summaryrefslogtreecommitdiff
path: root/common/cmd_i2c.c
diff options
context:
space:
mode:
Diffstat (limited to 'common/cmd_i2c.c')
-rw-r--r--common/cmd_i2c.c868
1 files changed, 868 insertions, 0 deletions
diff --git a/common/cmd_i2c.c b/common/cmd_i2c.c
new file mode 100644
index 0000000..fe5841e
--- /dev/null
+++ b/common/cmd_i2c.c
@@ -0,0 +1,868 @@
+/*
+ * (C) Copyright 2001
+ * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+/*
+ * I2C Functions similar to the standard memory functions.
+ *
+ * There are several parameters in many of the commands that bear further
+ * explanations:
+ *
+ * Two of the commands (imm and imw) take a byte/word/long modifier
+ * (e.g. imm.w specifies the word-length modifier). This was done to
+ * allow manipulating word-length registers. It was not done on any other
+ * commands because it was not deemed useful.
+ *
+ * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
+ * Each I2C chip on the bus has a unique address. On the I2C data bus,
+ * the address is the upper seven bits and the LSB is the "read/write"
+ * bit. Note that the {i2c_chip} address specified on the command
+ * line is not shifted up: e.g. a typical EEPROM memory chip may have
+ * an I2C address of 0x50, but the data put on the bus will be 0xA0
+ * for write and 0xA1 for read. This "non shifted" address notation
+ * matches at least half of the data sheets :-/.
+ *
+ * {addr} is the address (or offset) within the chip. Small memory
+ * chips have 8 bit addresses. Large memory chips have 16 bit
+ * addresses. Other memory chips have 9, 10, or 11 bit addresses.
+ * Many non-memory chips have multiple registers and {addr} is used
+ * as the register index. Some non-memory chips have only one register
+ * and therefore don't need any {addr} parameter.
+ *
+ * The default {addr} parameter is one byte (.1) which works well for
+ * memories and registers with 8 bits of address space.
+ *
+ * You can specify the length of the {addr} field with the optional .0,
+ * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
+ * manipulating a single register device which doesn't use an address
+ * field, use "0.0" for the address and the ".0" length field will
+ * suppress the address in the I2C data stream. This also works for
+ * successive reads using the I2C auto-incrementing memory pointer.
+ *
+ * If you are manipulating a large memory with 2-byte addresses, use
+ * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
+ *
+ * Then there are the unfortunate memory chips that spill the most
+ * significant 1, 2, or 3 bits of address into the chip address byte.
+ * This effectively makes one chip (logically) look like 2, 4, or
+ * 8 chips. This is handled (awkwardly) by #defining
+ * CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
+ * {addr} field (since .1 is the default, it doesn't actually have to
+ * be specified). Examples: given a memory chip at I2C chip address
+ * 0x50, the following would happen...
+ * imd 50 0 10 display 16 bytes starting at 0x000
+ * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
+ * imd 50 100 10 display 16 bytes starting at 0x100
+ * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
+ * imd 50 210 10 display 16 bytes starting at 0x210
+ * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
+ * This is awfully ugly. It would be nice if someone would think up
+ * a better way of handling this.
+ *
+ * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
+ */
+
+#include <common.h>
+#include <command.h>
+#include <cmd_i2c.h>
+#include <i2c.h>
+#include <asm/byteorder.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_I2C)
+
+
+/* Display values from last command.
+ * Memory modify remembered values are different from display memory.
+ */
+static uchar i2c_dp_last_chip;
+static uint i2c_dp_last_addr;
+static uint i2c_dp_last_alen;
+static uint i2c_dp_last_length = 0x10;
+
+static uchar i2c_mm_last_chip;
+static uint i2c_mm_last_addr;
+static uint i2c_mm_last_alen;
+
+#if defined(CFG_I2C_NOPROBES)
+static uchar i2c_no_probes[] = CFG_I2C_NOPROBES;
+#endif
+
+static int
+mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]);
+extern int cmd_get_data_size(char* arg, int default_size);
+
+/*
+ * Syntax:
+ * imd {i2c_chip} {addr}{.0, .1, .2} {len}
+ */
+#define DISP_LINE_LEN 16
+
+int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+ u_char chip;
+ uint addr, alen, length;
+ int j, nbytes, linebytes;
+
+ /* We use the last specified parameters, unless new ones are
+ * entered.
+ */
+ chip = i2c_dp_last_chip;
+ addr = i2c_dp_last_addr;
+ alen = i2c_dp_last_alen;
+ length = i2c_dp_last_length;
+
+ if (argc < 3) {
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ return 1;
+ }
+
+ if ((flag & CMD_FLAG_REPEAT) == 0) {
+ /*
+ * New command specified.
+ */
+ alen = 1;
+
+ /*
+ * I2C chip address
+ */
+ chip = simple_strtoul(argv[1], NULL, 16);
+
+ /*
+ * I2C data address within the chip. This can be 1 or
+ * 2 bytes long. Some day it might be 3 bytes long :-).
+ */
+ addr = simple_strtoul(argv[2], NULL, 16);
+ alen = 1;
+ for(j = 0; j < 8; j++) {
+ if (argv[2][j] == '.') {
+ alen = argv[2][j+1] - '0';
+ if (alen > 4) {
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ return 1;
+ }
+ break;
+ } else if (argv[2][j] == '\0') {
+ break;
+ }
+ }
+
+ /*
+ * If another parameter, it is the length to display.
+ * Length is the number of objects, not number of bytes.
+ */
+ if (argc > 3)
+ length = simple_strtoul(argv[3], NULL, 16);
+ }
+
+ /*
+ * Print the lines.
+ *
+ * We buffer all read data, so we can make sure data is read only
+ * once.
+ */
+ nbytes = length;
+ do {
+ unsigned char linebuf[DISP_LINE_LEN];
+ unsigned char *cp;
+
+ linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
+
+ if(i2c_read(chip, addr, alen, linebuf, linebytes) != 0) {
+ printf("Error reading the chip.\n");
+ } else {
+ printf("%04x:", addr);
+ cp = linebuf;
+ for (j=0; j<linebytes; j++) {
+ printf(" %02x", *cp++);
+ addr++;
+ }
+ printf(" ");
+ cp = linebuf;
+ for (j=0; j<linebytes; j++) {
+ if ((*cp < 0x20) || (*cp > 0x7e))
+ printf(".");
+ else
+ printf("%c", *cp);
+ cp++;
+ }
+ printf("\n");
+ }
+ nbytes -= linebytes;
+ } while (nbytes > 0);
+
+ i2c_dp_last_chip = chip;
+ i2c_dp_last_addr = addr;
+ i2c_dp_last_alen = alen;
+ i2c_dp_last_length = length;
+
+ return 0;
+}
+
+int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+ return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
+}
+
+
+int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+ return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
+}
+
+/* Write (fill) memory
+ *
+ * Syntax:
+ * imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
+ */
+int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+ uchar chip;
+ ulong addr;
+ uint alen;
+ uchar byte;
+ int count;
+ int j;
+
+ if ((argc < 4) || (argc > 5)) {
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ return 1;
+ }
+
+ /*
+ * Chip is always specified.
+ */
+ chip = simple_strtoul(argv[1], NULL, 16);
+
+ /*
+ * Address is always specified.
+ */
+ addr = simple_strtoul(argv[2], NULL, 16);
+ alen = 1;
+ for(j = 0; j < 8; j++) {
+ if (argv[2][j] == '.') {
+ alen = argv[2][j+1] - '0';
+ if(alen > 4) {
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ return 1;
+ }
+ break;
+ } else if (argv[2][j] == '\0') {
+ break;
+ }
+ }
+
+ /*
+ * Value to write is always specified.
+ */
+ byte = simple_strtoul(argv[3], NULL, 16);
+
+ /*
+ * Optional count
+ */
+ if(argc == 5) {
+ count = simple_strtoul(argv[4], NULL, 16);
+ } else {
+ count = 1;
+ }
+
+ while (count-- > 0) {
+ if(i2c_write(chip, addr++, alen, &byte, 1) != 0) {
+ printf("Error writing the chip.\n");
+ }
+ /*
+ * Wait for the write to complete. The write can take
+ * up to 10mSec (we allow a little more time).
+ *
+ * On some chips, while the write is in progress, the
+ * chip doesn't respond. This apparently isn't a
+ * universal feature so we don't take advantage of it.
+ */
+ udelay(11000);
+#if 0
+ for(timeout = 0; timeout < 10; timeout++) {
+ udelay(2000);
+ if(i2c_probe(chip) == 0)
+ break;
+ }
+#endif
+ }
+
+ return (0);
+}
+
+
+/* Calculate a CRC on memory
+ *
+ * Syntax:
+ * icrc32 {i2c_chip} {addr}{.0, .1, .2} {count}
+ */
+int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+ uchar chip;
+ ulong addr;
+ uint alen;
+ int count;
+ uchar byte;
+ ulong crc;
+ ulong err;
+ int j;
+
+ if (argc < 4) {
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ return 1;
+ }
+
+ /*
+ * Chip is always specified.
+ */
+ chip = simple_strtoul(argv[1], NULL, 16);
+
+ /*
+ * Address is always specified.
+ */
+ addr = simple_strtoul(argv[2], NULL, 16);
+ alen = 1;
+ for(j = 0; j < 8; j++) {
+ if (argv[2][j] == '.') {
+ alen = argv[2][j+1] - '0';
+ if(alen > 4) {
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ return 1;
+ }
+ break;
+ } else if (argv[2][j] == '\0') {
+ break;
+ }
+ }
+
+ /*
+ * Count is always specified
+ */
+ count = simple_strtoul(argv[3], NULL, 16);
+
+ printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
+ /*
+ * CRC a byte at a time. This is going to be slooow, but hey, the
+ * memories are small and slow too so hopefully nobody notices.
+ */
+ crc = 0;
+ err = 0;
+ while(count-- > 0) {
+ if(i2c_read(chip, addr, alen, &byte, 1) != 0) {
+ err++;
+ }
+ crc = crc32 (crc, &byte, 1);
+ addr++;
+ }
+ if(err > 0)
+ {
+ printf("Error reading the chip,\n");
+ } else {
+ printf ("%08lx\n", crc);
+ }
+
+ return 0;
+}
+
+
+/* Modify memory.
+ *
+ * Syntax:
+ * imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
+ * inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
+ */
+
+static int
+mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
+{
+ uchar chip;
+ ulong addr;
+ uint alen;
+ ulong data;
+ int size = 1;
+ int nbytes;
+ int j;
+ extern char console_buffer[];
+
+ if (argc != 3) {
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ return 1;
+ }
+
+#ifdef CONFIG_BOOT_RETRY_TIME
+ reset_cmd_timeout(); /* got a good command to get here */
+#endif
+ /*
+ * We use the last specified parameters, unless new ones are
+ * entered.
+ */
+ chip = i2c_mm_last_chip;
+ addr = i2c_mm_last_addr;
+ alen = i2c_mm_last_alen;
+
+ if ((flag & CMD_FLAG_REPEAT) == 0) {
+ /*
+ * New command specified. Check for a size specification.
+ * Defaults to byte if no or incorrect specification.
+ */
+ size = cmd_get_data_size(argv[0], 1);
+
+ /*
+ * Chip is always specified.
+ */
+ chip = simple_strtoul(argv[1], NULL, 16);
+
+ /*
+ * Address is always specified.
+ */
+ addr = simple_strtoul(argv[2], NULL, 16);
+ alen = 1;
+ for(j = 0; j < 8; j++) {
+ if (argv[2][j] == '.') {
+ alen = argv[2][j+1] - '0';
+ if(alen > 4) {
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ return 1;
+ }
+ break;
+ } else if (argv[2][j] == '\0') {
+ break;
+ }
+ }
+ }
+
+ /*
+ * Print the address, followed by value. Then accept input for
+ * the next value. A non-converted value exits.
+ */
+ do {
+ printf("%08lx:", addr);
+ if(i2c_read(chip, addr, alen, (char *)&data, size) != 0) {
+ printf("\nError reading the chip,\n");
+ } else {
+ data = cpu_to_be32(data);
+ if(size == 1) {
+ printf(" %02lx", (data >> 24) & 0x000000FF);
+ } else if(size == 2) {
+ printf(" %04lx", (data >> 16) & 0x0000FFFF);
+ } else {
+ printf(" %08lx", data);
+ }
+ }
+
+ nbytes = readline (" ? ");
+ if (nbytes == 0) {
+ /*
+ * <CR> pressed as only input, don't modify current
+ * location and move to next.
+ */
+ if (incrflag)
+ addr += size;
+ nbytes = size;
+#ifdef CONFIG_BOOT_RETRY_TIME
+ reset_cmd_timeout(); /* good enough to not time out */
+#endif
+ }
+#ifdef CONFIG_BOOT_RETRY_TIME
+ else if (nbytes == -2) {
+ break; /* timed out, exit the command */
+ }
+#endif
+ else {
+ char *endp;
+
+ data = simple_strtoul(console_buffer, &endp, 16);
+ if(size == 1) {
+ data = data << 24;
+ } else if(size == 2) {
+ data = data << 16;
+ }
+ data = be32_to_cpu(data);
+ nbytes = endp - console_buffer;
+ if (nbytes) {
+#ifdef CONFIG_BOOT_RETRY_TIME
+ /*
+ * good enough to not time out
+ */
+ reset_cmd_timeout();
+#endif
+ if(i2c_write(chip, addr, alen, (char *)&data, size) != 0) {
+ printf("Error writing the chip.\n");
+ }
+ if (incrflag)
+ addr += size;
+ }
+ }
+ } while (nbytes);
+
+ chip = i2c_mm_last_chip;
+ addr = i2c_mm_last_addr;
+ alen = i2c_mm_last_alen;
+
+ return 0;
+}
+
+/*
+ * Syntax:
+ * iprobe {addr}{.0, .1, .2}
+ */
+int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+ int j;
+#if defined(CFG_I2C_NOPROBES)
+ int k, skip;
+#endif
+
+ printf("Valid chip addresses:");
+ for(j = 0; j < 128; j++) {
+#if defined(CFG_I2C_NOPROBES)
+ skip = 0;
+ for (k = 0; k < sizeof(i2c_no_probes); k++){
+ if (j == i2c_no_probes[k]){
+ skip = 1;
+ break;
+ }
+ }
+ if (skip)
+ continue;
+#endif
+ if(i2c_probe(j) == 0) {
+ printf(" %02X", j);
+ }
+ }
+ printf("\n");
+
+#if defined(CFG_I2C_NOPROBES)
+ puts ("Excluded chip addresses:");
+ for( k = 0; k < sizeof(i2c_no_probes); k++ )
+ printf(" %02X", i2c_no_probes[k] );
+ puts ("\n");
+#endif
+
+ return 0;
+}
+
+
+/*
+ * Syntax:
+ * iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
+ * {length} - Number of bytes to read
+ * {delay} - A DECIMAL number and defaults to 1000 uSec
+ */
+int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+ u_char chip;
+ ulong alen;
+ uint addr;
+ uint length;
+ u_char bytes[16];
+ int delay;
+ int j;
+
+ if (argc < 3) {
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ return 1;
+ }
+
+ /*
+ * Chip is always specified.
+ */
+ chip = simple_strtoul(argv[1], NULL, 16);
+
+ /*
+ * Address is always specified.
+ */
+ addr = simple_strtoul(argv[2], NULL, 16);
+ alen = 1;
+ for(j = 0; j < 8; j++) {
+ if (argv[2][j] == '.') {
+ alen = argv[2][j+1] - '0';
+ if (alen > 4) {
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ return 1;
+ }
+ break;
+ } else if (argv[2][j] == '\0') {
+ break;
+ }
+ }
+
+ /*
+ * Length is the number of objects, not number of bytes.
+ */
+ length = 1;
+ length = simple_strtoul(argv[3], NULL, 16);
+ if(length > sizeof(bytes)) {
+ length = sizeof(bytes);
+ }
+
+ /*
+ * The delay time (uSec) is optional.
+ */
+ delay = 1000;
+ if (argc > 3) {
+ delay = simple_strtoul(argv[4], NULL, 10);
+ }
+ /*
+ * Run the loop...
+ */
+ while(1) {
+ if(i2c_read(chip, addr, alen, bytes, length) != 0) {
+ printf("Error reading the chip.\n");
+ }
+ udelay(delay);
+ }
+
+ /* NOTREACHED */
+ return 0;
+}
+
+
+/*
+ * The SDRAM command is separately configured because many
+ * (most?) embedded boards don't use SDRAM DIMMs.
+ */
+#if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
+
+/*
+ * Syntax:
+ * sdram {i2c_chip}
+ */
+int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
+{
+ u_char chip;
+ u_char data[128];
+ u_char cksum;
+ int j;
+
+ if (argc < 2) {
+ printf ("Usage:\n%s\n", cmdtp->usage);
+ return 1;
+ }
+ /*
+ * Chip is always specified.
+ */
+ chip = simple_strtoul(argv[1], NULL, 16);
+
+ if(i2c_read(chip, 0, 1, data, sizeof(data)) != 0) {
+ printf("No SDRAM Serial Presence Detect found.\n");
+ return 1;
+ }
+
+ cksum = 0;
+ for (j = 0; j < 63; j++) {
+ cksum += data[j];
+ }
+ if(cksum != data[63]) {
+ printf ("WARNING: Configuration data checksum failure:\n"
+ " is 0x%02x, calculated 0x%02x\n",
+ data[63], cksum);
+ }
+ printf("SPD data revision %d.%d\n",
+ (data[62] >> 4) & 0x0F, data[62] & 0x0F);
+ printf("Bytes used 0x%02X\n", data[0]);
+ printf("Serial memory size 0x%02X\n", 1 << data[1]);
+ printf("Memory type ");
+ switch(data[2]) {
+ case 2: printf("EDO\n"); break;
+ case 4: printf("SDRAM\n"); break;
+ default: printf("unknown\n"); break;
+ }
+ printf("Row address bits ");
+ if((data[3] & 0x00F0) == 0) {
+ printf("%d\n", data[3] & 0x0F);
+ } else {
+ printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
+ }
+ printf("Column address bits ");
+ if((data[4] & 0x00F0) == 0) {
+ printf("%d\n", data[4] & 0x0F);
+ } else {
+ printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
+ }
+ printf("Module rows %d\n", data[5]);
+ printf("Module data width %d bits\n", (data[7] << 8) | data[6]);
+ printf("Interface signal levels ");
+ switch(data[8]) {
+ case 0: printf("5.0v/TTL\n"); break;
+ case 1: printf("LVTTL\n"); break;
+ case 2: printf("HSTL 1.5\n"); break;
+ case 3: printf("SSTL 3.3\n"); break;
+ case 4: printf("SSTL 2.5\n"); break;
+ default: printf("unknown\n"); break;
+ }
+ printf("SDRAM cycle time %d.%d nS\n",
+ (data[9] >> 4) & 0x0F, data[9] & 0x0F);
+ printf("SDRAM access time %d.%d nS\n",
+ (data[10] >> 4) & 0x0F, data[10] & 0x0F);
+ printf("EDC configuration ");
+ switch(data[11]) {
+ case 0: printf("None\n"); break;
+ case 1: printf("Parity\n"); break;
+ case 2: printf("ECC\n"); break;
+ default: printf("unknown\n"); break;
+ }
+ if((data[12] & 0x80) == 0) {
+ printf("No self refresh, rate ");
+ } else {
+ printf("Self refresh, rate ");
+ }
+ switch(data[12] & 0x7F) {
+ case 0: printf("15.625uS\n"); break;
+ case 1: printf("3.9uS\n"); break;
+ case 2: printf("7.8uS\n"); break;
+ case 3: printf("31.3uS\n"); break;
+ case 4: printf("62.5uS\n"); break;
+ case 5: printf("125uS\n"); break;
+ default: printf("unknown\n"); break;
+ }
+ printf("SDRAM width (primary) %d\n", data[13] & 0x7F);
+ if((data[13] & 0x80) != 0) {
+ printf(" (second bank) %d\n",
+ 2 * (data[13] & 0x7F));
+ }
+ if(data[14] != 0) {
+ printf("EDC width %d\n",
+ data[14] & 0x7F);
+ if((data[14] & 0x80) != 0) {
+ printf(" (second bank) %d\n",
+ 2 * (data[14] & 0x7F));
+ }
+ }
+ printf("Min clock delay, back-to-back random column addresses %d\n",
+ data[15]);
+ printf("Burst length(s) ");
+ if(data[16] & 0x80) printf(" Page");
+ if(data[16] & 0x08) printf(" 8");
+ if(data[16] & 0x04) printf(" 4");
+ if(data[16] & 0x02) printf(" 2");
+ if(data[16] & 0x01) printf(" 1");
+ printf("\n");
+ printf("Number of banks %d\n", data[17]);
+ printf("CAS latency(s) ");
+ if(data[18] & 0x80) printf(" TBD");
+ if(data[18] & 0x40) printf(" 7");
+ if(data[18] & 0x20) printf(" 6");
+ if(data[18] & 0x10) printf(" 5");
+ if(data[18] & 0x08) printf(" 4");
+ if(data[18] & 0x04) printf(" 3");
+ if(data[18] & 0x02) printf(" 2");
+ if(data[18] & 0x01) printf(" 1");
+ printf("\n");
+ printf("CS latency(s) ");
+ if(data[19] & 0x80) printf(" TBD");
+ if(data[19] & 0x40) printf(" 6");
+ if(data[19] & 0x20) printf(" 5");
+ if(data[19] & 0x10) printf(" 4");
+ if(data[19] & 0x08) printf(" 3");
+ if(data[19] & 0x04) printf(" 2");
+ if(data[19] & 0x02) printf(" 1");
+ if(data[19] & 0x01) printf(" 0");
+ printf("\n");
+ printf("WE latency(s) ");
+ if(data[20] & 0x80) printf(" TBD");
+ if(data[20] & 0x40) printf(" 6");
+ if(data[20] & 0x20) printf(" 5");
+ if(data[20] & 0x10) printf(" 4");
+ if(data[20] & 0x08) printf(" 3");
+ if(data[20] & 0x04) printf(" 2");
+ if(data[20] & 0x02) printf(" 1");
+ if(data[20] & 0x01) printf(" 0");
+ printf("\n");
+ printf("Module attributes:\n");
+ if(!data[21]) printf(" (none)\n");
+ if(data[21] & 0x80) printf(" TBD (bit 7)\n");
+ if(data[21] & 0x40) printf(" Redundant row address\n");
+ if(data[21] & 0x20) printf(" Differential clock input\n");
+ if(data[21] & 0x10) printf(" Registerd DQMB inputs\n");
+ if(data[21] & 0x08) printf(" Buffered DQMB inputs\n");
+ if(data[21] & 0x04) printf(" On-card PLL\n");
+ if(data[21] & 0x02) printf(" Registered address/control lines\n");
+ if(data[21] & 0x01) printf(" Buffered address/control lines\n");
+ printf("Device attributes:\n");
+ if(data[22] & 0x80) printf(" TBD (bit 7)\n");
+ if(data[22] & 0x40) printf(" TBD (bit 6)\n");
+ if(data[22] & 0x20) printf(" Upper Vcc tolerance 5%%\n");
+ else printf(" Upper Vcc tolerance 10%%\n");
+ if(data[22] & 0x10) printf(" Lower Vcc tolerance 5%%\n");
+ else printf(" Lower Vcc tolerance 10%%\n");
+ if(data[22] & 0x08) printf(" Supports write1/read burst\n");
+ if(data[22] & 0x04) printf(" Supports precharge all\n");
+ if(data[22] & 0x02) printf(" Supports auto precharge\n");
+ if(data[22] & 0x01) printf(" Supports early RAS# precharge\n");
+ printf("SDRAM cycle time (2nd highest CAS latency) %d.%d nS\n",
+ (data[23] >> 4) & 0x0F, data[23] & 0x0F);
+ printf("SDRAM access from clock (2nd highest CAS latency) %d.%d nS\n",
+ (data[24] >> 4) & 0x0F, data[24] & 0x0F);
+ printf("SDRAM cycle time (3rd highest CAS latency) %d.%d nS\n",
+ (data[25] >> 4) & 0x0F, data[25] & 0x0F);
+ printf("SDRAM access from clock (3rd highest CAS latency) %d.%d nS\n",
+ (data[26] >> 4) & 0x0F, data[26] & 0x0F);
+ printf("Minimum row precharge %d nS\n", data[27]);
+ printf("Row active to row active min %d nS\n", data[28]);
+ printf("RAS to CAS delay min %d nS\n", data[29]);
+ printf("Minimum RAS pulse width %d nS\n", data[30]);
+ printf("Density of each row ");
+ if(data[31] & 0x80) printf(" 512MByte");
+ if(data[31] & 0x40) printf(" 256MByte");
+ if(data[31] & 0x20) printf(" 128MByte");
+ if(data[31] & 0x10) printf(" 64MByte");
+ if(data[31] & 0x08) printf(" 32MByte");
+ if(data[31] & 0x04) printf(" 16MByte");
+ if(data[31] & 0x02) printf(" 8MByte");
+ if(data[31] & 0x01) printf(" 4MByte");
+ printf("\n");
+ printf("Command and Address setup %c%d.%d nS\n",
+ (data[32] & 0x80) ? '-' : '+',
+ (data[32] >> 4) & 0x07, data[32] & 0x0F);
+ printf("Command and Address hold %c%d.%d nS\n",
+ (data[33] & 0x80) ? '-' : '+',
+ (data[33] >> 4) & 0x07, data[33] & 0x0F);
+ printf("Data signal input setup %c%d.%d nS\n",
+ (data[34] & 0x80) ? '-' : '+',
+ (data[34] >> 4) & 0x07, data[34] & 0x0F);
+ printf("Data signal input hold %c%d.%d nS\n",
+ (data[35] & 0x80) ? '-' : '+',
+ (data[35] >> 4) & 0x07, data[35] & 0x0F);
+ printf("Manufacturer's JEDEC ID ");
+ for(j = 64; j <= 71; j++)
+ printf("%02X ", data[j]);
+ printf("\n");
+ printf("Manufacturing Location %02X\n", data[72]);
+ printf("Manufacturer's Part Number ");
+ for(j = 73; j <= 90; j++)
+ printf("%02X ", data[j]);
+ printf("\n");
+ printf("Revision Code %02X %02X\n", data[91], data[92]);
+ printf("Manufacturing Date %02X %02X\n", data[93], data[94]);
+ printf("Assembly Serial Number ");
+ for(j = 95; j <= 98; j++)
+ printf("%02X ", data[j]);
+ printf("\n");
+ printf("Speed rating PC%d\n",
+ data[126] == 0x66 ? 66 : data[126]);
+
+ return 0;
+}
+#endif /* CFG_CMD_SDRAM */
+
+#endif /* CFG_CMD_I2C */