i - 1] >= mask) - Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); - else - Alpha_to[i] = Alpha_to[i - 1] << 1; - Index_of[Alpha_to[i]] = i; - } - Index_of[0] = A0; - Alpha_to[NN] = 0; -} - -/* - * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content - * of the feedback shift register after having processed the data and - * the ECC. - * - * Return number of symbols corrected, or -1 if codeword is illegal - * or uncorrectable. If eras_pos is non-null, the detected error locations - * are written back. NOTE! This array must be at least NN-KK elements long. - * The corrected data are written in eras_val[]. They must be xor with the data - * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] . - * - * First "no_eras" erasures are declared by the calling program. Then, the - * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). - * If the number of channel errors is not greater than "t_after_eras" the - * transmitted codeword will be recovered. Details of algorithm can be found - * in R. Blahut's "Theory ... of Error-Correcting Codes". - - * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure - * will result. The decoder *could* check for this condition, but it would involve - * extra time on every decoding operation. - * */ -static int -eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1], - gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK], - int no_eras) -{ - int deg_lambda, el, deg_omega; - int i, j, r,k; - gf u,q,tmp,num1,num2,den,discr_r; - gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly - * and syndrome poly */ - gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; - gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK]; - int syn_error, count; - - syn_error = 0; - for(i=0;i<NN-KK;i++) - syn_error |= bb[i]; - - if (!syn_error) { - /* if remainder is zero, data[] is a codeword and there are no - * errors to correct. So return data[] unmodified - */ - count = 0; - goto finish; - } - - for(i=1;i<=NN-KK;i++){ - s[i] = bb[0]; - } - for(j=1;j<NN-KK;j++){ - if(bb[j] == 0) - continue; - tmp = Index_of[bb[j]]; - - for(i=1;i<=NN-KK;i++) - s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)]; - } - - /* undo the feedback register implicit multiplication and convert - syndromes to index form */ - - for(i=1;i<=NN-KK;i++) { - tmp = Index_of[s[i]]; - if (tmp != A0) - tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM); - s[i] = tmp; - } - - CLEAR(&lambda[1],NN-KK); - lambda[0] = 1; - - if (no_eras > 0) { - /* Init lambda to be the erasure locator polynomial */ - lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])]; - for (i = 1; i < no_eras; i++) { - u = modnn(PRIM*eras_pos[i]); - for (j = i+1; j > 0; j--) { - tmp = Index_of[lambda[j - 1]]; - if(tmp != A0) - lambda[j] ^= Alpha_to[modnn(u + tmp)]; - } - } -#ifdef ECC_DEBUG - /* Test code that verifies the erasure locator polynomial just constructed - Needed only for decoder debugging. */ - - /* find roots of the erasure location polynomial */ - for(i=1;i<=no_eras;i++) - reg[i] = Index_of[lambda[i]]; - count = 0; - for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { - q = 1; - for (j = 1; j <= no_eras; j++) - if (reg[j] != A0) { - reg[j] = modnn(reg[j] + j); - q ^= Alpha_to[reg[j]]; - } - if (q != 0) - continue; - /* store root and error location number indices */ - root[count] = i; - loc[count] = k; - count++; - } - if (count != no_eras) { - printf("\n lambda(x) is WRONG\n"); - count = -1; - goto finish; - } -#ifdef PSYCHO_DEBUG - printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); - for (i = 0; i < count; i++) - printf("%d ", loc[i]); - printf("\n"); -#endif -#endif - } - for(i=0;i<NN-KK+1;i++) - b[i] = Index_of[lambda[i]]; - - /* - * Begin Berlekamp-Massey algorithm to determine error+erasure - * locator polynomial - */ - r = no_eras; - el = no_eras; - while (++r <= NN-KK) { /* r is the step number */ - /* Compute discrepancy at the r-th step in poly-form */ - discr_r = 0; - for (i = 0; i < r; i++){ - if ((lambda[i] != 0) && (s[r - i] != A0)) { - discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; - } - } - discr_r = Index_of[discr_r]; /* Index form */ - if (discr_r == A0) { - /* 2 lines below: B(x) <-- x*B(x) */ - COPYDOWN(&b[1],b,NN-KK); - b[0] = A0; - } else { - /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ - t[0] = lambda[0]; - for (i = 0 ; i < NN-KK; i++) { - if(b[i] != A0) - t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])]; - else - t[i+1] = lambda[i+1]; - } - if (2 * el <= r + no_eras - 1) { - el = r + no_eras - el; - /* - * 2 lines below: B(x) <-- inv(discr_r) * - * lambda(x) - */ - for (i = 0; i <= NN-KK; i++) - b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); - } else { - /* 2 lines below: B(x) <-- x*B(x) */ - COPYDOWN(&b[1],b,NN-KK); - b[0] = A0; - } - COPY(lambda,t,NN-KK+1); - } - } - - /* Convert lambda to index form and compute deg(lambda(x)) */ - deg_lambda = 0; - for(i=0;i<NN-KK+1;i++){ - lambda[i] = Index_of[lambda[i]]; - if(lambda[i] != A0) - deg_lambda = i; - } - /* - * Find roots of the error+erasure locator polynomial by Chien - * Search - */ - COPY(®[1],&lambda[1],NN-KK); - count = 0; /* Number of roots of lambda(x) */ - for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { - q = 1; - for (j = deg_lambda; j > 0; j--){ - if (reg[j] != A0) { - reg[j] = modnn(reg[j] + j); - q ^= Alpha_to[reg[j]]; - } - } - if (q != 0) - continue; - /* store root (index-form) and error location number */ - root[count] = i; - loc[count] = k; - /* If we've already found max possible roots, - * abort the search to save time - */ - if(++count == deg_lambda) - break; - } - if (deg_lambda != count) { - /* - * deg(lambda) unequal to number of roots => uncorrectable - * error detected - */ - count = -1; - goto finish; - } - /* - * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo - * x**(NN-KK)). in index form. Also find deg(omega). - */ - deg_omega = 0; - for (i = 0; i < NN-KK;i++){ - tmp = 0; - j = (deg_lambda < i) ? deg_lambda : i; - for(;j >= 0; j--){ - if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) - tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; - } - if(tmp != 0) - deg_omega = i; - omega[i] = Index_of[tmp]; - } - omega[NN-KK] = A0; - - /* - * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = - * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form - */ - for (j = count-1; j >=0; j--) { - num1 = 0; - for (i = deg_omega; i >= 0; i--) { - if (omega[i] != A0) - num1 ^= Alpha_to[modnn(omega[i] + i * root[j])]; - } - num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; - den = 0; - - /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ - for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { - if(lambda[i+1] != A0) - den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; - } - if (den == 0) { -#ifdef ECC_DEBUG - printf("\n ERROR: denominator = 0\n"); -#endif - /* Convert to dual- basis */ - count = -1; - goto finish; - } - /* Apply error to data */ - if (num1 != 0) { - eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; - } else { - eras_val[j] = 0; - } - } - finish: - for(i=0;i<count;i++) - eras_pos[i] = loc[i]; - return count; -} - -/***************************************************************************/ -/* The DOC specific code begins here */ - -#define SECTOR_SIZE 512 -/* The sector bytes are packed into NB_DATA MM bits words */ -#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM) - -/* - * Correct the errors in 'sector[]' by using 'ecc1[]' which is the - * content of the feedback shift register applyied to the sector and - * the ECC. Return the number of errors corrected (and correct them in - * sector), or -1 if error - */ -int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6]) -{ - int parity, i, nb_errors; - gf bb[NN - KK + 1]; - gf error_val[NN-KK]; - int error_pos[NN-KK], pos, bitpos, index, val; - dtype *Alpha_to, *Index_of; - - /* init log and exp tables here to save memory. However, it is slower */ - Alpha_to = malloc((NN + 1) * sizeof(dtype)); - if (!Alpha_to) - return -1; - - Index_of = malloc((NN + 1) * sizeof(dtype)); - if (!Index_of) { - free(Alpha_to); - return -1; - } - - generate_gf(Alpha_to, Index_of); - - parity = ecc1[1]; - - bb[0] = (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8); - bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6); - bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4); - bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2); - - nb_errors = eras_dec_rs(Alpha_to, Index_of, bb, - error_val, error_pos, 0); - if (nb_errors <= 0) - goto the_end; - - /* correct the errors */ - for(i=0;i<nb_errors;i++) { - pos = error_pos[i]; - if (pos >= NB_DATA && pos < KK) { - nb_errors = -1; - goto the_end; - } - if (pos < NB_DATA) { - /* extract bit position (MSB first) */ - pos = 10 * (NB_DATA - 1 - pos) - 6; - /* now correct the following 10 bits. At most two bytes - can be modified since pos is even */ - index = (pos >> 3) ^ 1; - bitpos = pos & 7; - if ((index >= 0 && index < SECTOR_SIZE) || - index == (SECTOR_SIZE + 1)) { - val = error_val[i] >> (2 + bitpos); - parity ^= val; - if (index < SECTOR_SIZE) - sector[index] ^= val; - } - index = ((pos >> 3) + 1) ^ 1; - bitpos = (bitpos + 10) & 7; - if (bitpos == 0) - bitpos = 8; - if ((index >= 0 && index < SECTOR_SIZE) || - index == (SECTOR_SIZE + 1)) { - val = error_val[i] << (8 - bitpos); - parity ^= val; - if (index < SECTOR_SIZE) - sector[index] ^= val; - } - } - } - - /* use parity to test extra errors */ - if ((parity & 0xff) != 0) - nb_errors = -1; - - the_end: - free(Alpha_to); - free(Index_of); - return nb_errors; -} diff --git a/common/env_nand.c b/common/env_nand.c index 90a1c45..8052fb7 100644 --- a/common/env_nand.c +++ b/common/env_nand.c @@ -57,10 +57,6 @@ #define CONFIG_ENV_RANGE CONFIG_ENV_SIZE #endif -int nand_legacy_rw (struct nand_chip* nand, int cmd, - size_t start, size_t len, - size_t * retlen, u_char * buf); - /* references to names in env_common.c */ extern uchar default_environment[]; extern int default_environment_size; |