diff options
-rw-r--r-- | arch/arm/cpu/arm926ejs/lpc32xx/devices.c | 6 | ||||
-rw-r--r-- | arch/arm/include/asm/arch-lpc32xx/clk.h | 4 | ||||
-rw-r--r-- | arch/arm/include/asm/arch-lpc32xx/sys_proto.h | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/Makefile | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/lpc32xx_nand_mlc.c | 764 |
5 files changed, 776 insertions, 0 deletions
diff --git a/arch/arm/cpu/arm926ejs/lpc32xx/devices.c b/arch/arm/cpu/arm926ejs/lpc32xx/devices.c index 062db8d..be4c93d 100644 --- a/arch/arm/cpu/arm926ejs/lpc32xx/devices.c +++ b/arch/arm/cpu/arm926ejs/lpc32xx/devices.c @@ -44,3 +44,9 @@ void lpc32xx_mac_init(void) writel(CLK_MAC_REG | CLK_MAC_SLAVE | CLK_MAC_MASTER | CLK_MAC_MII, &clk->macclk_ctrl); } + +void lpc32xx_mlc_nand_init(void) +{ + /* Enable NAND interface */ + writel(CLK_NAND_MLC | CLK_NAND_MLC_INT, &clk->flashclk_ctrl); +} diff --git a/arch/arm/include/asm/arch-lpc32xx/clk.h b/arch/arm/include/asm/arch-lpc32xx/clk.h index 92f6c15..bc7d33d 100644 --- a/arch/arm/include/asm/arch-lpc32xx/clk.h +++ b/arch/arm/include/asm/arch-lpc32xx/clk.h @@ -147,6 +147,10 @@ struct clk_pm_regs { /* DMA Clock Control Register bits */ #define CLK_DMA_ENABLE (1 << 0) +/* NAND Clock Control Register bits */ +#define CLK_NAND_MLC (1 << 1) +#define CLK_NAND_MLC_INT (1 << 5) + unsigned int get_sys_clk_rate(void); unsigned int get_hclk_pll_rate(void); unsigned int get_hclk_clk_div(void); diff --git a/arch/arm/include/asm/arch-lpc32xx/sys_proto.h b/arch/arm/include/asm/arch-lpc32xx/sys_proto.h index a6b8826..0c4e712 100644 --- a/arch/arm/include/asm/arch-lpc32xx/sys_proto.h +++ b/arch/arm/include/asm/arch-lpc32xx/sys_proto.h @@ -9,5 +9,6 @@ void lpc32xx_uart_init(unsigned int uart_id); void lpc32xx_mac_init(void); +void lpc32xx_mlc_nand_init(void); #endif /* _LPC32XX_SYS_PROTO_H */ diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 1f02bfc..347ea62 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -52,6 +52,7 @@ obj-$(CONFIG_NAND_JZ4740) += jz4740_nand.o obj-$(CONFIG_NAND_KB9202) += kb9202_nand.o obj-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o obj-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o +obj-$(CONFIG_NAND_LPC32XX_MLC) += lpc32xx_nand_mlc.o obj-$(CONFIG_NAND_MPC5121_NFC) += mpc5121_nfc.o obj-$(CONFIG_NAND_VF610_NFC) += vf610_nfc.o obj-$(CONFIG_NAND_MXC) += mxc_nand.o diff --git a/drivers/mtd/nand/lpc32xx_nand_mlc.c b/drivers/mtd/nand/lpc32xx_nand_mlc.c new file mode 100644 index 0000000..8156fe9 --- /dev/null +++ b/drivers/mtd/nand/lpc32xx_nand_mlc.c @@ -0,0 +1,764 @@ +/* + * LPC32xx MLC NAND flash controller driver + * + * (C) Copyright 2014 3ADEV <http://3adev.com> + * Written by Albert ARIBAUD <albert.aribaud@3adev.fr> + * + * SPDX-License-Identifier: GPL-2.0+ + * + * NOTE: + * + * The MLC NAND flash controller provides hardware Reed-Solomon ECC + * covering in- and out-of-band data together. Therefore, in- and out- + * of-band data must be written together in order to have a valid ECC. + * + * Consequently, pages with meaningful in-band data are written with + * blank (all-ones) out-of-band data and a valid ECC, and any later + * out-of-band data write will void the ECC. + * + * Therefore, code which reads such late-written out-of-band data + * should not rely on the ECC validity. + */ + +#include <common.h> +#include <nand.h> +#include <asm/errno.h> +#include <asm/io.h> +#include <nand.h> +#include <asm/arch/clk.h> +#include <asm/arch/sys_proto.h> + +/* + * MLC NAND controller registers. + */ +struct lpc32xx_nand_mlc_registers { + u8 buff[32768]; /* controller's serial data buffer */ + u8 data[32768]; /* NAND's raw data buffer */ + u32 cmd; + u32 addr; + u32 ecc_enc_reg; + u32 ecc_dec_reg; + u32 ecc_auto_enc_reg; + u32 ecc_auto_dec_reg; + u32 rpr; + u32 wpr; + u32 rubp; + u32 robp; + u32 sw_wp_add_low; + u32 sw_wp_add_hig; + u32 icr; + u32 time_reg; + u32 irq_mr; + u32 irq_sr; + u32 lock_pr; + u32 isr; + u32 ceh; +}; + +/* LOCK_PR register defines */ +#define LOCK_PR_UNLOCK_KEY 0x0000A25E /* Magic unlock value */ + +/* ICR defines */ +#define ICR_LARGE_BLOCKS 0x00000004 /* configure for 2KB blocks */ +#define ICR_ADDR4 0x00000002 /* configure for 4-word addrs */ + +/* CEH defines */ +#define CEH_NORMAL_CE 0x00000001 /* do not force CE ON */ + +/* ISR register defines */ +#define ISR_NAND_READY 0x00000001 +#define ISR_CONTROLLER_READY 0x00000002 +#define ISR_ECC_READY 0x00000004 +#define ISR_DECODER_ERRORS(s) ((((s) >> 4) & 3)+1) +#define ISR_DECODER_FAILURE 0x00000040 +#define ISR_DECODER_ERROR 0x00000008 + +/* time-out for NAND chip / controller loops, in us */ +#define LPC32X_NAND_TIMEOUT 5000 + +/* + * There is a single instance of the NAND MLC controller + */ + +static struct lpc32xx_nand_mlc_registers __iomem *lpc32xx_nand_mlc_registers + = (struct lpc32xx_nand_mlc_registers __iomem *)MLC_NAND_BASE; + +#define clkdiv(v, w, o) (((1+(clk/v)) & w) << o) + +/** + * OOB data in each small page are 6 'free' then 10 ECC bytes. + * To make things easier, when reading large pages, the four pages' + * 'free' OOB bytes are grouped in the first 24 bytes of the OOB buffer, + * while the the four ECC bytes are groupe in its last 40 bytes. + * + * The struct below represents how free vs ecc oob bytes are stored + * in the buffer. + * + * Note: the OOB bytes contain the bad block marker at offsets 0 and 1. + */ + +struct lpc32xx_oob { + struct { + uint8_t free_oob_bytes[6]; + } free[4]; + struct { + uint8_t ecc_oob_bytes[10]; + } ecc[4]; +}; + +/* + * Initialize the controller + */ + +static void lpc32xx_nand_init(void) +{ + unsigned int clk; + + /* Configure controller for no software write protection, x8 bus + width, large block device, and 4 address words */ + + /* unlock controller registers with magic key */ + writel(LOCK_PR_UNLOCK_KEY, + &lpc32xx_nand_mlc_registers->lock_pr); + + /* enable large blocks and large NANDs */ + writel(ICR_LARGE_BLOCKS | ICR_ADDR4, + &lpc32xx_nand_mlc_registers->icr); + + /* Make sure MLC interrupts are disabled */ + writel(0, &lpc32xx_nand_mlc_registers->irq_mr); + + /* Normal chip enable operation */ + writel(CEH_NORMAL_CE, + &lpc32xx_nand_mlc_registers->ceh); + + /* Setup NAND timing */ + clk = get_hclk_clk_rate(); + + writel( + clkdiv(CONFIG_LPC32XX_NAND_MLC_TCEA_DELAY, 0x03, 24) | + clkdiv(CONFIG_LPC32XX_NAND_MLC_BUSY_DELAY, 0x1F, 19) | + clkdiv(CONFIG_LPC32XX_NAND_MLC_NAND_TA, 0x07, 16) | + clkdiv(CONFIG_LPC32XX_NAND_MLC_RD_HIGH, 0x0F, 12) | + clkdiv(CONFIG_LPC32XX_NAND_MLC_RD_LOW, 0x0F, 8) | + clkdiv(CONFIG_LPC32XX_NAND_MLC_WR_HIGH, 0x0F, 4) | + clkdiv(CONFIG_LPC32XX_NAND_MLC_WR_LOW, 0x0F, 0), + &lpc32xx_nand_mlc_registers->time_reg); +} + +#if !defined(CONFIG_SPL_BUILD) + +/** + * lpc32xx_cmd_ctrl - write command to either cmd or data register + */ + +static void lpc32xx_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->cmd); + else if (ctrl & NAND_ALE) + writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->addr); +} + +/** + * lpc32xx_read_byte - read a byte from the NAND + * @mtd: MTD device structure + */ + +static uint8_t lpc32xx_read_byte(struct mtd_info *mtd) +{ + return readb(&lpc32xx_nand_mlc_registers->data); +} + +/** + * lpc32xx_dev_ready - test if NAND device (actually controller) is ready + * @mtd: MTD device structure + * @mode: mode to set the ECC HW to. + */ + +static int lpc32xx_dev_ready(struct mtd_info *mtd) +{ + /* means *controller* ready for us */ + int status = readl(&lpc32xx_nand_mlc_registers->isr); + return status & ISR_CONTROLLER_READY; +} + +/** + * ECC layout -- this is needed whatever ECC mode we are using. + * In a 2KB (4*512B) page, R/S codes occupy 40 (4*10) bytes. + * To make U-Boot's life easier, we pack 'useable' OOB at the + * front and R/S ECC at the back. + */ + +static struct nand_ecclayout lpc32xx_largepage_ecclayout = { + .eccbytes = 40, + .eccpos = {24, 25, 26, 27, 28, 29, 30, 31, 32, 33, + 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, + 44, 45, 46, 47, 48, 48, 50, 51, 52, 53, + 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + }, + .oobfree = { + /* bytes 0 and 1 are used for the bad block marker */ + { + .offset = 2, + .length = 22 + }, + } +}; + +/** + * lpc32xx_read_page_hwecc - read in- and out-of-band data with ECC + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Use large block Auto Decode Read Mode(1) as described in User Manual + * section 8.6.2.1. + * + * The initial Read Mode and Read Start commands are sent by the caller. + * + * ECC will be false if out-of-band data has been updated since in-band + * data was initially written. + */ + +static int lpc32xx_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int oob_required, + int page) +{ + unsigned int i, status, timeout, err, max_bitflips = 0; + struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; + + /* go through all four small pages */ + for (i = 0; i < 4; i++) { + /* start auto decode (reads 528 NAND bytes) */ + writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg); + /* wait for controller to return to ready state */ + for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { + status = readl(&lpc32xx_nand_mlc_registers->isr); + if (status & ISR_CONTROLLER_READY) + break; + udelay(1); + } + /* if decoder failed, return failure */ + if (status & ISR_DECODER_FAILURE) + return -1; + /* keep count of maximum bitflips performed */ + if (status & ISR_DECODER_ERROR) { + err = ISR_DECODER_ERRORS(status); + if (err > max_bitflips) + max_bitflips = err; + } + /* copy first 512 bytes into buffer */ + memcpy(buf+512*i, lpc32xx_nand_mlc_registers->buff, 512); + /* copy next 6 bytes at front of OOB buffer */ + memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6); + /* copy last 10 bytes (R/S ECC) at back of OOB buffer */ + memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10); + } + return max_bitflips; +} + +/** + * lpc32xx_read_page_raw - read raw (in-band, out-of-band and ECC) data + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Read NAND directly; can read pages with invalid ECC. + */ + +static int lpc32xx_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int oob_required, + int page) +{ + unsigned int i, status, timeout; + struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; + + /* when we get here we've already had the Read Mode(1) */ + + /* go through all four small pages */ + for (i = 0; i < 4; i++) { + /* wait for NAND to return to ready state */ + for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { + status = readl(&lpc32xx_nand_mlc_registers->isr); + if (status & ISR_NAND_READY) + break; + udelay(1); + } + /* if NAND stalled, return failure */ + if (!(status & ISR_NAND_READY)) + return -1; + /* copy first 512 bytes into buffer */ + memcpy(buf+512*i, lpc32xx_nand_mlc_registers->data, 512); + /* copy next 6 bytes at front of OOB buffer */ + memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->data, 6); + /* copy last 10 bytes (R/S ECC) at back of OOB buffer */ + memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->data, 10); + } + return 0; +} + +/** + * lpc32xx_read_oob - read out-of-band data + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to read + * + * Read out-of-band data. User Manual section 8.6.4 suggests using Read + * Mode(3) which the controller will turn into a Read Mode(1) internally + * but nand_base.c will turn Mode(3) into Mode(0), so let's use Mode(0) + * directly. + * + * ECC covers in- and out-of-band data and was written when out-of-band + * data was blank. Therefore, if the out-of-band being read here is not + * blank, then the ECC will be false and the read will return bitflips, + * even in case of ECC failure where we will return 5 bitflips. The + * caller should be prepared to handle this. + */ + +static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + unsigned int i, status, timeout, err, max_bitflips = 0; + struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; + + /* No command was sent before calling read_oob() so send one */ + + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + + /* go through all four small pages */ + for (i = 0; i < 4; i++) { + /* start auto decode (reads 528 NAND bytes) */ + writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg); + /* wait for controller to return to ready state */ + for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { + status = readl(&lpc32xx_nand_mlc_registers->isr); + if (status & ISR_CONTROLLER_READY) + break; + udelay(1); + } + /* if decoder failure, count 'one too many' bitflips */ + if (status & ISR_DECODER_FAILURE) + max_bitflips = 5; + /* keep count of maximum bitflips performed */ + if (status & ISR_DECODER_ERROR) { + err = ISR_DECODER_ERRORS(status); + if (err > max_bitflips) + max_bitflips = err; + } + /* set read pointer to OOB area */ + writel(0, &lpc32xx_nand_mlc_registers->robp); + /* copy next 6 bytes at front of OOB buffer */ + memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6); + /* copy next 10 bytes (R/S ECC) at back of OOB buffer */ + memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10); + } + return max_bitflips; +} + +/** + * lpc32xx_write_page_hwecc - write in- and out-of-band data with ECC + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * + * Use large block Auto Encode as per User Manual section 8.6.4. + * + * The initial Write Serial Input and final Auto Program commands are + * sent by the caller. + */ + +static int lpc32xx_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, int oob_required) +{ + unsigned int i, status, timeout; + struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; + + /* when we get here we've already had the SEQIN */ + for (i = 0; i < 4; i++) { + /* start encode (expects 518 writes to buff) */ + writel(0, &lpc32xx_nand_mlc_registers->ecc_enc_reg); + /* copy first 512 bytes from buffer */ + memcpy(&lpc32xx_nand_mlc_registers->buff, buf+512*i, 512); + /* copy next 6 bytes from OOB buffer -- excluding ECC */ + memcpy(&lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6); + /* wait for ECC to return to ready state */ + for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { + status = readl(&lpc32xx_nand_mlc_registers->isr); + if (status & ISR_ECC_READY) + break; + udelay(1); + } + /* if ECC stalled, return failure */ + if (!(status & ISR_ECC_READY)) + return -1; + /* Trigger auto encode (writes 528 bytes to NAND) */ + writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_enc_reg); + /* wait for controller to return to ready state */ + for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { + status = readl(&lpc32xx_nand_mlc_registers->isr); + if (status & ISR_CONTROLLER_READY) + break; + udelay(1); + } + /* if controller stalled, return error */ + if (!(status & ISR_CONTROLLER_READY)) + return -1; + } + return 0; +} + +/** + * lpc32xx_write_page_raw - write raw (in-band, out-of-band and ECC) data + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Use large block write but without encode. + * + * The initial Write Serial Input and final Auto Program commands are + * sent by the caller. + * + * This function will write the full out-of-band data, including the + * ECC area. Therefore, it can write pages with valid *or* invalid ECC. + */ + +static int lpc32xx_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, int oob_required) +{ + unsigned int i; + struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; + + /* when we get here we've already had the Read Mode(1) */ + for (i = 0; i < 4; i++) { + /* copy first 512 bytes from buffer */ + memcpy(lpc32xx_nand_mlc_registers->buff, buf+512*i, 512); + /* copy next 6 bytes into OOB buffer -- excluding ECC */ + memcpy(lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6); + /* copy next 10 bytes into OOB buffer -- that is 'ECC' */ + memcpy(lpc32xx_nand_mlc_registers->buff, &oob->ecc[i], 10); + } + return 0; +} + +/** + * lpc32xx_write_oob - write out-of-band data + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to read + * + * Since ECC covers in- and out-of-band data, writing out-of-band data + * with ECC will render the page ECC wrong -- or, if the page was blank, + * then it will produce a good ECC but a later in-band data write will + * render it wrong. + * + * Therefore, do not compute or write any ECC, and always return success. + * + * This implies that we do four writes, since non-ECC out-of-band data + * are not contiguous in a large page. + */ + +static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + /* update oob on all 4 subpages in sequence */ + unsigned int i, status, timeout; + struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; + + for (i = 0; i < 4; i++) { + /* start data input */ + chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x200+0x210*i, page); + /* copy 6 non-ECC out-of-band bytes directly into NAND */ + memcpy(lpc32xx_nand_mlc_registers->data, &oob->free[i], 6); + /* program page */ + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + /* wait for NAND to return to ready state */ + for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { + status = readl(&lpc32xx_nand_mlc_registers->isr); + if (status & ISR_NAND_READY) + break; + udelay(1); + } + /* if NAND stalled, return error */ + if (!(status & ISR_NAND_READY)) + return -1; + } + return 0; +} + +/** + * lpc32xx_waitfunc - wait until a command is done + * @mtd: MTD device structure + * @chip: NAND chip structure + * + * Wait for controller and FLASH to both be ready. + */ + +static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) +{ + int status; + unsigned int timeout; + /* wait until both controller and NAND are ready */ + for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { + status = readl(&lpc32xx_nand_mlc_registers->isr); + if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY)) + == (ISR_CONTROLLER_READY || ISR_NAND_READY)) + break; + udelay(1); + } + /* if controller or NAND stalled, return error */ + if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY)) + != (ISR_CONTROLLER_READY || ISR_NAND_READY)) + return -1; + /* write NAND status command */ + writel(NAND_CMD_STATUS, &lpc32xx_nand_mlc_registers->cmd); + /* read back status and return it */ + return readb(&lpc32xx_nand_mlc_registers->data); +} + +/* + * We are self-initializing, so we need our own chip struct + */ + +static struct nand_chip lpc32xx_chip; + +/* + * Initialize the controller + */ + +void board_nand_init(void) +{ + /* we have only one device anyway */ + struct mtd_info *mtd = &nand_info[0]; + /* chip is struct nand_chip, and is now provided by the driver. */ + mtd->priv = &lpc32xx_chip; + /* to store return status in case we need to print it */ + int ret; + + /* Set all BOARDSPECIFIC (actually core-specific) fields */ + + lpc32xx_chip.IO_ADDR_R = &lpc32xx_nand_mlc_registers->buff; + lpc32xx_chip.IO_ADDR_W = &lpc32xx_nand_mlc_registers->buff; + lpc32xx_chip.cmd_ctrl = lpc32xx_cmd_ctrl; + /* do not set init_size: nand_base.c will read sizes from chip */ + lpc32xx_chip.dev_ready = lpc32xx_dev_ready; + /* do not set setup_read_retry: this is NAND-chip-specific */ + /* do not set chip_delay: we have dev_ready defined. */ + lpc32xx_chip.options |= NAND_NO_SUBPAGE_WRITE; + + /* Set needed ECC fields */ + + lpc32xx_chip.ecc.mode = NAND_ECC_HW; + lpc32xx_chip.ecc.layout = &lpc32xx_largepage_ecclayout; + lpc32xx_chip.ecc.size = 512; + lpc32xx_chip.ecc.bytes = 10; + lpc32xx_chip.ecc.strength = 4; + lpc32xx_chip.ecc.read_page = lpc32xx_read_page_hwecc; + lpc32xx_chip.ecc.read_page_raw = lpc32xx_read_page_raw; + lpc32xx_chip.ecc.write_page = lpc32xx_write_page_hwecc; + lpc32xx_chip.ecc.write_page_raw = lpc32xx_write_page_raw; + lpc32xx_chip.ecc.read_oob = lpc32xx_read_oob; + lpc32xx_chip.ecc.write_oob = lpc32xx_write_oob; + lpc32xx_chip.waitfunc = lpc32xx_waitfunc; + + lpc32xx_chip.read_byte = lpc32xx_read_byte; /* FIXME: NEEDED? */ + + /* BBT options: read from last two pages */ + lpc32xx_chip.bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_LASTBLOCK + | NAND_BBT_SCANLASTPAGE | NAND_BBT_SCAN2NDPAGE + | NAND_BBT_WRITE; + + /* Initialize NAND interface */ + lpc32xx_nand_init(); + + /* identify chip */ + ret = nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_CHIPS, NULL); + if (ret) { + error("nand_scan_ident returned %i", ret); + return; + } + + /* finish scanning the chip */ + ret = nand_scan_tail(mtd); + if (ret) { + error("nand_scan_tail returned %i", ret); + return; + } + + /* chip is good, register it */ + ret = nand_register(0); + if (ret) + error("nand_register returned %i", ret); +} + +#else /* defined(CONFIG_SPL_BUILD) */ + +void nand_init(void) +{ + /* enable NAND controller */ + lpc32xx_mlc_nand_init(); + /* initialize NAND controller */ + lpc32xx_nand_init(); +} + +void nand_deselect(void) +{ + /* nothing to do, but SPL requires this function */ +} + +static int read_single_page(uint8_t *dest, int page, + struct lpc32xx_oob *oob) +{ + int status, i, timeout, err, max_bitflips = 0; + + /* enter read mode */ + writel(NAND_CMD_READ0, &lpc32xx_nand_mlc_registers->cmd); + /* send column (lsb then MSB) and page (lsb to MSB) */ + writel(0, &lpc32xx_nand_mlc_registers->addr); + writel(0, &lpc32xx_nand_mlc_registers->addr); + writel(page & 0xff, &lpc32xx_nand_mlc_registers->addr); + writel((page>>8) & 0xff, &lpc32xx_nand_mlc_registers->addr); + writel((page>>16) & 0xff, &lpc32xx_nand_mlc_registers->addr); + /* start reading */ + writel(NAND_CMD_READSTART, &lpc32xx_nand_mlc_registers->cmd); + + /* large page auto decode read */ + for (i = 0; i < 4; i++) { + /* start auto decode (reads 528 NAND bytes) */ + writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg); + /* wait for controller to return to ready state */ + for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { + status = readl(&lpc32xx_nand_mlc_registers->isr); + if (status & ISR_CONTROLLER_READY) + break; + udelay(1); + } + /* if controller stalled, return error */ + if (!(status & ISR_CONTROLLER_READY)) + return -1; + /* if decoder failure, return error */ + if (status & ISR_DECODER_FAILURE) + return -1; + /* keep count of maximum bitflips performed */ + if (status & ISR_DECODER_ERROR) { + err = ISR_DECODER_ERRORS(status); + if (err > max_bitflips) + max_bitflips = err; + } + /* copy first 512 bytes into buffer */ + memcpy(dest+i*512, lpc32xx_nand_mlc_registers->buff, 512); + /* copy next 6 bytes bytes into OOB buffer */ + memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6); + } + return max_bitflips; +} + +/* + * Load U-Boot signed image. + * This loads an image from NAND, skipping bad blocks. + * A block is declared bad if at least one of its readable pages has + * a bad block marker in its OOB at position 0. + * If all pages ion a block are unreadable, the block is considered + * bad (i.e., assumed not to be part of the image) and skipped. + * + * IMPORTANT NOTE: + * + * If the first block of the image is fully unreadable, it will be + * ignored and skipped as if it had been marked bad. If it was not + * actually marked bad at the time of writing the image, the resulting + * image loaded will lack a header and magic number. It could thus be + * considered as a raw, headerless, image and SPL might erroneously + * jump into it. + * + * In order to avoid this risk, LPC32XX-based boards which use this + * driver MUST define CONFIG_SPL_PANIC_ON_RAW_IMAGE. + */ + +#define BYTES_PER_PAGE 2048 +#define PAGES_PER_BLOCK 64 +#define BYTES_PER_BLOCK (BYTES_PER_PAGE * PAGES_PER_BLOCK) +#define PAGES_PER_CHIP_MAX 524288 + +int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst) +{ + int bytes_left = size; + int pages_left = DIV_ROUND_UP(size, BYTES_PER_PAGE); + int blocks_left = DIV_ROUND_UP(size, BYTES_PER_BLOCK); + int block = 0; + int page = offs / BYTES_PER_PAGE; + /* perform reads block by block */ + while (blocks_left) { + /* compute first page number to read */ + void *block_page_dst = dst; + /* read at most one block, possibly less */ + int block_bytes_left = bytes_left; + if (block_bytes_left > BYTES_PER_BLOCK) + block_bytes_left = BYTES_PER_BLOCK; + /* keep track of good, failed, and "bad" pages */ + int block_pages_good = 0; + int block_pages_bad = 0; + int block_pages_err = 0; + /* we shall read a full block of pages, maybe less */ + int block_pages_left = pages_left; + if (block_pages_left > PAGES_PER_BLOCK) + block_pages_left = PAGES_PER_BLOCK; + int block_pages = block_pages_left; + int block_page = page; + /* while pages are left and the block is not known as bad */ + while ((block_pages > 0) && (block_pages_bad == 0)) { + /* we will read OOB, too, for bad block markers */ + struct lpc32xx_oob oob; + /* read page */ + int res = read_single_page(block_page_dst, block_page, + &oob); + /* count readable pages */ + if (res >= 0) { + /* this page is good */ + block_pages_good++; + /* this page is bad */ + if ((oob.free[0].free_oob_bytes[0] != 0xff) + | (oob.free[0].free_oob_bytes[1] != 0xff)) + block_pages_bad++; + } else + /* count errors */ + block_pages_err++; + /* we're done with this page */ + block_page++; + block_page_dst += BYTES_PER_PAGE; + if (block_pages) + block_pages--; + } + /* a fully unreadable block is considered bad */ + if (block_pages_good == 0) + block_pages_bad = block_pages_err; + /* errors are fatal only in good blocks */ + if ((block_pages_err > 0) && (block_pages_bad == 0)) + return -1; + /* we keep reads only of good blocks */ + if (block_pages_bad == 0) { + dst += block_bytes_left; + bytes_left -= block_bytes_left; + pages_left -= block_pages_left; + blocks_left--; + } + /* good or bad, we're done with this block */ + block++; + page += PAGES_PER_BLOCK; + } + + /* report success */ + return 0; +} + +#endif /* CONFIG_SPL_BUILD */ |