summaryrefslogtreecommitdiff
path: root/common
diff options
context:
space:
mode:
Diffstat (limited to 'common')
-rw-r--r--common/cmd_nand.c2040
1 files changed, 277 insertions, 1763 deletions
diff --git a/common/cmd_nand.c b/common/cmd_nand.c
index 5648ab2..ae4c68a 100644
--- a/common/cmd_nand.c
+++ b/common/cmd_nand.c
@@ -1,18 +1,15 @@
/*
- * Driver for NAND support, Rick Bronson
- * borrowed heavily from:
- * (c) 1999 Machine Vision Holdings, Inc.
- * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
- *
- * Added 16-bit nand support
- * (C) 2004 Texas Instruments
+ * Rick Bronson and Pantelis Antoniou
*/
#include <common.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
#include <command.h>
-#include <malloc.h>
-#include <asm/io.h>
#include <watchdog.h>
+#include <malloc.h>
+#include <asm/byteorder.h>
#ifdef CONFIG_SHOW_BOOT_PROGRESS
# include <status_led.h>
@@ -21,290 +18,311 @@
# define SHOW_BOOT_PROGRESS(arg)
#endif
-#if (CONFIG_COMMANDS & CFG_CMD_NAND)
-
-#include <linux/mtd/nand.h>
-#include <linux/mtd/nand_ids.h>
#include <jffs2/jffs2.h>
+#include <nand.h>
-#ifdef CONFIG_OMAP1510
-void archflashwp(void *archdata, int wp);
-#endif
+extern nand_info_t nand_info[]; /* info for NAND chips */
-#define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1)))
+static int nand_dump_oob(nand_info_t *nand, ulong off)
+{
+ return 0;
+}
-/*
- * Definition of the out of band configuration structure
- */
-struct nand_oob_config {
- int ecc_pos[6]; /* position of ECC bytes inside oob */
- int badblock_pos; /* position of bad block flag inside oob -1 = inactive */
- int eccvalid_pos; /* position of ECC valid flag inside oob -1 = inactive */
-} oob_config = { {0}, 0, 0};
-
-#undef NAND_DEBUG
-#undef PSYCHO_DEBUG
-
-/* ****************** WARNING *********************
- * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will
- * erase (or at least attempt to erase) blocks that are marked
- * bad. This can be very handy if you are _sure_ that the block
- * is OK, say because you marked a good block bad to test bad
- * block handling and you are done testing, or if you have
- * accidentally marked blocks bad.
- *
- * Erasing factory marked bad blocks is a _bad_ idea. If the
- * erase succeeds there is no reliable way to find them again,
- * and attempting to program or erase bad blocks can affect
- * the data in _other_ (good) blocks.
- */
-#define ALLOW_ERASE_BAD_DEBUG 0
+static int nand_dump(nand_info_t *nand, ulong off)
+{
+ int i;
+ u_char *buf, *p;
+
+ buf = malloc(nand->oobblock + nand->oobsize);
+ if (!buf) {
+ puts("No memory for page buffer\n");
+ return 1;
+ }
+ off &= ~(nand->oobblock - 1);
+ i = nand_read_raw(nand, buf, off, nand->oobblock, nand->oobsize);
+ if (i < 0) {
+ printf("Error (%d) reading page %08x\n", i, off);
+ free(buf);
+ return 1;
+ }
+ printf("Page %08x dump:\n", off);
+ i = nand->oobblock >> 4; p = buf;
+ while (i--) {
+ printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x"
+ " %02x %02x %02x %02x %02x %02x %02x %02x\n",
+ p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
+ p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
+ p += 16;
+ }
+ puts("OOB:\n");
+ i = nand->oobsize >> 3;
+ while (i--) {
+ printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x\n",
+ p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
+ p += 8;
+ }
+ free(buf);
-#define CONFIG_MTD_NAND_ECC /* enable ECC */
-#define CONFIG_MTD_NAND_ECC_JFFS2
+ return 0;
+}
-/* bits for nand_rw() `cmd'; or together as needed */
-#define NANDRW_READ 0x01
-#define NANDRW_WRITE 0x00
-#define NANDRW_JFFS2 0x02
-#define NANDRW_JFFS2_SKIP 0x04
+/* ------------------------------------------------------------------------- */
-/*
- * Function Prototypes
- */
-static void nand_print(struct nand_chip *nand);
-int nand_rw (struct nand_chip* nand, int cmd,
- size_t start, size_t len,
- size_t * retlen, u_char * buf);
-int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean);
-static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
- size_t * retlen, u_char *buf, u_char *ecc_code);
-static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
- size_t * retlen, const u_char * buf, u_char * ecc_code);
-static void nand_print_bad(struct nand_chip *nand);
-static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
- size_t * retlen, u_char * buf);
-static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
- size_t * retlen, const u_char * buf);
-static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
-#ifdef CONFIG_MTD_NAND_ECC
-static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
-static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
+static void
+arg_off_size(int argc, char *argv[], ulong *off, ulong *size, ulong totsize)
+{
+ *off = 0;
+ *size = 0;
+
+#if defined(CONFIG_JFFS2_NAND) && defined(CFG_JFFS_CUSTOM_PART)
+ if (argc >= 1 && strcmp(argv[0], "partition") == 0) {
+ int part_num;
+ struct part_info *part;
+ const char *partstr;
+
+ if (argc >= 2)
+ partstr = argv[1];
+ else
+ partstr = getenv("partition");
+
+ if (partstr)
+ part_num = (int)simple_strtoul(partstr, NULL, 10);
+ else
+ part_num = 0;
+
+ part = jffs2_part_info(part_num);
+ if (part == NULL) {
+ printf("\nInvalid partition %d\n", part_num);
+ return;
+ }
+ *size = part->size;
+ *off = (ulong)part->offset;
+ } else
#endif
+ {
+ if (argc >= 1)
+ *off = (ulong)simple_strtoul(argv[0], NULL, 16);
+ else
+ *off = 0;
-struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};
+ if (argc >= 2)
+ *size = (ulong)simple_strtoul(argv[1], NULL, 16);
+ else
+ *size = totsize - *off;
-/* Current NAND Device */
-static int curr_device = -1;
+ }
-/* ------------------------------------------------------------------------- */
+}
-int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+int do_nand(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
- int rcode = 0;
+ int i, dev, ret;
+ ulong addr, off, size;
+ char *cmd, *s;
+ nand_info_t *nand;
- switch (argc) {
- case 0:
- case 1:
- printf ("Usage:\n%s\n", cmdtp->usage);
- return 1;
- case 2:
- if (strcmp(argv[1],"info") == 0) {
- int i;
+ /* at least two arguments please */
+ if (argc < 2)
+ goto usage;
- putc ('\n');
+ cmd = argv[1];
- for (i=0; i<CFG_MAX_NAND_DEVICE; ++i) {
- if(nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN)
- continue; /* list only known devices */
- printf ("Device %d: ", i);
- nand_print(&nand_dev_desc[i]);
- }
- return 0;
+ if (strcmp(cmd, "info") == 0) {
- } else if (strcmp(argv[1],"device") == 0) {
- if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
- puts ("\nno devices available\n");
- return 1;
+ putc('\n');
+ for (i = 0; i < CFG_MAX_NAND_DEVICE; i++) {
+ if (nand_info[i].name)
+ printf("Device %d: %s\n", i, nand_info[i].name);
}
- printf ("\nDevice %d: ", curr_device);
- nand_print(&nand_dev_desc[curr_device]);
return 0;
+ }
- } else if (strcmp(argv[1],"bad") == 0) {
- if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) {
- puts ("\nno devices available\n");
+ if (strcmp(cmd, "device") == 0) {
+
+ if (argc < 3) {
+ if ((nand_curr_device < 0) ||
+ (nand_curr_device >= CFG_MAX_NAND_DEVICE))
+ puts("\nno devices available\n");
+ else
+ printf("\nDevice %d: %s\n", nand_curr_device,
+ nand_info[nand_curr_device].name);
+ return 0;
+ }
+ dev = (int)simple_strtoul(argv[2], NULL, 10);
+ if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) {
+ puts("No such device\n");
return 1;
}
- printf ("\nDevice %d bad blocks:\n", curr_device);
- nand_print_bad(&nand_dev_desc[curr_device]);
+ printf("Device %d: %s", dev, nand_info[dev].name);
+ puts("... is now current device\n");
+ nand_curr_device = dev;
return 0;
+ }
+
+ if (strcmp(cmd, "bad") != 0 && strcmp(cmd, "erase") != 0 &&
+ strncmp(cmd, "dump", 4) != 0 &&
+ strncmp(cmd, "read", 4) != 0 && strncmp(cmd, "write", 5) != 0
+#ifdef CONFIG_MTD_NAND_UNSAFE
+ && strcmp(cmd, "scrub") != 0 && strcmp(cmd, "biterr") != 0
+ && strcmp(cmd, "markbad") != 0
+#endif
+ )
+ goto usage;
+ /* the following commands operate on the current device */
+ if (nand_curr_device < 0 || nand_curr_device >= CFG_MAX_NAND_DEVICE ||
+ !nand_info[nand_curr_device].name) {
+ puts("\nno devices available\n");
+ return 1;
}
- printf ("Usage:\n%s\n", cmdtp->usage);
- return 1;
- case 3:
- if (strcmp(argv[1],"device") == 0) {
- int dev = (int)simple_strtoul(argv[2], NULL, 10);
+ nand = &nand_info[nand_curr_device];
- printf ("\nDevice %d: ", dev);
- if (dev >= CFG_MAX_NAND_DEVICE) {
- puts ("unknown device\n");
- return 1;
- }
- nand_print(&nand_dev_desc[dev]);
- /*nand_print (dev);*/
+ if (strcmp(cmd, "bad") == 0) {
+ printf("\nDevice %d bad blocks:\n", nand_curr_device);
+ for (off = 0; off < nand->size; off += nand->erasesize)
+ if (nand_block_isbad(nand, off))
+ printf(" %08x\n", off);
+ return 0;
+ }
+
+ if (strcmp(cmd, "erase") == 0
+#ifdef CONFIG_MTD_NAND_UNSAFE
+ || strcmp(cmd, "scrub") == 0
+#endif
+ ) {
- if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) {
+#ifdef CONFIG_MTD_NAND_UNSAFE
+ i = strcmp(cmd, "scrub") == 0; /* 1 scrub, 0 = erase */
+#endif
+
+ arg_off_size(argc - 2, argv + 2, &off, &size, nand->size);
+ if (off == 0 && size == 0)
return 1;
- }
- curr_device = dev;
+ printf("\nNAND %s: device %d offset 0x%x, size 0x%x ",
+#ifdef CONFIG_MTD_NAND_UNSAFE
+ i ? "scrub" :
+#endif
+ "erase",
+ nand_curr_device, off, size);
- puts ("... is now current device\n");
+#ifdef CONFIG_MTD_NAND_UNSAFE
+ if (i)
+ ret = nand_scrub(nand, off, size);
+ else
+#endif
+ ret = nand_erase(nand, off, size);
- return 0;
+ printf("%s\n", ret ? "ERROR" : "OK");
+
+ return ret == 0 ? 0 : 1;
}
- else if (strcmp(argv[1],"erase") == 0 && strcmp(argv[2], "clean") == 0) {
- struct nand_chip* nand = &nand_dev_desc[curr_device];
- ulong off = 0;
- ulong size = nand->totlen;
- int ret;
- printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
- curr_device, off, size);
+ if (strncmp(cmd, "dump", 4) == 0) {
+ if (argc < 3)
+ goto usage;
- ret = nand_erase (nand, off, size, 1);
+ s = strchr(cmd, '.');
+ off = (int)simple_strtoul(argv[2], NULL, 16);
- printf("%s\n", ret ? "ERROR" : "OK");
+ if (s != NULL && strcmp(s, ".oob") == 0)
+ ret = nand_dump_oob(nand, off);
+ else
+ ret = nand_dump(nand, off);
+
+ return ret == 0 ? 1 : 0;
- return ret;
}
- printf ("Usage:\n%s\n", cmdtp->usage);
- return 1;
- default:
- /* at least 4 args */
-
- if (strncmp(argv[1], "read", 4) == 0 ||
- strncmp(argv[1], "write", 5) == 0) {
- ulong addr = simple_strtoul(argv[2], NULL, 16);
- ulong off = simple_strtoul(argv[3], NULL, 16);
- ulong size = simple_strtoul(argv[4], NULL, 16);
- int cmd = (strncmp(argv[1], "read", 4) == 0) ?
- NANDRW_READ : NANDRW_WRITE;
- int ret, total;
- char* cmdtail = strchr(argv[1], '.');
-
- if (cmdtail && !strncmp(cmdtail, ".oob", 2)) {
- /* read out-of-band data */
- if (cmd & NANDRW_READ) {
- ret = nand_read_oob(nand_dev_desc + curr_device,
- off, size, &total,
- (u_char*)addr);
- }
- else {
- ret = nand_write_oob(nand_dev_desc + curr_device,
- off, size, &total,
- (u_char*)addr);
- }
- return ret;
- }
- else if (cmdtail && !strncmp(cmdtail, ".jffs2", 2))
- cmd |= NANDRW_JFFS2; /* skip bad blocks */
- else if (cmdtail && !strncmp(cmdtail, ".jffs2s", 2)) {
- cmd |= NANDRW_JFFS2; /* skip bad blocks (on read too) */
- if (cmd & NANDRW_READ)
- cmd |= NANDRW_JFFS2_SKIP; /* skip bad blocks (on read too) */
- }
-#ifdef SXNI855T
- /* need ".e" same as ".j" for compatibility with older units */
- else if (cmdtail && !strcmp(cmdtail, ".e"))
- cmd |= NANDRW_JFFS2; /* skip bad blocks */
-#endif
-#ifdef CFG_NAND_SKIP_BAD_DOT_I
- /* need ".i" same as ".jffs2s" for compatibility with older units (esd) */
- /* ".i" for image -> read skips bad block (no 0xff) */
- else if (cmdtail && !strcmp(cmdtail, ".i")) {
- cmd |= NANDRW_JFFS2; /* skip bad blocks (on read too) */
- if (cmd & NANDRW_READ)
- cmd |= NANDRW_JFFS2_SKIP; /* skip bad blocks (on read too) */
- }
-#endif /* CFG_NAND_SKIP_BAD_DOT_I */
- else if (cmdtail) {
- printf ("Usage:\n%s\n", cmdtp->usage);
+ /* read write */
+ if (strncmp(cmd, "read", 4) == 0 || strncmp(cmd, "write", 5) == 0) {
+ if (argc < 4)
+ goto usage;
+/*
+ s = strchr(cmd, '.');
+ clean = CLEAN_NONE;
+ if (s != NULL) {
+ if (strcmp(s, ".jffs2") == 0 || strcmp(s, ".e") == 0
+ || strcmp(s, ".i"))
+ clean = CLEAN_JFFS2;
+ }
+*/
+ addr = (ulong)simple_strtoul(argv[2], NULL, 16);
+
+ arg_off_size(argc - 3, argv + 3, &off, &size, nand->size);
+ if (off == 0 && size == 0)
return 1;
- }
- printf ("\nNAND %s: device %d offset %ld, size %ld ... ",
- (cmd & NANDRW_READ) ? "read" : "write",
- curr_device, off, size);
+ i = strncmp(cmd, "read", 4) == 0; /* 1 = read, 0 = write */
+ printf("\nNAND %s: device %d offset %u, size %u ... ",
+ i ? "read" : "write", nand_curr_device, off, size);
- ret = nand_rw(nand_dev_desc + curr_device, cmd, off, size,
- &total, (u_char*)addr);
+ if (i)
+ ret = nand_read(nand, off, &size, (u_char *)addr);
+ else
+ ret = nand_write(nand, off, &size, (u_char *)addr);
- printf (" %d bytes %s: %s\n", total,
- (cmd & NANDRW_READ) ? "read" : "written",
- ret ? "ERROR" : "OK");
+ printf(" %d bytes %s: %s\n", size,
+ i ? "read" : "written", ret ? "ERROR" : "OK");
- return ret;
- } else if (strcmp(argv[1],"erase") == 0 &&
- (argc == 4 || strcmp("clean", argv[2]) == 0)) {
- int clean = argc == 5;
- ulong off = simple_strtoul(argv[2 + clean], NULL, 16);
- ulong size = simple_strtoul(argv[3 + clean], NULL, 16);
- int ret;
+ return ret == 0 ? 0 : 1;
+ }
+#ifdef CONFIG_MTD_NAND_UNSAFE
+ if (strcmp(cmd, "markbad") == 0 || strcmp(cmd, "biterr") == 0) {
+ if (argc < 3)
+ goto usage;
- printf ("\nNAND erase: device %d offset %ld, size %ld ... ",
- curr_device, off, size);
+ i = strcmp(cmd, "biterr") == 0;
- ret = nand_erase (nand_dev_desc + curr_device, off, size, clean);
+ off = (int)simple_strtoul(argv[2], NULL, 16);
- printf("%s\n", ret ? "ERROR" : "OK");
+ if (i)
+ ret = nand_make_bit_error(nand, off);
+ else
+ ret = nand_mark_bad(nand, off);
- return ret;
- } else {
- printf ("Usage:\n%s\n", cmdtp->usage);
- rcode = 1;
+ return ret == 0 ? 0 : 1;
}
+#endif
- return rcode;
- }
+usage:
+ printf("Usage:\n%s\n", cmdtp->usage);
+ return 1;
}
-U_BOOT_CMD(
- nand, 5, 1, do_nand,
+U_BOOT_CMD(nand, 5, 1, do_nand,
"nand - NAND sub-system\n",
- "info - show available NAND devices\n"
- "nand device [dev] - show or set current device\n"
- "nand read[.jffs2[s]] addr off size\n"
- "nand write[.jffs2] addr off size - read/write `size' bytes starting\n"
+ "info - show available NAND devices\n"
+ "nand device [dev] - show or set current device\n"
+ "nand read[.jffs2] - addr off size\n"
+ "nand write[.jffs2] - addr off size - read/write `size' bytes starting\n"
" at offset `off' to/from memory address `addr'\n"
"nand erase [clean] [off size] - erase `size' bytes from\n"
" offset `off' (entire device if not specified)\n"
"nand bad - show bad blocks\n"
- "nand read.oob addr off size - read out-of-band data\n"
- "nand write.oob addr off size - read out-of-band data\n"
-);
+ "nand dump[.oob] off - dump page\n"
+ "nand scrub - really clean NAND erasing bad blocks (UNSAFE)\n"
+ "nand markbad off - mark bad block at offset (UNSAFE)\n"
+ "nand biterr off - make a bit error at offset (UNSAFE)\n");
-int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+int do_nandboot(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
char *boot_device = NULL;
char *ep;
int dev;
- ulong cnt;
- ulong addr;
- ulong offset = 0;
+ int r;
+ ulong addr, cnt, offset = 0;
image_header_t *hdr;
- int rcode = 0;
+ nand_info_t *nand;
+
switch (argc) {
case 1:
addr = CFG_LOAD_ADDR;
- boot_device = getenv ("bootdevice");
+ boot_device = getenv("bootdevice");
break;
case 2:
addr = simple_strtoul(argv[1], NULL, 16);
- boot_device = getenv ("bootdevice");
+ boot_device = getenv("bootdevice");
break;
case 3:
addr = simple_strtoul(argv[1], NULL, 16);
@@ -316,55 +334,53 @@ int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
offset = simple_strtoul(argv[3], NULL, 16);
break;
default:
- printf ("Usage:\n%s\n", cmdtp->usage);
- SHOW_BOOT_PROGRESS (-1);
+ printf("Usage:\n%s\n", cmdtp->usage);
+ SHOW_BOOT_PROGRESS(-1);
return 1;
}
if (!boot_device) {
- puts ("\n** No boot device **\n");
- SHOW_BOOT_PROGRESS (-1);
+ puts("\n** No boot device **\n");
+ SHOW_BOOT_PROGRESS(-1);
return 1;
}
dev = simple_strtoul(boot_device, &ep, 16);
- if ((dev >= CFG_MAX_NAND_DEVICE) ||
- (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) {
- printf ("\n** Device %d not available\n", dev);
- SHOW_BOOT_PROGRESS (-1);
+ if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) {
+ printf("\n** Device %d not available\n", dev);
+ SHOW_BOOT_PROGRESS(-1);
return 1;
}
- printf ("\nLoading from device %d: %s at 0x%lx (offset 0x%lx)\n",
- dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR,
- offset);
+ nand = &nand_info[dev];
+ printf("\nLoading from device %d: %s (offset 0x%lx)\n",
+ dev, nand->name, offset);
- if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset,
- SECTORSIZE, NULL, (u_char *)addr)) {
- printf ("** Read error on %d\n", dev);
- SHOW_BOOT_PROGRESS (-1);
+ cnt = nand->oobblock;
+ r = nand_read(nand, offset, &cnt, (u_char *) addr);
+ if (r) {
+ printf("** Read error on %d\n", dev);
+ SHOW_BOOT_PROGRESS(-1);
return 1;
}
- hdr = (image_header_t *)addr;
-
- if (ntohl(hdr->ih_magic) == IH_MAGIC) {
-
- print_image_hdr (hdr);
+ hdr = (image_header_t *) addr;
- cnt = (ntohl(hdr->ih_size) + sizeof(image_header_t));
- cnt -= SECTORSIZE;
- } else {
- printf ("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
- SHOW_BOOT_PROGRESS (-1);
+ if (ntohl(hdr->ih_magic) != IH_MAGIC) {
+ printf("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic);
+ SHOW_BOOT_PROGRESS(-1);
return 1;
}
- if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset + SECTORSIZE, cnt,
- NULL, (u_char *)(addr+SECTORSIZE))) {
- printf ("** Read error on %d\n", dev);
- SHOW_BOOT_PROGRESS (-1);
+ print_image_hdr(hdr);
+
+ cnt = (ntohl(hdr->ih_size) + sizeof (image_header_t));
+
+ r = nand_read(nand, offset, &cnt, (u_char *) addr);
+ if (r) {
+ printf("** Read error on %d\n", dev);
+ SHOW_BOOT_PROGRESS(-1);
return 1;
}
@@ -373,1526 +389,24 @@ int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
load_addr = addr;
/* Check if we should attempt an auto-start */
- if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
+ if (((ep = getenv("autostart")) != NULL) && (strcmp(ep, "yes") == 0)) {
char *local_args[2];
- extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
+ extern int do_bootm(cmd_tbl_t *, int, int, char *[]);
local_args[0] = argv[0];
local_args[1] = NULL;
- printf ("Automatic boot of image at addr 0x%08lx ...\n", addr);
-
- do_bootm (cmdtp, 0, 1, local_args);
- rcode = 1;
- }
- return rcode;
-}
+ printf("Automatic boot of image at addr 0x%08lx ...\n", addr);
-U_BOOT_CMD(
- nboot, 4, 1, do_nandboot,
- "nboot - boot from NAND device\n",
- "loadAddr dev\n"
-);
-
-/* returns 0 if block containing pos is OK:
- * valid erase block and
- * not marked bad, or no bad mark position is specified
- * returns 1 if marked bad or otherwise invalid
- */
-int check_block (struct nand_chip *nand, unsigned long pos)
-{
- int retlen;
- uint8_t oob_data;
- uint16_t oob_data16[6];
- int page0 = pos & (-nand->erasesize);
- int page1 = page0 + nand->oobblock;
- int badpos = oob_config.badblock_pos;
-
- if (pos >= nand->totlen)
+ do_bootm(cmdtp, 0, 1, local_args);
return 1;
-
- if (badpos < 0)
- return 0; /* no way to check, assume OK */
-
- if (nand->bus16) {
- if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16)
- || (oob_data16[2] & 0xff00) != 0xff00)
- return 1;
- if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16)
- || (oob_data16[2] & 0xff00) != 0xff00)
- return 1;
- } else {
- /* Note - bad block marker can be on first or second page */
- if (nand_read_oob(nand, page0 + badpos, 1, &retlen, &oob_data)
- || oob_data != 0xff
- || nand_read_oob (nand, page1 + badpos, 1, &retlen, &oob_data)
- || oob_data != 0xff)
- return 1;
- }
-
- return 0;
-}
-
-/* print bad blocks in NAND flash */
-static void nand_print_bad(struct nand_chip* nand)
-{
- unsigned long pos;
-
- for (pos = 0; pos < nand->totlen; pos += nand->erasesize) {
- if (check_block(nand, pos))
- printf(" 0x%8.8lx\n", pos);
- }
- puts("\n");
-}
-
-/* cmd: 0: NANDRW_WRITE write, fail on bad block
- * 1: NANDRW_READ read, fail on bad block
- * 2: NANDRW_WRITE | NANDRW_JFFS2 write, skip bad blocks
- * 3: NANDRW_READ | NANDRW_JFFS2 read, data all 0xff for bad blocks
- * 7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks
- */
-int nand_rw (struct nand_chip* nand, int cmd,
- size_t start, size_t len,
- size_t * retlen, u_char * buf)
-{
- int ret = 0, n, total = 0;
- char eccbuf[6];
- /* eblk (once set) is the start of the erase block containing the
- * data being processed.
- */
- unsigned long eblk = ~0; /* force mismatch on first pass */
- unsigned long erasesize = nand->erasesize;
-
- while (len) {
- if ((start & (-erasesize)) != eblk) {
- /* have crossed into new erase block, deal with
- * it if it is sure marked bad.
- */
- eblk = start & (-erasesize); /* start of block */
- if (check_block(nand, eblk)) {
- if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
- while (len > 0 &&
- start - eblk < erasesize) {
- *(buf++) = 0xff;
- ++start;
- ++total;
- --len;
- }
- continue;
- } else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) {
- start += erasesize;
- continue;
- } else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
- /* skip bad block */
- start += erasesize;
- continue;
- } else {
- ret = 1;
- break;
- }
- }
- }
- /* The ECC will not be calculated correctly if
- less than 512 is written or read */
- /* Is request at least 512 bytes AND it starts on a proper boundry */
- if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200))
- printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n");
-
- if (cmd & NANDRW_READ) {
- ret = nand_read_ecc(nand, start,
- min(len, eblk + erasesize - start),
- &n, (u_char*)buf, eccbuf);
- } else {
- ret = nand_write_ecc(nand, start,
- min(len, eblk + erasesize - start),
- &n, (u_char*)buf, eccbuf);
- }
-
- if (ret)
- break;
-
- start += n;
- buf += n;
- total += n;
- len -= n;
- }
- if (retlen)
- *retlen = total;
-
- return ret;
-}
-
-static void nand_print(struct nand_chip *nand)
-{
- if (nand->numchips > 1) {
- printf("%s at 0x%lx,\n"
- "\t %d chips %s, size %d MB, \n"
- "\t total size %ld MB, sector size %ld kB\n",
- nand->name, nand->IO_ADDR, nand->numchips,
- nand->chips_name, 1 << (nand->chipshift - 20),
- nand->totlen >> 20, nand->erasesize >> 10);
- }
- else {
- printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR);
- print_size(nand->totlen, ", ");
- print_size(nand->erasesize, " sector)\n");
- }
-}
-
-/* ------------------------------------------------------------------------- */
-
-static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
-{
- /* This is inline, to optimise the common case, where it's ready instantly */
- int ret = 0;
-
-#ifdef NAND_NO_RB /* in config file, shorter delays currently wrap accesses */
- if(ale_wait)
- NAND_WAIT_READY(nand); /* do the worst case 25us wait */
- else
- udelay(10);
-#else /* has functional r/b signal */
- NAND_WAIT_READY(nand);
-#endif
- return ret;
-}
-
-/* NanD_Command: Send a flash command to the flash chip */
-
-static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
-{
- unsigned long nandptr = nand->IO_ADDR;
-
- /* Assert the CLE (Command Latch Enable) line to the flash chip */
- NAND_CTL_SETCLE(nandptr);
-
- /* Send the command */
- WRITE_NAND_COMMAND(command, nandptr);
-
- /* Lower the CLE line */
- NAND_CTL_CLRCLE(nandptr);
-
-#ifdef NAND_NO_RB
- if(command == NAND_CMD_RESET){
- u_char ret_val;
- NanD_Command(nand, NAND_CMD_STATUS);
- do {
- ret_val = READ_NAND(nandptr);/* wait till ready */
- } while((ret_val & 0x40) != 0x40);
- }
-#endif
- return NanD_WaitReady(nand, 0);
-}
-
-/* NanD_Address: Set the current address for the flash chip */
-
-static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
-{
- unsigned long nandptr;
- int i;
-
- nandptr = nand->IO_ADDR;
-
- /* Assert the ALE (Address Latch Enable) line to the flash chip */
- NAND_CTL_SETALE(nandptr);
-
- /* Send the address */
- /* Devices with 256-byte page are addressed as:
- * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
- * there is no device on the market with page256
- * and more than 24 bits.
- * Devices with 512-byte page are addressed as:
- * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
- * 25-31 is sent only if the chip support it.
- * bit 8 changes the read command to be sent
- * (NAND_CMD_READ0 or NAND_CMD_READ1).
- */
-
- if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
- WRITE_NAND_ADDRESS(ofs, nandptr);
-
- ofs = ofs >> nand->page_shift;
-
- if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
- for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) {
- WRITE_NAND_ADDRESS(ofs, nandptr);
- }
- }
-
- /* Lower the ALE line */
- NAND_CTL_CLRALE(nandptr);
-
- /* Wait for the chip to respond */
- return NanD_WaitReady(nand, 1);
-}
-
-/* NanD_SelectChip: Select a given flash chip within the current floor */
-
-static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
-{
- /* Wait for it to be ready */
- return NanD_WaitReady(nand, 0);
-}
-
-/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
-
-static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
-{
- int mfr, id, i;
-
- NAND_ENABLE_CE(nand); /* set pin low */
- /* Reset the chip */
- if (NanD_Command(nand, NAND_CMD_RESET)) {
-#ifdef NAND_DEBUG
- printf("NanD_Command (reset) for %d,%d returned true\n",
- floor, chip);
-#endif
- NAND_DISABLE_CE(nand); /* set pin high */
- return 0;
- }
-
- /* Read the NAND chip ID: 1. Send ReadID command */
- if (NanD_Command(nand, NAND_CMD_READID)) {
-#ifdef NAND_DEBUG
- printf("NanD_Command (ReadID) for %d,%d returned true\n",
- floor, chip);
-#endif
- NAND_DISABLE_CE(nand); /* set pin high */
- return 0;
}
-
- /* Read the NAND chip ID: 2. Send address byte zero */
- NanD_Address(nand, ADDR_COLUMN, 0);
-
- /* Read the manufacturer and device id codes from the device */
-
- mfr = READ_NAND(nand->IO_ADDR);
-
- id = READ_NAND(nand->IO_ADDR);
-
- NAND_DISABLE_CE(nand); /* set pin high */
-
-#ifdef NAND_DEBUG
- printf("NanD_Command (ReadID) got %x %x\n", mfr, id);
-#endif
- if (mfr == 0xff || mfr == 0) {
- /* No response - return failure */
- return 0;
- }
-
- /* Check it's the same as the first chip we identified.
- * M-Systems say that any given nand_chip device should only
- * contain _one_ type of flash part, although that's not a
- * hardware restriction. */
- if (nand->mfr) {
- if (nand->mfr == mfr && nand->id == id) {
- return 1; /* This is another the same the first */
- } else {
- printf("Flash chip at floor %d, chip %d is different:\n",
- floor, chip);
- }
- }
-
- /* Print and store the manufacturer and ID codes. */
- for (i = 0; nand_flash_ids[i].name != NULL; i++) {
- if (mfr == nand_flash_ids[i].manufacture_id &&
- id == nand_flash_ids[i].model_id) {
-#ifdef NAND_DEBUG
- printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
- "Chip ID: 0x%2.2X (%s)\n", mfr, id,
- nand_flash_ids[i].name);
-#endif
- if (!nand->mfr) {
- nand->mfr = mfr;
- nand->id = id;
- nand->chipshift =
- nand_flash_ids[i].chipshift;
- nand->page256 = nand_flash_ids[i].page256;
- nand->eccsize = 256;
- if (nand->page256) {
- nand->oobblock = 256;
- nand->oobsize = 8;
- nand->page_shift = 8;
- } else {
- nand->oobblock = 512;
- nand->oobsize = 16;
- nand->page_shift = 9;
- }
- nand->pageadrlen = nand_flash_ids[i].pageadrlen;
- nand->erasesize = nand_flash_ids[i].erasesize;
- nand->chips_name = nand_flash_ids[i].name;
- nand->bus16 = nand_flash_ids[i].bus16;
- return 1;
- }
- return 0;
- }
- }
-
-
-#ifdef NAND_DEBUG
- /* We haven't fully identified the chip. Print as much as we know. */
- printf("Unknown flash chip found: %2.2X %2.2X\n",
- id, mfr);
-#endif
-
return 0;
}
-/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
-
-static void NanD_ScanChips(struct nand_chip *nand)
-{
- int floor, chip;
- int numchips[NAND_MAX_FLOORS];
- int maxchips = NAND_MAX_CHIPS;
- int ret = 1;
-
- nand->numchips = 0;
- nand->mfr = 0;
- nand->id = 0;
-
-
- /* For each floor, find the number of valid chips it contains */
- for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
- ret = 1;
- numchips[floor] = 0;
- for (chip = 0; chip < maxchips && ret != 0; chip++) {
-
- ret = NanD_IdentChip(nand, floor, chip);
- if (ret) {
- numchips[floor]++;
- nand->numchips++;
- }
- }
- }
-
- /* If there are none at all that we recognise, bail */
- if (!nand->numchips) {
-#ifdef NAND_DEBUG
- puts ("No NAND flash chips recognised.\n");
-#endif
- return;
- }
-
- /* Allocate an array to hold the information for each chip */
- nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
- if (!nand->chips) {
- puts ("No memory for allocating chip info structures\n");
- return;
- }
-
- ret = 0;
-
- /* Fill out the chip array with {floor, chipno} for each
- * detected chip in the device. */
- for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
- for (chip = 0; chip < numchips[floor]; chip++) {
- nand->chips[ret].floor = floor;
- nand->chips[ret].chip = chip;
- nand->chips[ret].curadr = 0;
- nand->chips[ret].curmode = 0x50;
- ret++;
- }
- }
-
- /* Calculate and print the total size of the device */
- nand->totlen = nand->numchips * (1 << nand->chipshift);
-
-#ifdef NAND_DEBUG
- printf("%d flash chips found. Total nand_chip size: %ld MB\n",
- nand->numchips, nand->totlen >> 20);
-#endif
-}
-
-/* we need to be fast here, 1 us per read translates to 1 second per meg */
-static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr)
-{
- unsigned long nandptr = nand->IO_ADDR;
-
- NanD_Command (nand, NAND_CMD_READ0);
-
- if (nand->bus16) {
- u16 val;
-
- while (cntr >= 16) {
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- cntr -= 16;
- }
-
- while (cntr > 0) {
- val = READ_NAND (nandptr);
- *data_buf++ = val & 0xff;
- *data_buf++ = val >> 8;
- cntr -= 2;
- }
- } else {
- while (cntr >= 16) {
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- *data_buf++ = READ_NAND (nandptr);
- cntr -= 16;
- }
-
- while (cntr > 0) {
- *data_buf++ = READ_NAND (nandptr);
- cntr--;
- }
- }
-}
-
-/*
- * NAND read with ECC
- */
-static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
- size_t * retlen, u_char *buf, u_char *ecc_code)
-{
- int col, page;
- int ecc_status = 0;
-#ifdef CONFIG_MTD_NAND_ECC
- int j;
- int ecc_failed = 0;
- u_char *data_poi;
- u_char ecc_calc[6];
-#endif
-
- /* Do not allow reads past end of device */
- if ((start + len) > nand->totlen) {
- printf ("%s: Attempt read beyond end of device %x %x %x\n",
- __FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen);
- *retlen = 0;
- return -1;
- }
-
- /* First we calculate the starting page */
- /*page = shr(start, nand->page_shift);*/
- page = start >> nand->page_shift;
-
- /* Get raw starting column */
- col = start & (nand->oobblock - 1);
-
- /* Initialize return value */
- *retlen = 0;
-
- /* Select the NAND device */
- NAND_ENABLE_CE(nand); /* set pin low */
-
- /* Loop until all data read */
- while (*retlen < len) {
-
-#ifdef CONFIG_MTD_NAND_ECC
- /* Do we have this page in cache ? */
- if (nand->cache_page == page)
- goto readdata;
- /* Send the read command */
- NanD_Command(nand, NAND_CMD_READ0);
- if (nand->bus16) {
- NanD_Address(nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + (col >> 1));
- } else {
- NanD_Address(nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + col);
- }
-
- /* Read in a page + oob data */
- NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize);
-
- /* copy data into cache, for read out of cache and if ecc fails */
- if (nand->data_cache) {
- memcpy (nand->data_cache, nand->data_buf,
- nand->oobblock + nand->oobsize);
- }
-
- /* Pick the ECC bytes out of the oob data */
- for (j = 0; j < 6; j++) {
- ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
- }
-
- /* Calculate the ECC and verify it */
- /* If block was not written with ECC, skip ECC */
- if (oob_config.eccvalid_pos != -1 &&
- (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {
-
- nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
- switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
- case -1:
- printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
- ecc_failed++;
- break;
- case 1:
- case 2: /* transfer ECC corrected data to cache */
- if (nand->data_cache)
- memcpy (nand->data_cache, nand->data_buf, 256);
- break;
- }
- }
-
- if (oob_config.eccvalid_pos != -1 &&
- nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {
-
- nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
- switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
- case -1:
- printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
- ecc_failed++;
- break;
- case 1:
- case 2: /* transfer ECC corrected data to cache */
- if (nand->data_cache)
- memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
- break;
- }
- }
-readdata:
- /* Read the data from ECC data buffer into return buffer */
- data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
- data_poi += col;
- if ((*retlen + (nand->oobblock - col)) >= len) {
- memcpy (buf + *retlen, data_poi, len - *retlen);
- *retlen = len;
- } else {
- memcpy (buf + *retlen, data_poi, nand->oobblock - col);
- *retlen += nand->oobblock - col;
- }
- /* Set cache page address, invalidate, if ecc_failed */
- nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;
-
- ecc_status += ecc_failed;
- ecc_failed = 0;
-
-#else
- /* Send the read command */
- NanD_Command(nand, NAND_CMD_READ0);
- if (nand->bus16) {
- NanD_Address(nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + (col >> 1));
- } else {
- NanD_Address(nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + col);
- }
-
- /* Read the data directly into the return buffer */
- if ((*retlen + (nand->oobblock - col)) >= len) {
- NanD_ReadBuf(nand, buf + *retlen, len - *retlen);
- *retlen = len;
- /* We're done */
- continue;
- } else {
- NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col);
- *retlen += nand->oobblock - col;
- }
-#endif
- /* For subsequent reads align to page boundary. */
- col = 0;
- /* Increment page address */
- page++;
- }
-
- /* De-select the NAND device */
- NAND_DISABLE_CE(nand); /* set pin high */
-
- /*
- * Return success, if no ECC failures, else -EIO
- * fs driver will take care of that, because
- * retlen == desired len and result == -EIO
- */
- return ecc_status ? -1 : 0;
-}
-
-/*
- * Nand_page_program function is used for write and writev !
- */
-static int nand_write_page (struct nand_chip *nand,
- int page, int col, int last, u_char * ecc_code)
-{
-
- int i;
- unsigned long nandptr = nand->IO_ADDR;
-
-#ifdef CONFIG_MTD_NAND_ECC
-#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
- int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
-#endif
-#endif
- /* pad oob area */
- for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
- nand->data_buf[i] = 0xff;
-
-#ifdef CONFIG_MTD_NAND_ECC
- /* Zero out the ECC array */
- for (i = 0; i < 6; i++)
- ecc_code[i] = 0x00;
-
- /* Read back previous written data, if col > 0 */
- if (col) {
- NanD_Command (nand, NAND_CMD_READ0);
- if (nand->bus16) {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + (col >> 1));
- } else {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + col);
- }
-
- if (nand->bus16) {
- u16 val;
-
- for (i = 0; i < col; i += 2) {
- val = READ_NAND (nandptr);
- nand->data_buf[i] = val & 0xff;
- nand->data_buf[i + 1] = val >> 8;
- }
- } else {
- for (i = 0; i < col; i++)
- nand->data_buf[i] = READ_NAND (nandptr);
- }
- }
-
- /* Calculate and write the ECC if we have enough data */
- if ((col < nand->eccsize) && (last >= nand->eccsize)) {
- nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
- for (i = 0; i < 3; i++) {
- nand->data_buf[(nand->oobblock +
- oob_config.ecc_pos[i])] = ecc_code[i];
- }
- if (oob_config.eccvalid_pos != -1) {
- nand->data_buf[nand->oobblock +
- oob_config.eccvalid_pos] = 0xf0;
- }
- }
-
- /* Calculate and write the second ECC if we have enough data */
- if ((nand->oobblock == 512) && (last == nand->oobblock)) {
- nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
- for (i = 3; i < 6; i++) {
- nand->data_buf[(nand->oobblock +
- oob_config.ecc_pos[i])] = ecc_code[i];
- }
- if (oob_config.eccvalid_pos != -1) {
- nand->data_buf[nand->oobblock +
- oob_config.eccvalid_pos] &= 0x0f;
- }
- }
-#endif
- /* Prepad for partial page programming !!! */
- for (i = 0; i < col; i++)
- nand->data_buf[i] = 0xff;
-
- /* Postpad for partial page programming !!! oob is already padded */
- for (i = last; i < nand->oobblock; i++)
- nand->data_buf[i] = 0xff;
-
- /* Send command to begin auto page programming */
- NanD_Command (nand, NAND_CMD_READ0);
- NanD_Command (nand, NAND_CMD_SEQIN);
- if (nand->bus16) {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + (col >> 1));
- } else {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + col);
- }
-
- /* Write out complete page of data */
- if (nand->bus16) {
- for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) {
- WRITE_NAND (nand->data_buf[i] +
- (nand->data_buf[i + 1] << 8),
- nand->IO_ADDR);
- }
- } else {
- for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
- WRITE_NAND (nand->data_buf[i], nand->IO_ADDR);
- }
-
- /* Send command to actually program the data */
- NanD_Command (nand, NAND_CMD_PAGEPROG);
- NanD_Command (nand, NAND_CMD_STATUS);
-#ifdef NAND_NO_RB
- {
- u_char ret_val;
-
- do {
- ret_val = READ_NAND (nandptr); /* wait till ready */
- } while ((ret_val & 0x40) != 0x40);
- }
-#endif
- /* See if device thinks it succeeded */
- if (READ_NAND (nand->IO_ADDR) & 0x01) {
- printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__,
- page);
- return -1;
- }
-#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
- /*
- * The NAND device assumes that it is always writing to
- * a cleanly erased page. Hence, it performs its internal
- * write verification only on bits that transitioned from
- * 1 to 0. The device does NOT verify the whole page on a
- * byte by byte basis. It is possible that the page was
- * not completely erased or the page is becoming unusable
- * due to wear. The read with ECC would catch the error
- * later when the ECC page check fails, but we would rather
- * catch it early in the page write stage. Better to write
- * no data than invalid data.
- */
-
- /* Send command to read back the page */
- if (col < nand->eccsize)
- NanD_Command (nand, NAND_CMD_READ0);
- else
- NanD_Command (nand, NAND_CMD_READ1);
- if (nand->bus16) {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + (col >> 1));
- } else {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + col);
- }
-
- /* Loop through and verify the data */
- if (nand->bus16) {
- for (i = col; i < last; i = +2) {
- if ((nand->data_buf[i] +
- (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) {
- printf ("%s: Failed write verify, page 0x%08x ",
- __FUNCTION__, page);
- return -1;
- }
- }
- } else {
- for (i = col; i < last; i++) {
- if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) {
- printf ("%s: Failed write verify, page 0x%08x ",
- __FUNCTION__, page);
- return -1;
- }
- }
- }
-
-#ifdef CONFIG_MTD_NAND_ECC
- /*
- * We also want to check that the ECC bytes wrote
- * correctly for the same reasons stated above.
- */
- NanD_Command (nand, NAND_CMD_READOOB);
- if (nand->bus16) {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + (col >> 1));
- } else {
- NanD_Address (nand, ADDR_COLUMN_PAGE,
- (page << nand->page_shift) + col);
- }
- if (nand->bus16) {
- for (i = 0; i < nand->oobsize; i += 2) {
- u16 val;
-
- val = READ_NAND (nand->IO_ADDR);
- nand->data_buf[i] = val & 0xff;
- nand->data_buf[i + 1] = val >> 8;
- }
- } else {
- for (i = 0; i < nand->oobsize; i++) {
- nand->data_buf[i] = READ_NAND (nand->IO_ADDR);
- }
- }
- for (i = 0; i < ecc_bytes; i++) {
- if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
- printf ("%s: Failed ECC write "
- "verify, page 0x%08x, "
- "%6i bytes were succesful\n",
- __FUNCTION__, page, i);
- return -1;
- }
- }
-#endif /* CONFIG_MTD_NAND_ECC */
-#endif /* CONFIG_MTD_NAND_VERIFY_WRITE */
- return 0;
-}
-
-static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
- size_t * retlen, const u_char * buf, u_char * ecc_code)
-{
- int i, page, col, cnt, ret = 0;
-
- /* Do not allow write past end of device */
- if ((to + len) > nand->totlen) {
- printf ("%s: Attempt to write past end of page\n", __FUNCTION__);
- return -1;
- }
-
- /* Shift to get page */
- page = ((int) to) >> nand->page_shift;
-
- /* Get the starting column */
- col = to & (nand->oobblock - 1);
-
- /* Initialize return length value */
- *retlen = 0;
-
- /* Select the NAND device */
-#ifdef CONFIG_OMAP1510
- archflashwp(0,0);
-#endif
-#ifdef CFG_NAND_WP
- NAND_WP_OFF();
-#endif
-
- NAND_ENABLE_CE(nand); /* set pin low */
-
- /* Check the WP bit */
- NanD_Command(nand, NAND_CMD_STATUS);
- if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
- printf ("%s: Device is write protected!!!\n", __FUNCTION__);
- ret = -1;
- goto out;
- }
-
- /* Loop until all data is written */
- while (*retlen < len) {
- /* Invalidate cache, if we write to this page */
- if (nand->cache_page == page)
- nand->cache_page = -1;
-
- /* Write data into buffer */
- if ((col + len) >= nand->oobblock) {
- for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) {
- nand->data_buf[i] = buf[(*retlen + cnt)];
- }
- } else {
- for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) {
- nand->data_buf[i] = buf[(*retlen + cnt)];
- }
- }
- /* We use the same function for write and writev !) */
- ret = nand_write_page (nand, page, col, i, ecc_code);
- if (ret)
- goto out;
-
- /* Next data start at page boundary */
- col = 0;
-
- /* Update written bytes count */
- *retlen += cnt;
-
- /* Increment page address */
- page++;
- }
-
- /* Return happy */
- *retlen = len;
-
-out:
- /* De-select the NAND device */
- NAND_DISABLE_CE(nand); /* set pin high */
-#ifdef CONFIG_OMAP1510
- archflashwp(0,1);
-#endif
-#ifdef CFG_NAND_WP
- NAND_WP_ON();
-#endif
-
- return ret;
-}
-
-/* read from the 16 bytes of oob data that correspond to a 512 byte
- * page or 2 256-byte pages.
- */
-static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
- size_t * retlen, u_char * buf)
-{
- int len256 = 0;
- struct Nand *mychip;
- int ret = 0;
-
- mychip = &nand->chips[ofs >> nand->chipshift];
-
- /* update address for 2M x 8bit devices. OOB starts on the second */
- /* page to maintain compatibility with nand_read_ecc. */
- if (nand->page256) {
- if (!(ofs & 0x8))
- ofs += 0x100;
- else
- ofs -= 0x8;
- }
-
- NAND_ENABLE_CE(nand); /* set pin low */
- NanD_Command(nand, NAND_CMD_READOOB);
- if (nand->bus16) {
- NanD_Address(nand, ADDR_COLUMN_PAGE,
- ((ofs >> nand->page_shift) << nand->page_shift) +
- ((ofs & (nand->oobblock - 1)) >> 1));
- } else {
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
- }
-
- /* treat crossing 8-byte OOB data for 2M x 8bit devices */
- /* Note: datasheet says it should automaticaly wrap to the */
- /* next OOB block, but it didn't work here. mf. */
- if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
- len256 = (ofs | 0x7) + 1 - ofs;
- NanD_ReadBuf(nand, buf, len256);
-
- NanD_Command(nand, NAND_CMD_READOOB);
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
- }
-
- NanD_ReadBuf(nand, &buf[len256], len - len256);
-
- *retlen = len;
- /* Reading the full OOB data drops us off of the end of the page,
- * causing the flash device to go into busy mode, so we need
- * to wait until ready 11.4.1 and Toshiba TC58256FT nands */
-
- ret = NanD_WaitReady(nand, 1);
- NAND_DISABLE_CE(nand); /* set pin high */
-
- return ret;
-
-}
-
-/* write to the 16 bytes of oob data that correspond to a 512 byte
- * page or 2 256-byte pages.
- */
-static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
- size_t * retlen, const u_char * buf)
-{
- int len256 = 0;
- int i;
- unsigned long nandptr = nand->IO_ADDR;
-
-#ifdef PSYCHO_DEBUG
- printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
- (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
- buf[8], buf[9], buf[14],buf[15]);
-#endif
-
- NAND_ENABLE_CE(nand); /* set pin low to enable chip */
-
- /* Reset the chip */
- NanD_Command(nand, NAND_CMD_RESET);
-
- /* issue the Read2 command to set the pointer to the Spare Data Area. */
- NanD_Command(nand, NAND_CMD_READOOB);
- if (nand->bus16) {
- NanD_Address(nand, ADDR_COLUMN_PAGE,
- ((ofs >> nand->page_shift) << nand->page_shift) +
- ((ofs & (nand->oobblock - 1)) >> 1));
- } else {
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
- }
-
- /* update address for 2M x 8bit devices. OOB starts on the second */
- /* page to maintain compatibility with nand_read_ecc. */
- if (nand->page256) {
- if (!(ofs & 0x8))
- ofs += 0x100;
- else
- ofs -= 0x8;
- }
-
- /* issue the Serial Data In command to initial the Page Program process */
- NanD_Command(nand, NAND_CMD_SEQIN);
- if (nand->bus16) {
- NanD_Address(nand, ADDR_COLUMN_PAGE,
- ((ofs >> nand->page_shift) << nand->page_shift) +
- ((ofs & (nand->oobblock - 1)) >> 1));
- } else {
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
- }
-
- /* treat crossing 8-byte OOB data for 2M x 8bit devices */
- /* Note: datasheet says it should automaticaly wrap to the */
- /* next OOB block, but it didn't work here. mf. */
- if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
- len256 = (ofs | 0x7) + 1 - ofs;
- for (i = 0; i < len256; i++)
- WRITE_NAND(buf[i], nandptr);
-
- NanD_Command(nand, NAND_CMD_PAGEPROG);
- NanD_Command(nand, NAND_CMD_STATUS);
-#ifdef NAND_NO_RB
- { u_char ret_val;
- do {
- ret_val = READ_NAND(nandptr); /* wait till ready */
- } while ((ret_val & 0x40) != 0x40);
- }
-#endif
- if (READ_NAND(nandptr) & 1) {
- puts ("Error programming oob data\n");
- /* There was an error */
- NAND_DISABLE_CE(nand); /* set pin high */
- *retlen = 0;
- return -1;
- }
- NanD_Command(nand, NAND_CMD_SEQIN);
- NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
- }
-
- if (nand->bus16) {
- for (i = len256; i < len; i += 2) {
- WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr);
- }
- } else {
- for (i = len256; i < len; i++)
- WRITE_NAND(buf[i], nandptr);
- }
-
- NanD_Command(nand, NAND_CMD_PAGEPROG);
- NanD_Command(nand, NAND_CMD_STATUS);
-#ifdef NAND_NO_RB
- { u_char ret_val;
- do {
- ret_val = READ_NAND(nandptr); /* wait till ready */
- } while ((ret_val & 0x40) != 0x40);
- }
-#endif
- if (READ_NAND(nandptr) & 1) {
- puts ("Error programming oob data\n");
- /* There was an error */
- NAND_DISABLE_CE(nand); /* set pin high */
- *retlen = 0;
- return -1;
- }
-
- NAND_DISABLE_CE(nand); /* set pin high */
- *retlen = len;
- return 0;
-
-}
-
-int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean)
-{
- /* This is defined as a structure so it will work on any system
- * using native endian jffs2 (the default).
- */
- static struct jffs2_unknown_node clean_marker = {
- JFFS2_MAGIC_BITMASK,
- JFFS2_NODETYPE_CLEANMARKER,
- 8 /* 8 bytes in this node */
- };
- unsigned long nandptr;
- struct Nand *mychip;
- int ret = 0;
-
- if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {
- printf ("Offset and size must be sector aligned, erasesize = %d\n",
- (int) nand->erasesize);
- return -1;
- }
-
- nandptr = nand->IO_ADDR;
-
- /* Select the NAND device */
-#ifdef CONFIG_OMAP1510
- archflashwp(0,0);
-#endif
-#ifdef CFG_NAND_WP
- NAND_WP_OFF();
-#endif
- NAND_ENABLE_CE(nand); /* set pin low */
-
- /* Check the WP bit */
- NanD_Command(nand, NAND_CMD_STATUS);
- if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
- printf ("nand_write_ecc: Device is write protected!!!\n");
- ret = -1;
- goto out;
- }
-
- /* Check the WP bit */
- NanD_Command(nand, NAND_CMD_STATUS);
- if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
- printf ("%s: Device is write protected!!!\n", __FUNCTION__);
- ret = -1;
- goto out;
- }
-
- /* FIXME: Do nand in the background. Use timers or schedule_task() */
- while(len) {
- /*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/
- mychip = &nand->chips[ofs >> nand->chipshift];
-
- /* always check for bad block first, genuine bad blocks
- * should _never_ be erased.
- */
- if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {
- /* Select the NAND device */
- NAND_ENABLE_CE(nand); /* set pin low */
-
- NanD_Command(nand, NAND_CMD_ERASE1);
- NanD_Address(nand, ADDR_PAGE, ofs);
- NanD_Command(nand, NAND_CMD_ERASE2);
-
- NanD_Command(nand, NAND_CMD_STATUS);
-
-#ifdef NAND_NO_RB
- { u_char ret_val;
- do {
- ret_val = READ_NAND(nandptr); /* wait till ready */
- } while ((ret_val & 0x40) != 0x40);
- }
-#endif
- if (READ_NAND(nandptr) & 1) {
- printf ("%s: Error erasing at 0x%lx\n",
- __FUNCTION__, (long)ofs);
- /* There was an error */
- ret = -1;
- goto out;
- }
- if (clean) {
- int n; /* return value not used */
- int p, l;
-
- /* clean marker position and size depend
- * on the page size, since 256 byte pages
- * only have 8 bytes of oob data
- */
- if (nand->page256) {
- p = NAND_JFFS2_OOB8_FSDAPOS;
- l = NAND_JFFS2_OOB8_FSDALEN;
- } else {
- p = NAND_JFFS2_OOB16_FSDAPOS;
- l = NAND_JFFS2_OOB16_FSDALEN;
- }
-
- ret = nand_write_oob(nand, ofs + p, l, &n,
- (u_char *)&clean_marker);
- /* quit here if write failed */
- if (ret)
- goto out;
- }
- }
- ofs += nand->erasesize;
- len -= nand->erasesize;
- }
-
-out:
- /* De-select the NAND device */
- NAND_DISABLE_CE(nand); /* set pin high */
-#ifdef CONFIG_OMAP1510
- archflashwp(0,1);
-#endif
-#ifdef CFG_NAND_WP
- NAND_WP_ON();
-#endif
-
- return ret;
-}
-
-static inline int nandcheck(unsigned long potential, unsigned long physadr)
-{
- return 0;
-}
-
-unsigned long nand_probe(unsigned long physadr)
-{
- struct nand_chip *nand = NULL;
- int i = 0, ChipID = 1;
-
-#ifdef CONFIG_MTD_NAND_ECC_JFFS2
- oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;
- oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;
- oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;
- oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;
- oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;
- oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;
- oob_config.eccvalid_pos = 4;
-#else
- oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;
- oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;
- oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;
- oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;
- oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;
- oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;
- oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;
-#endif
- oob_config.badblock_pos = 5;
-
- for (i=0; i<CFG_MAX_NAND_DEVICE; i++) {
- if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {
- nand = &nand_dev_desc[i];
- break;
- }
- }
- if (!nand)
- return (0);
-
- memset((char *)nand, 0, sizeof(struct nand_chip));
-
- nand->IO_ADDR = physadr;
- nand->cache_page = -1; /* init the cache page */
- NanD_ScanChips(nand);
-
- if (nand->totlen == 0) {
- /* no chips found, clean up and quit */
- memset((char *)nand, 0, sizeof(struct nand_chip));
- nand->ChipID = NAND_ChipID_UNKNOWN;
- return (0);
- }
-
- nand->ChipID = ChipID;
- if (curr_device == -1)
- curr_device = i;
-
- nand->data_buf = malloc (nand->oobblock + nand->oobsize);
- if (!nand->data_buf) {
- puts ("Cannot allocate memory for data structures.\n");
- return (0);
- }
-
- return (nand->totlen);
-}
-
-#ifdef CONFIG_MTD_NAND_ECC
-/*
- * Pre-calculated 256-way 1 byte column parity
- */
-static const u_char nand_ecc_precalc_table[] = {
- 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
- 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
- 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
- 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
- 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
- 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
- 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
- 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
- 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
- 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
- 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
- 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
- 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
- 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
- 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
- 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
- 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
- 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
- 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
- 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
- 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
- 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
- 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
- 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
- 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
- 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
- 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
- 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
- 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
- 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
- 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
- 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
-};
-
-
-/*
- * Creates non-inverted ECC code from line parity
- */
-static void nand_trans_result(u_char reg2, u_char reg3,
- u_char *ecc_code)
-{
- u_char a, b, i, tmp1, tmp2;
-
- /* Initialize variables */
- a = b = 0x80;
- tmp1 = tmp2 = 0;
-
- /* Calculate first ECC byte */
- for (i = 0; i < 4; i++) {
- if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */
- tmp1 |= b;
- b >>= 1;
- if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */
- tmp1 |= b;
- b >>= 1;
- a >>= 1;
- }
-
- /* Calculate second ECC byte */
- b = 0x80;
- for (i = 0; i < 4; i++) {
- if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */
- tmp2 |= b;
- b >>= 1;
- if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */
- tmp2 |= b;
- b >>= 1;
- a >>= 1;
- }
-
- /* Store two of the ECC bytes */
- ecc_code[0] = tmp1;
- ecc_code[1] = tmp2;
-}
-
-/*
- * Calculate 3 byte ECC code for 256 byte block
- */
-static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
-{
- u_char idx, reg1, reg3;
- int j;
-
- /* Initialize variables */
- reg1 = reg3 = 0;
- ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
-
- /* Build up column parity */
- for(j = 0; j < 256; j++) {
-
- /* Get CP0 - CP5 from table */
- idx = nand_ecc_precalc_table[dat[j]];
- reg1 ^= idx;
-
- /* All bit XOR = 1 ? */
- if (idx & 0x40) {
- reg3 ^= (u_char) j;
- }
- }
-
- /* Create non-inverted ECC code from line parity */
- nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);
-
- /* Calculate final ECC code */
- ecc_code[0] = ~ecc_code[0];
- ecc_code[1] = ~ecc_code[1];
- ecc_code[2] = ((~reg1) << 2) | 0x03;
-}
-
-/*
- * Detect and correct a 1 bit error for 256 byte block
- */
-static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
-{
- u_char a, b, c, d1, d2, d3, add, bit, i;
-
- /* Do error detection */
- d1 = calc_ecc[0] ^ read_ecc[0];
- d2 = calc_ecc[1] ^ read_ecc[1];
- d3 = calc_ecc[2] ^ read_ecc[2];
-
- if ((d1 | d2 | d3) == 0) {
- /* No errors */
- return 0;
- } else {
- a = (d1 ^ (d1 >> 1)) & 0x55;
- b = (d2 ^ (d2 >> 1)) & 0x55;
- c = (d3 ^ (d3 >> 1)) & 0x54;
-
- /* Found and will correct single bit error in the data */
- if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
- c = 0x80;
- add = 0;
- a = 0x80;
- for (i=0; i<4; i++) {
- if (d1 & c)
- add |= a;
- c >>= 2;
- a >>= 1;
- }
- c = 0x80;
- for (i=0; i<4; i++) {
- if (d2 & c)
- add |= a;
- c >>= 2;
- a >>= 1;
- }
- bit = 0;
- b = 0x04;
- c = 0x80;
- for (i=0; i<3; i++) {
- if (d3 & c)
- bit |= b;
- c >>= 2;
- b >>= 1;
- }
- b = 0x01;
- a = dat[add];
- a ^= (b << bit);
- dat[add] = a;
- return 1;
- }
- else {
- i = 0;
- while (d1) {
- if (d1 & 0x01)
- ++i;
- d1 >>= 1;
- }
- while (d2) {
- if (d2 & 0x01)
- ++i;
- d2 >>= 1;
- }
- while (d3) {
- if (d3 & 0x01)
- ++i;
- d3 >>= 1;
- }
- if (i == 1) {
- /* ECC Code Error Correction */
- read_ecc[0] = calc_ecc[0];
- read_ecc[1] = calc_ecc[1];
- read_ecc[2] = calc_ecc[2];
- return 2;
- }
- else {
- /* Uncorrectable Error */
- return -1;
- }
- }
- }
-
- /* Should never happen */
- return -1;
-}
-
-#endif
-
-#ifdef CONFIG_JFFS2_NAND
-
-int read_jffs2_nand(size_t start, size_t len,
- size_t * retlen, u_char * buf, int nanddev)
-{
- return nand_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2,
- start, len, retlen, buf);
-}
+U_BOOT_CMD(nboot, 4, 1, do_nandboot,
+ "nboot - boot from NAND device\n", "loadAddr dev\n");
-#endif /* CONFIG_JFFS2_NAND */
+#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */
-#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */