summaryrefslogtreecommitdiff
path: root/include/asm-mips
diff options
context:
space:
mode:
authorShinya Kuribayashi <skuribay@pobox.com>2009-05-16 09:12:09 +0900
committerShinya Kuribayashi <skuribay@pobox.com>2009-05-16 09:20:05 +0900
commit47f6a36cc3f3427cc8e4f1d0f3e6678be6f33769 (patch)
treebfe143969d4c4525f050578087ceabf4ef00e815 /include/asm-mips
parent87423d740b91329b8d1d0b73cafd6930993b558a (diff)
downloadu-boot-imx-47f6a36cc3f3427cc8e4f1d0f3e6678be6f33769.zip
u-boot-imx-47f6a36cc3f3427cc8e4f1d0f3e6678be6f33769.tar.gz
u-boot-imx-47f6a36cc3f3427cc8e4f1d0f3e6678be6f33769.tar.bz2
MIPS: Make all extern-ed functions in bitops.h static
All these functions are expected to be static inline-ed. This patch also fixes the following build warnings on MIPS targets: include/asm/bitops.h: In function 'ext2_find_next_zero_bit': include/asm/bitops.h:862: warning: '__fswab32' is static but used in inline function 'ext2_find_next_zero_bit' which is not static include/asm/bitops.h:885: warning: '__fswab32' is static but used in inline function 'ext2_find_next_zero_bit' which is not static include/asm/bitops.h:887: warning: '__fswab32' is static but used in inline function 'ext2_find_next_zero_bit' which is not static Signed-off-by: Shinya Kuribayashi <skuribay@pobox.com>
Diffstat (limited to 'include/asm-mips')
-rw-r--r--include/asm-mips/bitops.h64
1 files changed, 32 insertions, 32 deletions
diff --git a/include/asm-mips/bitops.h b/include/asm-mips/bitops.h
index 56d7225..659ac9d 100644
--- a/include/asm-mips/bitops.h
+++ b/include/asm-mips/bitops.h
@@ -60,7 +60,7 @@
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
-extern __inline__ void
+static __inline__ void
set_bit(int nr, volatile void *addr)
{
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
@@ -84,7 +84,7 @@ set_bit(int nr, volatile void *addr)
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
-extern __inline__ void __set_bit(int nr, volatile void * addr)
+static __inline__ void __set_bit(int nr, volatile void * addr)
{
unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
@@ -101,7 +101,7 @@ extern __inline__ void __set_bit(int nr, volatile void * addr)
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
* in order to ensure changes are visible on other processors.
*/
-extern __inline__ void
+static __inline__ void
clear_bit(int nr, volatile void *addr)
{
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
@@ -125,7 +125,7 @@ clear_bit(int nr, volatile void *addr)
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
-extern __inline__ void
+static __inline__ void
change_bit(int nr, volatile void *addr)
{
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
@@ -149,7 +149,7 @@ change_bit(int nr, volatile void *addr)
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
-extern __inline__ void __change_bit(int nr, volatile void * addr)
+static __inline__ void __change_bit(int nr, volatile void * addr)
{
unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
@@ -164,7 +164,7 @@ extern __inline__ void __change_bit(int nr, volatile void * addr)
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
-extern __inline__ int
+static __inline__ int
test_and_set_bit(int nr, volatile void *addr)
{
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
@@ -194,7 +194,7 @@ test_and_set_bit(int nr, volatile void *addr)
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
-extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
+static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile int *a = addr;
@@ -215,7 +215,7 @@ extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
-extern __inline__ int
+static __inline__ int
test_and_clear_bit(int nr, volatile void *addr)
{
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
@@ -246,7 +246,7 @@ test_and_clear_bit(int nr, volatile void *addr)
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
-extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
+static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile int *a = addr;
@@ -267,7 +267,7 @@ extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
-extern __inline__ int
+static __inline__ int
test_and_change_bit(int nr, volatile void *addr)
{
unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
@@ -297,7 +297,7 @@ test_and_change_bit(int nr, volatile void *addr)
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
-extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
+static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile int *a = addr;
@@ -322,7 +322,7 @@ extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
-extern __inline__ void set_bit(int nr, volatile void * addr)
+static __inline__ void set_bit(int nr, volatile void * addr)
{
int mask;
volatile int *a = addr;
@@ -344,7 +344,7 @@ extern __inline__ void set_bit(int nr, volatile void * addr)
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
-extern __inline__ void __set_bit(int nr, volatile void * addr)
+static __inline__ void __set_bit(int nr, volatile void * addr)
{
int mask;
volatile int *a = addr;
@@ -364,7 +364,7 @@ extern __inline__ void __set_bit(int nr, volatile void * addr)
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
* in order to ensure changes are visible on other processors.
*/
-extern __inline__ void clear_bit(int nr, volatile void * addr)
+static __inline__ void clear_bit(int nr, volatile void * addr)
{
int mask;
volatile int *a = addr;
@@ -386,7 +386,7 @@ extern __inline__ void clear_bit(int nr, volatile void * addr)
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
-extern __inline__ void change_bit(int nr, volatile void * addr)
+static __inline__ void change_bit(int nr, volatile void * addr)
{
int mask;
volatile int *a = addr;
@@ -408,7 +408,7 @@ extern __inline__ void change_bit(int nr, volatile void * addr)
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
-extern __inline__ void __change_bit(int nr, volatile void * addr)
+static __inline__ void __change_bit(int nr, volatile void * addr)
{
unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
@@ -423,7 +423,7 @@ extern __inline__ void __change_bit(int nr, volatile void * addr)
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
-extern __inline__ int test_and_set_bit(int nr, volatile void * addr)
+static __inline__ int test_and_set_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile int *a = addr;
@@ -448,7 +448,7 @@ extern __inline__ int test_and_set_bit(int nr, volatile void * addr)
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
-extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
+static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile int *a = addr;
@@ -469,7 +469,7 @@ extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
-extern __inline__ int test_and_clear_bit(int nr, volatile void * addr)
+static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile int *a = addr;
@@ -494,7 +494,7 @@ extern __inline__ int test_and_clear_bit(int nr, volatile void * addr)
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
-extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
+static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile int *a = addr;
@@ -515,7 +515,7 @@ extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
-extern __inline__ int test_and_change_bit(int nr, volatile void * addr)
+static __inline__ int test_and_change_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile int *a = addr;
@@ -540,7 +540,7 @@ extern __inline__ int test_and_change_bit(int nr, volatile void * addr)
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
-extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
+static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
{
int mask, retval;
volatile int *a = addr;
@@ -565,7 +565,7 @@ extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
* @nr: bit number to test
* @addr: Address to start counting from
*/
-extern __inline__ int test_bit(int nr, volatile void *addr)
+static __inline__ int test_bit(int nr, volatile void *addr)
{
return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0;
}
@@ -582,7 +582,7 @@ extern __inline__ int test_bit(int nr, volatile void *addr)
* Returns the bit-number of the first zero bit, not the number of the byte
* containing a bit.
*/
-extern __inline__ int find_first_zero_bit (void *addr, unsigned size)
+static __inline__ int find_first_zero_bit (void *addr, unsigned size)
{
unsigned long dummy;
int res;
@@ -633,7 +633,7 @@ extern __inline__ int find_first_zero_bit (void *addr, unsigned size)
* @offset: The bitnumber to start searching at
* @size: The maximum size to search
*/
-extern __inline__ int find_next_zero_bit (void * addr, int size, int offset)
+static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
{
unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
int set = 0, bit = offset & 31, res;
@@ -679,7 +679,7 @@ extern __inline__ int find_next_zero_bit (void * addr, int size, int offset)
*
* Undefined if no zero exists, so code should check against ~0UL first.
*/
-extern __inline__ unsigned long ffz(unsigned long word)
+static __inline__ unsigned long ffz(unsigned long word)
{
unsigned int __res;
unsigned int mask = 1;
@@ -736,7 +736,7 @@ extern __inline__ unsigned long ffz(unsigned long word)
* @offset: The bitnumber to start searching at
* @size: The maximum size to search
*/
-extern __inline__ int find_next_zero_bit(void *addr, int size, int offset)
+static __inline__ int find_next_zero_bit(void *addr, int size, int offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
@@ -785,7 +785,7 @@ found_middle:
* Returns the bit-number of the first zero bit, not the number of the byte
* containing a bit.
*/
-extern int find_first_zero_bit (void *addr, unsigned size);
+static int find_first_zero_bit (void *addr, unsigned size);
#endif
#define find_first_zero_bit(addr, size) \
@@ -796,7 +796,7 @@ extern int find_first_zero_bit (void *addr, unsigned size);
/* Now for the ext2 filesystem bit operations and helper routines. */
#ifdef __MIPSEB__
-extern __inline__ int ext2_set_bit(int nr, void * addr)
+static __inline__ int ext2_set_bit(int nr, void * addr)
{
int mask, retval, flags;
unsigned char *ADDR = (unsigned char *) addr;
@@ -810,7 +810,7 @@ extern __inline__ int ext2_set_bit(int nr, void * addr)
return retval;
}
-extern __inline__ int ext2_clear_bit(int nr, void * addr)
+static __inline__ int ext2_clear_bit(int nr, void * addr)
{
int mask, retval, flags;
unsigned char *ADDR = (unsigned char *) addr;
@@ -824,7 +824,7 @@ extern __inline__ int ext2_clear_bit(int nr, void * addr)
return retval;
}
-extern __inline__ int ext2_test_bit(int nr, const void * addr)
+static __inline__ int ext2_test_bit(int nr, const void * addr)
{
int mask;
const unsigned char *ADDR = (const unsigned char *) addr;
@@ -837,7 +837,7 @@ extern __inline__ int ext2_test_bit(int nr, const void * addr)
#define ext2_find_first_zero_bit(addr, size) \
ext2_find_next_zero_bit((addr), (size), 0)
-extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
+static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;