summaryrefslogtreecommitdiff
path: root/arch/ppc/cpu/mpc8220/dramSetup.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/ppc/cpu/mpc8220/dramSetup.c')
-rw-r--r--arch/ppc/cpu/mpc8220/dramSetup.c752
1 files changed, 0 insertions, 752 deletions
diff --git a/arch/ppc/cpu/mpc8220/dramSetup.c b/arch/ppc/cpu/mpc8220/dramSetup.c
deleted file mode 100644
index 52cf133..0000000
--- a/arch/ppc/cpu/mpc8220/dramSetup.c
+++ /dev/null
@@ -1,752 +0,0 @@
-/*
- * (C) Copyright 2004, Freescale, Inc
- * TsiChung Liew, Tsi-Chung.Liew@freescale.com
- *
- * See file CREDITS for list of people who contributed to this
- * project.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation; either version 2 of
- * the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
- * MA 02111-1307 USA
- */
-
-/*
-DESCRIPTION
-Read Dram spd and base on its information to calculate the memory size,
-characteristics to initialize the dram on MPC8220
-*/
-
-#include <common.h>
-#include <mpc8220.h>
-#include "i2cCore.h"
-#include "dramSetup.h"
-
-DECLARE_GLOBAL_DATA_PTR;
-
-#define SPD_SIZE CONFIG_SYS_SDRAM_SPD_SIZE
-#define DRAM_SPD (CONFIG_SYS_SDRAM_SPD_I2C_ADDR)<<1 /* on Board SPD eeprom */
-#define TOTAL_BANK CONFIG_SYS_SDRAM_TOTAL_BANKS
-
-int spd_status (volatile i2c8220_t * pi2c, u8 sta_bit, u8 truefalse)
-{
- int i;
-
- for (i = 0; i < I2C_POLL_COUNT; i++) {
- if ((pi2c->sr & sta_bit) == (truefalse ? sta_bit : 0))
- return (OK);
- }
-
- return (ERROR);
-}
-
-int spd_clear (volatile i2c8220_t * pi2c)
-{
- pi2c->adr = 0;
- pi2c->fdr = 0;
- pi2c->cr = 0;
- pi2c->sr = 0;
-
- return (OK);
-}
-
-int spd_stop (volatile i2c8220_t * pi2c)
-{
- pi2c->cr &= ~I2C_CTL_STA; /* Generate stop signal */
- if (spd_status (pi2c, I2C_STA_BB, 0) != OK)
- return ERROR;
-
- return (OK);
-}
-
-int spd_readbyte (volatile i2c8220_t * pi2c, u8 * readb, int *index)
-{
- pi2c->sr &= ~I2C_STA_IF; /* Clear Interrupt Bit */
- *readb = pi2c->dr; /* Read a byte */
-
- /*
- Set I2C_CTRL_TXAK will cause Transfer pending and
- set I2C_CTRL_STA will cause Interrupt pending
- */
- if (*index != 2) {
- if (spd_status (pi2c, I2C_STA_CF, 1) != OK) /* Transfer not complete? */
- return ERROR;
- }
-
- if (*index != 1) {
- if (spd_status (pi2c, I2C_STA_IF, 1) != OK)
- return ERROR;
- }
-
- return (OK);
-}
-
-int readSpdData (u8 * spdData)
-{
- volatile i2c8220_t *pi2cReg;
- volatile pcfg8220_t *pcfg;
- u8 slvAdr = DRAM_SPD;
- u8 Tmp;
- int Length = SPD_SIZE;
- int i = 0;
-
- /* Enable Port Configuration for SDA and SDL signals */
- pcfg = (volatile pcfg8220_t *) (MMAP_PCFG);
- __asm__ ("sync");
- pcfg->pcfg3 &= ~CONFIG_SYS_I2C_PORT3_CONFIG;
- __asm__ ("sync");
-
- /* Points the structure to I2c mbar memory offset */
- pi2cReg = (volatile i2c8220_t *) (MMAP_I2C);
-
-
- /* Clear FDR, ADR, SR and CR reg */
- pi2cReg->adr = 0;
- pi2cReg->fdr = 0;
- pi2cReg->cr = 0;
- pi2cReg->sr = 0;
-
- /* Set for fix XLB Bus Frequency */
- switch (gd->bus_clk) {
- case 60000000:
- pi2cReg->fdr = 0x15;
- break;
- case 70000000:
- pi2cReg->fdr = 0x16;
- break;
- case 80000000:
- pi2cReg->fdr = 0x3a;
- break;
- case 90000000:
- pi2cReg->fdr = 0x17;
- break;
- case 100000000:
- pi2cReg->fdr = 0x3b;
- break;
- case 110000000:
- pi2cReg->fdr = 0x18;
- break;
- case 120000000:
- pi2cReg->fdr = 0x19;
- break;
- case 130000000:
- pi2cReg->fdr = 0x1a;
- break;
- }
-
- pi2cReg->adr = CONFIG_SYS_I2C_SLAVE<<1;
-
- pi2cReg->cr = I2C_CTL_EN; /* Set Enable */
-
- /*
- The I2C bus should be in Idle state. If the bus is busy,
- clear the STA bit in control register
- */
- if (spd_status (pi2cReg, I2C_STA_BB, 0) != OK) {
- if ((pi2cReg->cr & I2C_CTL_STA) == I2C_CTL_STA)
- pi2cReg->cr &= ~I2C_CTL_STA;
-
- /* Check again if it is still busy, return error if found */
- if (spd_status (pi2cReg, I2C_STA_BB, 1) == OK)
- return ERROR;
- }
-
- pi2cReg->cr |= I2C_CTL_TX; /* Enable the I2c for TX, Ack */
- pi2cReg->cr |= I2C_CTL_STA; /* Generate start signal */
-
- if (spd_status (pi2cReg, I2C_STA_BB, 1) != OK)
- return ERROR;
-
-
- /* Write slave address */
- pi2cReg->sr &= ~I2C_STA_IF; /* Clear Interrupt */
- pi2cReg->dr = slvAdr; /* Write a byte */
-
- if (spd_status (pi2cReg, I2C_STA_CF, 1) != OK) { /* Transfer not complete? */
- spd_stop (pi2cReg);
- return ERROR;
- }
-
- if (spd_status (pi2cReg, I2C_STA_IF, 1) != OK) {
- spd_stop (pi2cReg);
- return ERROR;
- }
-
-
- /* Issue the offset to start */
- pi2cReg->sr &= ~I2C_STA_IF; /* Clear Interrupt */
- pi2cReg->dr = 0; /* Write a byte */
-
- if (spd_status (pi2cReg, I2C_STA_CF, 1) != OK) { /* Transfer not complete? */
- spd_stop (pi2cReg);
- return ERROR;
- }
-
- if (spd_status (pi2cReg, I2C_STA_IF, 1) != OK) {
- spd_stop (pi2cReg);
- return ERROR;
- }
-
-
- /* Set repeat start */
- pi2cReg->cr |= I2C_CTL_RSTA; /* Repeat Start */
-
- pi2cReg->sr &= ~I2C_STA_IF; /* Clear Interrupt */
- pi2cReg->dr = slvAdr | 1; /* Write a byte */
-
- if (spd_status (pi2cReg, I2C_STA_CF, 1) != OK) { /* Transfer not complete? */
- spd_stop (pi2cReg);
- return ERROR;
- }
-
- if (spd_status (pi2cReg, I2C_STA_IF, 1) != OK) {
- spd_stop (pi2cReg);
- return ERROR;
- }
-
- if (((pi2cReg->sr & 0x07) == 0x07) || (pi2cReg->sr & 0x01))
- return ERROR;
-
- pi2cReg->cr &= ~I2C_CTL_TX; /* Set receive mode */
-
- if (((pi2cReg->sr & 0x07) == 0x07) || (pi2cReg->sr & 0x01))
- return ERROR;
-
- /* Dummy Read */
- if (spd_readbyte (pi2cReg, &Tmp, &i) != OK) {
- spd_stop (pi2cReg);
- return ERROR;
- }
-
- i = 0;
- while (Length) {
- if (Length == 2)
- pi2cReg->cr |= I2C_CTL_TXAK;
-
- if (Length == 1)
- pi2cReg->cr &= ~I2C_CTL_STA;
-
- if (spd_readbyte (pi2cReg, spdData, &Length) != OK) {
- return spd_stop (pi2cReg);
- }
- i++;
- Length--;
- spdData++;
- }
-
- /* Stop the service */
- spd_stop (pi2cReg);
-
- return OK;
-}
-
-int getBankInfo (int bank, draminfo_t * pBank)
-{
- int status;
- int checksum;
- int count;
- u8 spdData[SPD_SIZE];
-
-
- if (bank > 2 || pBank == 0) {
- /* illegal values */
- return (-42);
- }
-
- status = readSpdData (&spdData[0]);
- if (status < 0)
- return (-1);
-
- /* check the checksum */
- for (count = 0, checksum = 0; count < LOC_CHECKSUM; count++)
- checksum += spdData[count];
-
- checksum = checksum - ((checksum / 256) * 256);
-
- if (checksum != spdData[LOC_CHECKSUM])
- return (-2);
-
- /* Get the memory type */
- if (!
- ((spdData[LOC_TYPE] == TYPE_DDR)
- || (spdData[LOC_TYPE] == TYPE_SDR)))
- /* not one of the types we support */
- return (-3);
-
- pBank->type = spdData[LOC_TYPE];
-
- /* Set logical banks */
- pBank->banks = spdData[LOC_LOGICAL_BANKS];
-
- /* Check that we have enough physical banks to cover the bank we are
- * figuring out. Odd-numbered banks correspond to the second bank
- * on the device.
- */
- if (bank & 1) {
- /* Second bank of a "device" */
- if (spdData[LOC_PHYS_BANKS] < 2)
- /* this bank doesn't exist on the "device" */
- return (-4);
-
- if (spdData[LOC_ROWS] & 0xf0)
- /* Two asymmetric banks */
- pBank->rows = spdData[LOC_ROWS] >> 4;
- else
- pBank->rows = spdData[LOC_ROWS];
-
- if (spdData[LOC_COLS] & 0xf0)
- /* Two asymmetric banks */
- pBank->cols = spdData[LOC_COLS] >> 4;
- else
- pBank->cols = spdData[LOC_COLS];
- } else {
- /* First bank of a "device" */
- pBank->rows = spdData[LOC_ROWS];
- pBank->cols = spdData[LOC_COLS];
- }
-
- pBank->width = spdData[LOC_WIDTH_HIGH] << 8 | spdData[LOC_WIDTH_LOW];
- pBank->bursts = spdData[LOC_BURSTS];
- pBank->CAS = spdData[LOC_CAS];
- pBank->CS = spdData[LOC_CS];
- pBank->WE = spdData[LOC_WE];
- pBank->Trp = spdData[LOC_Trp];
- pBank->Trcd = spdData[LOC_Trcd];
- pBank->buffered = spdData[LOC_Buffered] & 1;
- pBank->refresh = spdData[LOC_REFRESH];
-
- return (0);
-}
-
-
-/* checkMuxSetting -- given a row/column device geometry, return a mask
- * of the valid DRAM controller addr_mux settings for
- * that geometry.
- *
- * Arguments: u8 rows: number of row addresses in this device
- * u8 columns: number of column addresses in this device
- *
- * Returns: a mask of the allowed addr_mux settings for this
- * geometry. Each bit in the mask represents a
- * possible addr_mux settings (for example, the
- * (1<<2) bit in the mask represents the 0b10 setting)/
- *
- */
-u8 checkMuxSetting (u8 rows, u8 columns)
-{
- muxdesc_t *pIdx, *pMux;
- u8 mask;
- int lrows, lcolumns;
- u32 mux[4] = { 0x00080c04, 0x01080d03, 0x02080e02, 0xffffffff };
-
- /* Setup MuxDescriptor in SRAM space */
- /* MUXDESC AddressRuns [] = {
- { 0, 8, 12, 4 }, / setting, columns, rows, extra columns /
- { 1, 8, 13, 3 }, / setting, columns, rows, extra columns /
- { 2, 8, 14, 2 }, / setting, columns, rows, extra columns /
- { 0xff } / list terminator /
- }; */
-
- pIdx = (muxdesc_t *) & mux[0];
-
- /* Check rows x columns against each possible address mux setting */
- for (pMux = pIdx, mask = 0;; pMux++) {
- lrows = rows;
- lcolumns = columns;
-
- if (pMux->MuxValue == 0xff)
- break; /* end of list */
-
- /* For a given mux setting, since we want all the memory in a
- * device to be contiguous, we want the device "use up" the
- * address lines such that there are no extra column or row
- * address lines on the device.
- */
-
- lcolumns -= pMux->Columns;
- if (lcolumns < 0)
- /* Not enough columns to get to the rows */
- continue;
-
- lrows -= pMux->Rows;
- if (lrows > 0)
- /* we have extra rows left -- can't do that! */
- continue;
-
- /* At this point, we either have to have used up all the
- * rows or we have to have no columns left.
- */
-
- if (lcolumns != 0 && lrows != 0)
- /* rows AND columns are left. Bad! */
- continue;
-
- lcolumns -= pMux->MoreColumns;
-
- if (lcolumns <= 0)
- mask |= (1 << pMux->MuxValue);
- }
-
- return (mask);
-}
-
-
-u32 dramSetup (void)
-{
- draminfo_t DramInfo[TOTAL_BANK];
- draminfo_t *pDramInfo;
- u32 size, temp, cfg_value, mode_value, refresh;
- u8 *ptr;
- u8 bursts, Trp, Trcd, type, buffered;
- u8 muxmask, rows, columns;
- int count, banknum;
- u32 *prefresh, *pIdx;
- u32 refrate[8] = { 15625, 3900, 7800, 31300,
- 62500, 125000, 0xffffffff, 0xffffffff
- };
- volatile sysconf8220_t *sysconf;
- volatile memctl8220_t *memctl;
-
- sysconf = (volatile sysconf8220_t *) MMAP_MBAR;
- memctl = (volatile memctl8220_t *) MMAP_MEMCTL;
-
- /* Set everything in the descriptions to zero */
- ptr = (u8 *) & DramInfo[0];
- for (count = 0; count < sizeof (DramInfo); count++)
- *ptr++ = 0;
-
- for (banknum = 0; banknum < TOTAL_BANK; banknum++)
- sysconf->cscfg[banknum];
-
- /* Descriptions of row/column address muxing for various
- * addr_mux settings.
- */
-
- pIdx = prefresh = (u32 *) & refrate[0];
-
- /* Get all the info for all three logical banks */
- bursts = 0xff;
- Trp = 0;
- Trcd = 0;
- type = 0;
- buffered = 0xff;
- refresh = 0xffffffff;
- muxmask = 0xff;
-
- /* Two bank, CS0 and CS1 */
- for (banknum = 0, pDramInfo = &DramInfo[0];
- banknum < TOTAL_BANK; banknum++, pDramInfo++) {
- pDramInfo->ordinal = banknum; /* initial sorting */
- if (getBankInfo (banknum, pDramInfo) < 0)
- continue;
-
- /* get cumulative parameters of all three banks */
- if (type && pDramInfo->type != type)
- return 0;
-
- type = pDramInfo->type;
- rows = pDramInfo->rows;
- columns = pDramInfo->cols;
-
- /* This chip only supports 13 DRAM memory lines, but some devices
- * have 14 rows. To deal with this, ignore the 14th address line
- * by limiting the number of rows (and columns) to 13. This will
- * mean that for 14-row devices we will only be able to use
- * half of the memory, but it's better than nothing.
- */
- if (rows > 13)
- rows = 13;
- if (columns > 13)
- columns = 13;
-
- pDramInfo->size =
- ((1 << (rows + columns)) * pDramInfo->width);
- pDramInfo->size *= pDramInfo->banks;
- pDramInfo->size >>= 3;
-
- /* figure out which addr_mux configurations will support this device */
- muxmask &= checkMuxSetting (rows, columns);
- if (muxmask == 0)
- return 0;
-
- buffered = pDramInfo->buffered;
- bursts &= pDramInfo->bursts; /* union of all bursts */
- if (pDramInfo->Trp > Trp) /* worst case (longest) Trp */
- Trp = pDramInfo->Trp;
-
- if (pDramInfo->Trcd > Trcd) /* worst case (longest) Trcd */
- Trcd = pDramInfo->Trcd;
-
- prefresh = pIdx;
- /* worst case (shortest) Refresh period */
- if (refresh > prefresh[pDramInfo->refresh & 7])
- refresh = prefresh[pDramInfo->refresh & 7];
-
- } /* for loop */
-
-
- /* We only allow a burst length of 8! */
- if (!(bursts & 8))
- bursts = 8;
-
- /* Sort the devices. In order to get each chip select region
- * aligned properly, put the biggest device at the lowest address.
- * A simple bubble sort will do the trick.
- */
- for (banknum = 0, pDramInfo = &DramInfo[0];
- banknum < TOTAL_BANK; banknum++, pDramInfo++) {
- int i;
-
- for (i = 0; i < TOTAL_BANK; i++) {
- if (pDramInfo->size < DramInfo[i].size &&
- pDramInfo->ordinal < DramInfo[i].ordinal) {
- /* If the current bank is smaller, but if the ordinal is also
- * smaller, swap the ordinals
- */
- u8 temp8;
-
- temp8 = DramInfo[i].ordinal;
- DramInfo[i].ordinal = pDramInfo->ordinal;
- pDramInfo->ordinal = temp8;
- }
- }
- }
-
-
- /* Now figure out the base address for each bank. While
- * we're at it, figure out how much memory there is.
- *
- */
- size = 0;
- for (banknum = 0; banknum < TOTAL_BANK; banknum++) {
- int i;
-
- for (i = 0; i < TOTAL_BANK; i++) {
- if (DramInfo[i].ordinal == banknum
- && DramInfo[i].size != 0) {
- DramInfo[i].base = size;
- size += DramInfo[i].size;
- }
- }
- }
-
- /* Set up the Drive Strength register */
- sysconf->sdramds = CONFIG_SYS_SDRAM_DRIVE_STRENGTH;
-
- /* ********************** Cfg 1 ************************* */
-
- /* Set the single read to read/write/precharge delay */
- cfg_value = CFG1_SRD2RWP ((type == TYPE_DDR) ? 7 : 0xb);
-
- /* Set the single write to read/write/precharge delay.
- * This may or may not be correct. The controller spec
- * says "tWR", but "tWR" does not appear in the SPD. It
- * always seems to be 15nsec for the class of device we're
- * using, which turns out to be 2 clock cycles at 133MHz,
- * so that's what we're going to use.
- *
- * HOWEVER, because of a bug in the controller, for DDR
- * we need to set this to be the same as the value
- * calculated for bwt2rwp.
- */
- cfg_value |= CFG1_SWT2RWP ((type == TYPE_DDR) ? 7 : 2);
-
- /* Set the Read CAS latency. We're going to use a CL of
- * 2.5 for DDR and 2 SDR.
- */
- cfg_value |= CFG1_RLATENCY ((type == TYPE_DDR) ? 7 : 2);
-
-
- /* Set the Active to Read/Write delay. This depends
- * on Trcd which is reported as nanoseconds times 4.
- * We want to calculate Trcd (in nanoseconds) times XLB clock (in Hz)
- * which gives us a dimensionless quantity. Play games with
- * the divisions so we don't run out of dynamic ranges.
- */
- /* account for megaherz and the times 4 */
- temp = (Trcd * (gd->bus_clk / 1000000)) / 4;
-
- /* account for nanoseconds and round up, with a minimum value of 2 */
- temp = ((temp + 999) / 1000) - 1;
- if (temp < 2)
- temp = 2;
-
- cfg_value |= CFG1_ACT2WR (temp);
-
- /* Set the precharge to active delay. This depends
- * on Trp which is reported as nanoseconds times 4.
- * We want to calculate Trp (in nanoseconds) times XLB clock (in Hz)
- * which gives us a dimensionless quantity. Play games with
- * the divisions so we don't run out of dynamic ranges.
- */
- /* account for megaherz and the times 4 */
- temp = (Trp * (gd->bus_clk / 1000000)) / 4;
-
- /* account for nanoseconds and round up, then subtract 1, with a
- * minumum value of 1 and a maximum value of 7.
- */
- temp = (((temp + 999) / 1000) - 1) & 7;
- if (temp < 1)
- temp = 1;
-
- cfg_value |= CFG1_PRE2ACT (temp);
-
- /* Set refresh to active delay. This depends
- * on Trfc which is not reported in the SPD.
- * We'll use a nominal value of 75nsec which is
- * what the controller spec uses.
- */
- temp = (75 * (gd->bus_clk / 1000000));
- /* account for nanoseconds and round up, then subtract 1 */
- cfg_value |= CFG1_REF2ACT (((temp + 999) / 1000) - 1);
-
- /* Set the write latency, using the values given in the controller spec */
- cfg_value |= CFG1_WLATENCY ((type == TYPE_DDR) ? 3 : 0);
- memctl->cfg1 = cfg_value; /* cfg 1 */
- asm volatile ("sync");
-
-
- /* ********************** Cfg 2 ************************* */
-
- /* Set the burst read to read/precharge delay */
- cfg_value = CFG2_BRD2RP ((type == TYPE_DDR) ? 5 : 8);
-
- /* Set the burst write to read/precharge delay. Semi-magic numbers
- * based on the controller spec recommendations, assuming tWR is
- * two clock cycles.
- */
- cfg_value |= CFG2_BWT2RWP ((type == TYPE_DDR) ? 7 : 10);
-
- /* Set the Burst read to write delay. Semi-magic numbers
- * based on the DRAM controller documentation.
- */
- cfg_value |= CFG2_BRD2WT ((type == TYPE_DDR) ? 7 : 0xb);
-
- /* Set the burst length -- must be 8!! Well, 7, actually, becuase
- * it's burst lenght minus 1.
- */
- cfg_value |= CFG2_BURSTLEN (7);
- memctl->cfg2 = cfg_value; /* cfg 2 */
- asm volatile ("sync");
-
-
- /* ********************** mode ************************* */
-
- /* Set enable bit, CKE high/low bits, and the DDR/SDR mode bit,
- * disable automatic refresh.
- */
- cfg_value = CTL_MODE_ENABLE | CTL_CKE_HIGH |
- ((type == TYPE_DDR) ? CTL_DDR_MODE : 0);
-
- /* Set the address mux based on whichever setting(s) is/are common
- * to all the devices we have. If there is more than one, choose
- * one arbitrarily.
- */
- if (muxmask & 0x4)
- cfg_value |= CTL_ADDRMUX (2);
- else if (muxmask & 0x2)
- cfg_value |= CTL_ADDRMUX (1);
- else
- cfg_value |= CTL_ADDRMUX (0);
-
- /* Set the refresh interval. */
- temp = ((refresh * (gd->bus_clk / 1000000)) / (1000 * 64)) - 1;
- cfg_value |= CTL_REFRESH_INTERVAL (temp);
-
- /* Set buffered/non-buffered memory */
- if (buffered)
- cfg_value |= CTL_BUFFERED;
-
- memctl->ctrl = cfg_value; /* ctrl */
- asm volatile ("sync");
-
- if (type == TYPE_DDR) {
- /* issue precharge all */
- temp = cfg_value | CTL_PRECHARGE_CMD;
- memctl->ctrl = temp; /* ctrl */
- asm volatile ("sync");
- }
-
-
- /* Set up mode value for CAS latency */
-#if (CONFIG_SYS_SDRAM_CAS_LATENCY==5) /* CL=2.5 */
- mode_value = (MODE_MODE | MODE_BURSTLEN (MODE_BURSTLEN_8) |
- MODE_BT_SEQUENTIAL | MODE_CL (MODE_CL_2p5) | MODE_CMD);
-#else
- mode_value = (MODE_MODE | MODE_BURSTLEN (MODE_BURSTLEN_8) |
- MODE_BT_SEQUENTIAL | MODE_CL (MODE_CL_2) | MODE_CMD);
-#endif
- asm volatile ("sync");
-
- /* Write Extended Mode - enable DLL */
- if (type == TYPE_DDR) {
- temp = MODE_EXTENDED | MODE_X_DLL_ENABLE |
- MODE_X_DS_NORMAL | MODE_CMD;
- memctl->mode = (temp >> 16); /* mode */
- asm volatile ("sync");
-
- /* Write Mode - reset DLL, set CAS latency */
- temp = mode_value | MODE_OPMODE (MODE_OPMODE_RESETDLL);
- memctl->mode = (temp >> 16); /* mode */
- asm volatile ("sync");
- }
-
- /* Program the chip selects. */
- for (banknum = 0; banknum < TOTAL_BANK; banknum++) {
- if (DramInfo[banknum].size != 0) {
- u32 mask;
- int i;
-
- for (i = 0, mask = 1; i < 32; mask <<= 1, i++) {
- if (DramInfo[banknum].size & mask)
- break;
- }
- temp = (DramInfo[banknum].base & 0xfff00000) | (i -
- 1);
-
- sysconf->cscfg[banknum] = temp;
- asm volatile ("sync");
- }
- }
-
- /* Wait for DLL lock */
- udelay (200);
-
- temp = cfg_value | CTL_PRECHARGE_CMD; /* issue precharge all */
- memctl->ctrl = temp; /* ctrl */
- asm volatile ("sync");
-
- temp = cfg_value | CTL_REFRESH_CMD; /* issue precharge all */
- memctl->ctrl = temp; /* ctrl */
- asm volatile ("sync");
-
- memctl->ctrl = temp; /* ctrl */
- asm volatile ("sync");
-
- /* Write Mode - DLL normal */
- temp = mode_value | MODE_OPMODE (MODE_OPMODE_NORMAL);
- memctl->mode = (temp >> 16); /* mode */
- asm volatile ("sync");
-
- /* Enable refresh, enable DQS's (if DDR), and lock the control register */
- cfg_value &= ~CTL_MODE_ENABLE; /* lock register */
- cfg_value |= CTL_REFRESH_ENABLE; /* enable refresh */
-
- if (type == TYPE_DDR)
- cfg_value |= CTL_DQSOEN (0xf); /* enable DQS's for DDR */
-
- memctl->ctrl = cfg_value; /* ctrl */
- asm volatile ("sync");
-
- return size;
-}