diff options
-rw-r--r-- | README | 2 | ||||
-rw-r--r-- | arch/arm/cpu/armv7/config.mk | 7 | ||||
-rw-r--r-- | arch/arm/cpu/armv8/config.mk | 5 | ||||
-rw-r--r-- | arch/arm/lib/interrupts.c | 2 | ||||
-rw-r--r-- | common/Makefile | 2 | ||||
-rw-r--r-- | doc/README.arm-unaligned-accesses | 122 | ||||
-rw-r--r-- | doc/README.unaligned-memory-access.txt | 240 | ||||
-rw-r--r-- | fs/ubifs/Makefile | 3 | ||||
-rw-r--r-- | lib/Makefile | 3 |
9 files changed, 248 insertions, 138 deletions
@@ -1726,7 +1726,7 @@ CBFS (Coreboot Filesystem) support If this option is set, then U-Boot will prevent the environment variable "splashimage" from being set to a problematic address - (see README.displaying-bmps and README.arm-unaligned-accesses). + (see README.displaying-bmps). This option is useful for targets where, due to alignment restrictions, an improperly aligned BMP image will cause a data abort. If you think you will not have problems with unaligned diff --git a/arch/arm/cpu/armv7/config.mk b/arch/arm/cpu/armv7/config.mk index d01f3d9..c048531 100644 --- a/arch/arm/cpu/armv7/config.mk +++ b/arch/arm/cpu/armv7/config.mk @@ -10,9 +10,12 @@ PF_CPPFLAGS_ARMV7 := $(call cc-option, -march=armv7-a, -march=armv5) PLATFORM_CPPFLAGS += $(PF_CPPFLAGS_ARMV7) -# SEE README.arm-unaligned-accesses +# On supported platforms we set the bit which causes us to trap on unaligned +# memory access. This is the opposite of what the compiler expects to be +# the default so we must pass in -mno-unaligned-access so that it is aware +# of our decision. PF_NO_UNALIGNED := $(call cc-option, -mno-unaligned-access,) -PLATFORM_NO_UNALIGNED := $(PF_NO_UNALIGNED) +PLATFORM_CPPFLAGS += $(PF_NO_UNALIGNED) ifneq ($(CONFIG_IMX_CONFIG),) ifdef CONFIG_SPL diff --git a/arch/arm/cpu/armv8/config.mk b/arch/arm/cpu/armv8/config.mk index 027a68c..f5b9559 100644 --- a/arch/arm/cpu/armv8/config.mk +++ b/arch/arm/cpu/armv8/config.mk @@ -6,10 +6,7 @@ # PLATFORM_RELFLAGS += -fno-common -ffixed-x18 -# SEE README.arm-unaligned-accesses -PF_NO_UNALIGNED := $(call cc-option, -mstrict-align) -PLATFORM_NO_UNALIGNED := $(PF_NO_UNALIGNED) - PF_CPPFLAGS_ARMV8 := $(call cc-option, -march=armv8-a) +PF_NO_UNALIGNED := $(call cc-option, -mstrict-align) PLATFORM_CPPFLAGS += $(PF_CPPFLAGS_ARMV8) PLATFORM_CPPFLAGS += $(PF_NO_UNALIGNED) diff --git a/arch/arm/lib/interrupts.c b/arch/arm/lib/interrupts.c index 603bf14..758b013 100644 --- a/arch/arm/lib/interrupts.c +++ b/arch/arm/lib/interrupts.c @@ -153,7 +153,7 @@ void do_prefetch_abort (struct pt_regs *pt_regs) void do_data_abort (struct pt_regs *pt_regs) { - printf ("data abort\n\n MAYBE you should read doc/README.arm-unaligned-accesses\n\n"); + printf ("data abort\n"); show_regs (pt_regs); bad_mode (); } diff --git a/common/Makefile b/common/Makefile index 3b2ff9b..70f813e 100644 --- a/common/Makefile +++ b/common/Makefile @@ -239,5 +239,3 @@ obj-y += memsize.o obj-y += stdio.o CFLAGS_env_embedded.o := -Wa,--no-warn -DENV_CRC=$(shell tools/envcrc 2>/dev/null) -CFLAGS_hush.o := $(PLATFORM_NO_UNALIGNED) -CFLAGS_fdt_support.o := $(PLATFORM_NO_UNALIGNED) diff --git a/doc/README.arm-unaligned-accesses b/doc/README.arm-unaligned-accesses deleted file mode 100644 index c37d135..0000000 --- a/doc/README.arm-unaligned-accesses +++ /dev/null @@ -1,122 +0,0 @@ -If you are reading this because of a data abort: the following MIGHT -be relevant to your abort, if it was caused by an alignment violation. -In order to determine this, use the PC from the abort dump along with -an objdump -s -S of the u-boot ELF binary to locate the function where -the abort happened; then compare this function with the examples below. -If they match, then you've been hit with a compiler generated unaligned -access, and you should rewrite your code or add -mno-unaligned-access -to the command line of the offending file. - -Note that the PC shown in the abort message is relocated. In order to -be able to match it to an address in the ELF binary dump, you will need -to know the relocation offset. If your target defines CONFIG_CMD_BDI -and if you can get to the prompt and enter commands before the abort -happens, then command "bdinfo" will give you the offset. Otherwise you -will need to try a build with DEBUG set, which will display the offset, -or use a debugger and set a breakpoint at relocate_code() to see the -offset (passed as an argument). - -* - -Since U-Boot runs on a variety of hardware, some only able to perform -unaligned accesses with a strong penalty, some unable to perform them -at all, the policy regarding unaligned accesses is to not perform any, -unless absolutely necessary because of hardware or standards. - -Also, on hardware which permits it, the core is configured to throw -data abort exceptions on unaligned accesses in order to catch these -unallowed accesses as early as possible. - -Until version 4.7, the gcc default for performing unaligned accesses -(-mno-unaligned-access) is to emulate unaligned accesses using aligned -loads and stores plus shifts and masks. Emulated unaligned accesses -will not be caught by hardware. These accesses may be costly and may -be actually unnecessary. In order to catch these accesses and remove -or optimize them, option -munaligned-access is explicitly set for all -versions of gcc which support it. - -From gcc 4.7 onward starting at armv7 architectures, the default for -performing unaligned accesses is to use unaligned native loads and -stores (-munaligned-access), because the cost of unaligned accesses -has dropped on armv7 and beyond. This should not affect U-Boot's -policy of controlling unaligned accesses, however the compiler may -generate uncontrolled unaligned accesses on its own in at least one -known case: when declaring a local initialized char array, e.g. - -function foo() -{ - char buffer[] = "initial value"; -/* or */ - char buffer[] = { 'i', 'n', 'i', 't', 0 }; - ... -} - -Under -munaligned-accesses with optimizations on, this declaration -causes the compiler to generate native loads from the literal string -and native stores to the buffer, and the literal string alignment -cannot be controlled. If it is misaligned, then the core will throw -a data abort exception. - -Quite probably the same might happen for 16-bit array initializations -where the constant is aligned on a boundary which is a multiple of 2 -but not of 4: - -function foo() -{ - u16 buffer[] = { 1, 2, 3 }; - ... -} - -The long term solution to this issue is to add an option to gcc to -allow controlling the general alignment of data, including constant -initialization values. - -However this will only apply to the version of gcc which will have such -an option. For other versions, there are four workarounds: - -a) Enforce as a rule that array initializations as described above - are forbidden. This is generally not acceptable as they are valid, - and usual, C constructs. The only case where they could be rejected - is when they actually equate to a const char* declaration, i.e. the - array is initialized and never modified in the function's scope. - -b) Drop the requirement on unaligned accesses at least for ARMv7, - i.e. do not throw a data abort exception upon unaligned accesses. - But that will allow adding badly aligned code to U-Boot, only for - it to fail when re-used with a stricter target, possibly once the - bad code is already in mainline. - -c) Relax the -munaligned-access rule globally. This will prevent native - unaligned accesses of course, but that will also hide any bug caused - by a bad unaligned access, making it much harder to diagnose it. It - is actually what already happens when building ARM targets with a - pre-4.7 gcc, and it may actually already hide some bugs yet unseen - until the target gets compiled with -munaligned-access. - -d) Relax the -munaligned-access rule only for for files susceptible to - the local initialized array issue and for armv7 architectures and - beyond. This minimizes the quantity of code which can hide unwanted - misaligned accesses. - -The option retained is d). - -Considering that actual occurrences of the issue are rare (as of this -writing, 5 files out of 7840 in U-Boot, or .3%, contain an initialized -local char array which cannot actually be replaced with a const char*), -contributors should not be required to systematically try and detect -the issue in their patches. - -Detecting files susceptible to the issue can be automated through a -filter installed as a hook in .git which recognizes local char array -initializations. Automation should err on the false positive side, for -instance flagging non-local arrays as if they were local if they cannot -be told apart. - -In any case, detection shall not prevent committing the patch, but -shall pre-populate the commit message with a note to the effect that -this patch contains an initialized local char or 16-bit array and thus -should be protected from the gcc 4.7 issue. - -Upon a positive detection, either $(PLATFORM_NO_UNALIGNED) should be -added to CFLAGS for the affected file(s), or if the array is a pseudo -const char*, it should be replaced by an actual one. diff --git a/doc/README.unaligned-memory-access.txt b/doc/README.unaligned-memory-access.txt new file mode 100644 index 0000000..00529f5 --- /dev/null +++ b/doc/README.unaligned-memory-access.txt @@ -0,0 +1,240 @@ +Editors note: This document is _heavily_ cribbed from the Linux Kernel, with +really only the section about "Alignment vs. Networking" removed. + +UNALIGNED MEMORY ACCESSES +========================= + +Linux runs on a wide variety of architectures which have varying behaviour +when it comes to memory access. This document presents some details about +unaligned accesses, why you need to write code that doesn't cause them, +and how to write such code! + + +The definition of an unaligned access +===================================== + +Unaligned memory accesses occur when you try to read N bytes of data starting +from an address that is not evenly divisible by N (i.e. addr % N != 0). +For example, reading 4 bytes of data from address 0x10004 is fine, but +reading 4 bytes of data from address 0x10005 would be an unaligned memory +access. + +The above may seem a little vague, as memory access can happen in different +ways. The context here is at the machine code level: certain instructions read +or write a number of bytes to or from memory (e.g. movb, movw, movl in x86 +assembly). As will become clear, it is relatively easy to spot C statements +which will compile to multiple-byte memory access instructions, namely when +dealing with types such as u16, u32 and u64. + + +Natural alignment +================= + +The rule mentioned above forms what we refer to as natural alignment: +When accessing N bytes of memory, the base memory address must be evenly +divisible by N, i.e. addr % N == 0. + +When writing code, assume the target architecture has natural alignment +requirements. + +In reality, only a few architectures require natural alignment on all sizes +of memory access. However, we must consider ALL supported architectures; +writing code that satisfies natural alignment requirements is the easiest way +to achieve full portability. + + +Why unaligned access is bad +=========================== + +The effects of performing an unaligned memory access vary from architecture +to architecture. It would be easy to write a whole document on the differences +here; a summary of the common scenarios is presented below: + + - Some architectures are able to perform unaligned memory accesses + transparently, but there is usually a significant performance cost. + - Some architectures raise processor exceptions when unaligned accesses + happen. The exception handler is able to correct the unaligned access, + at significant cost to performance. + - Some architectures raise processor exceptions when unaligned accesses + happen, but the exceptions do not contain enough information for the + unaligned access to be corrected. + - Some architectures are not capable of unaligned memory access, but will + silently perform a different memory access to the one that was requested, + resulting in a subtle code bug that is hard to detect! + +It should be obvious from the above that if your code causes unaligned +memory accesses to happen, your code will not work correctly on certain +platforms and will cause performance problems on others. + + +Code that does not cause unaligned access +========================================= + +At first, the concepts above may seem a little hard to relate to actual +coding practice. After all, you don't have a great deal of control over +memory addresses of certain variables, etc. + +Fortunately things are not too complex, as in most cases, the compiler +ensures that things will work for you. For example, take the following +structure: + + struct foo { + u16 field1; + u32 field2; + u8 field3; + }; + +Let us assume that an instance of the above structure resides in memory +starting at address 0x10000. With a basic level of understanding, it would +not be unreasonable to expect that accessing field2 would cause an unaligned +access. You'd be expecting field2 to be located at offset 2 bytes into the +structure, i.e. address 0x10002, but that address is not evenly divisible +by 4 (remember, we're reading a 4 byte value here). + +Fortunately, the compiler understands the alignment constraints, so in the +above case it would insert 2 bytes of padding in between field1 and field2. +Therefore, for standard structure types you can always rely on the compiler +to pad structures so that accesses to fields are suitably aligned (assuming +you do not cast the field to a type of different length). + +Similarly, you can also rely on the compiler to align variables and function +parameters to a naturally aligned scheme, based on the size of the type of +the variable. + +At this point, it should be clear that accessing a single byte (u8 or char) +will never cause an unaligned access, because all memory addresses are evenly +divisible by one. + +On a related topic, with the above considerations in mind you may observe +that you could reorder the fields in the structure in order to place fields +where padding would otherwise be inserted, and hence reduce the overall +resident memory size of structure instances. The optimal layout of the +above example is: + + struct foo { + u32 field2; + u16 field1; + u8 field3; + }; + +For a natural alignment scheme, the compiler would only have to add a single +byte of padding at the end of the structure. This padding is added in order +to satisfy alignment constraints for arrays of these structures. + +Another point worth mentioning is the use of __attribute__((packed)) on a +structure type. This GCC-specific attribute tells the compiler never to +insert any padding within structures, useful when you want to use a C struct +to represent some data that comes in a fixed arrangement 'off the wire'. + +You might be inclined to believe that usage of this attribute can easily +lead to unaligned accesses when accessing fields that do not satisfy +architectural alignment requirements. However, again, the compiler is aware +of the alignment constraints and will generate extra instructions to perform +the memory access in a way that does not cause unaligned access. Of course, +the extra instructions obviously cause a loss in performance compared to the +non-packed case, so the packed attribute should only be used when avoiding +structure padding is of importance. + + +Code that causes unaligned access +================================= + +With the above in mind, let's move onto a real life example of a function +that can cause an unaligned memory access. The following function taken +from the Linux Kernel's include/linux/etherdevice.h is an optimized routine +to compare two ethernet MAC addresses for equality. + +bool ether_addr_equal(const u8 *addr1, const u8 *addr2) +{ +#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS + u32 fold = ((*(const u32 *)addr1) ^ (*(const u32 *)addr2)) | + ((*(const u16 *)(addr1 + 4)) ^ (*(const u16 *)(addr2 + 4))); + + return fold == 0; +#else + const u16 *a = (const u16 *)addr1; + const u16 *b = (const u16 *)addr2; + return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2])) != 0; +#endif +} + +In the above function, when the hardware has efficient unaligned access +capability, there is no issue with this code. But when the hardware isn't +able to access memory on arbitrary boundaries, the reference to a[0] causes +2 bytes (16 bits) to be read from memory starting at address addr1. + +Think about what would happen if addr1 was an odd address such as 0x10003. +(Hint: it'd be an unaligned access.) + +Despite the potential unaligned access problems with the above function, it +is included in the kernel anyway but is understood to only work normally on +16-bit-aligned addresses. It is up to the caller to ensure this alignment or +not use this function at all. This alignment-unsafe function is still useful +as it is a decent optimization for the cases when you can ensure alignment, +which is true almost all of the time in ethernet networking context. + + +Here is another example of some code that could cause unaligned accesses: + void myfunc(u8 *data, u32 value) + { + [...] + *((u32 *) data) = cpu_to_le32(value); + [...] + } + +This code will cause unaligned accesses every time the data parameter points +to an address that is not evenly divisible by 4. + +In summary, the 2 main scenarios where you may run into unaligned access +problems involve: + 1. Casting variables to types of different lengths + 2. Pointer arithmetic followed by access to at least 2 bytes of data + + +Avoiding unaligned accesses +=========================== + +The easiest way to avoid unaligned access is to use the get_unaligned() and +put_unaligned() macros provided by the <asm/unaligned.h> header file. + +Going back to an earlier example of code that potentially causes unaligned +access: + + void myfunc(u8 *data, u32 value) + { + [...] + *((u32 *) data) = cpu_to_le32(value); + [...] + } + +To avoid the unaligned memory access, you would rewrite it as follows: + + void myfunc(u8 *data, u32 value) + { + [...] + value = cpu_to_le32(value); + put_unaligned(value, (u32 *) data); + [...] + } + +The get_unaligned() macro works similarly. Assuming 'data' is a pointer to +memory and you wish to avoid unaligned access, its usage is as follows: + + u32 value = get_unaligned((u32 *) data); + +These macros work for memory accesses of any length (not just 32 bits as +in the examples above). Be aware that when compared to standard access of +aligned memory, using these macros to access unaligned memory can be costly in +terms of performance. + +If use of such macros is not convenient, another option is to use memcpy(), +where the source or destination (or both) are of type u8* or unsigned char*. +Due to the byte-wise nature of this operation, unaligned accesses are avoided. + +-- +In the Linux Kernel, +Authors: Daniel Drake <dsd@gentoo.org>, + Johannes Berg <johannes@sipsolutions.net> +With help from: Alan Cox, Avuton Olrich, Heikki Orsila, Jan Engelhardt, +Kyle McMartin, Kyle Moffett, Randy Dunlap, Robert Hancock, Uli Kunitz, +Vadim Lobanov diff --git a/fs/ubifs/Makefile b/fs/ubifs/Makefile index 6b1a9a5..8c8c6ac 100644 --- a/fs/ubifs/Makefile +++ b/fs/ubifs/Makefile @@ -13,6 +13,3 @@ obj-y := ubifs.o io.o super.o sb.o master.o lpt.o obj-y += lpt_commit.o scan.o lprops.o obj-y += tnc.o tnc_misc.o debug.o crc16.o budget.o obj-y += log.o orphan.o recovery.o replay.o - -# SEE README.arm-unaligned-accesses -CFLAGS_super.o := $(PLATFORM_NO_UNALIGNED) diff --git a/lib/Makefile b/lib/Makefile index 8c483c9..dedb97b 100644 --- a/lib/Makefile +++ b/lib/Makefile @@ -65,6 +65,3 @@ obj-y += vsprintf.o obj-$(CONFIG_RANDOM_MACADDR) += rand.o obj-$(CONFIG_BOOTP_RANDOM_DELAY) += rand.o obj-$(CONFIG_CMD_LINK_LOCAL) += rand.o - -# SEE README.arm-unaligned-accesses -CFLAGS_bzlib.o := $(PLATFORM_NO_UNALIGNED) |