summaryrefslogtreecommitdiff
path: root/fs
diff options
context:
space:
mode:
authorHeiko Schocher <hs@denx.de>2014-06-24 10:10:04 +0200
committerTom Rini <trini@ti.com>2014-08-25 19:25:55 -0400
commitff94bc40af3481d47546595ba73c136de6af6929 (patch)
tree858119077e2ca8a992589185c36bd431e4a8c80e /fs
parent0c06db59836746c5caf397e642cd0f2bf1cc20a6 (diff)
downloadu-boot-imx-ff94bc40af3481d47546595ba73c136de6af6929.zip
u-boot-imx-ff94bc40af3481d47546595ba73c136de6af6929.tar.gz
u-boot-imx-ff94bc40af3481d47546595ba73c136de6af6929.tar.bz2
mtd, ubi, ubifs: resync with Linux-3.14
resync ubi subsystem with linux: commit 455c6fdbd219161bd09b1165f11699d6d73de11c Author: Linus Torvalds <torvalds@linux-foundation.org> Date: Sun Mar 30 20:40:15 2014 -0700 Linux 3.14 A nice side effect of this, is we introduce UBI Fastmap support to U-Boot. Signed-off-by: Heiko Schocher <hs@denx.de> Signed-off-by: Tom Rini <trini@ti.com> Cc: Marek Vasut <marex@denx.de> Cc: Sergey Lapin <slapin@ossfans.org> Cc: Scott Wood <scottwood@freescale.com> Cc: Joerg Krause <jkrause@posteo.de>
Diffstat (limited to 'fs')
-rw-r--r--fs/ubifs/budget.c662
-rw-r--r--fs/ubifs/debug.c3117
-rw-r--r--fs/ubifs/debug.h578
-rw-r--r--fs/ubifs/io.c897
-rw-r--r--fs/ubifs/key.h68
-rw-r--r--fs/ubifs/log.c663
-rw-r--r--fs/ubifs/lprops.c538
-rw-r--r--fs/ubifs/lpt.c1242
-rw-r--r--fs/ubifs/lpt_commit.c1893
-rw-r--r--fs/ubifs/master.c102
-rw-r--r--fs/ubifs/misc.h159
-rw-r--r--fs/ubifs/orphan.c671
-rw-r--r--fs/ubifs/recovery.c738
-rw-r--r--fs/ubifs/replay.c573
-rw-r--r--fs/ubifs/sb.c547
-rw-r--r--fs/ubifs/scan.c102
-rw-r--r--fs/ubifs/super.c2089
-rw-r--r--fs/ubifs/tnc.c742
-rw-r--r--fs/ubifs/tnc_misc.c124
-rw-r--r--fs/ubifs/ubifs-media.h62
-rw-r--r--fs/ubifs/ubifs.c115
-rw-r--r--fs/ubifs/ubifs.h708
22 files changed, 14456 insertions, 1934 deletions
diff --git a/fs/ubifs/budget.c b/fs/ubifs/budget.c
index 85377ea..9ed4017 100644
--- a/fs/ubifs/budget.c
+++ b/fs/ubifs/budget.c
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Adrian Hunter
* Artem Bityutskiy (Битюцкий Артём)
@@ -31,32 +20,171 @@
*/
#include "ubifs.h"
+#define __UBOOT__
+#ifndef __UBOOT__
+#include <linux/writeback.h>
+#else
+#include <linux/err.h>
+#endif
#include <linux/math64.h>
+/*
+ * When pessimistic budget calculations say that there is no enough space,
+ * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
+ * or committing. The below constant defines maximum number of times UBIFS
+ * repeats the operations.
+ */
+#define MAX_MKSPC_RETRIES 3
+
+/*
+ * The below constant defines amount of dirty pages which should be written
+ * back at when trying to shrink the liability.
+ */
+#define NR_TO_WRITE 16
+
+#ifndef __UBOOT__
+/**
+ * shrink_liability - write-back some dirty pages/inodes.
+ * @c: UBIFS file-system description object
+ * @nr_to_write: how many dirty pages to write-back
+ *
+ * This function shrinks UBIFS liability by means of writing back some amount
+ * of dirty inodes and their pages.
+ *
+ * Note, this function synchronizes even VFS inodes which are locked
+ * (@i_mutex) by the caller of the budgeting function, because write-back does
+ * not touch @i_mutex.
+ */
+static void shrink_liability(struct ubifs_info *c, int nr_to_write)
+{
+ down_read(&c->vfs_sb->s_umount);
+ writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE);
+ up_read(&c->vfs_sb->s_umount);
+}
+
+/**
+ * run_gc - run garbage collector.
+ * @c: UBIFS file-system description object
+ *
+ * This function runs garbage collector to make some more free space. Returns
+ * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
+ * negative error code in case of failure.
+ */
+static int run_gc(struct ubifs_info *c)
+{
+ int err, lnum;
+
+ /* Make some free space by garbage-collecting dirty space */
+ down_read(&c->commit_sem);
+ lnum = ubifs_garbage_collect(c, 1);
+ up_read(&c->commit_sem);
+ if (lnum < 0)
+ return lnum;
+
+ /* GC freed one LEB, return it to lprops */
+ dbg_budg("GC freed LEB %d", lnum);
+ err = ubifs_return_leb(c, lnum);
+ if (err)
+ return err;
+ return 0;
+}
+
/**
- * ubifs_calc_min_idx_lebs - calculate amount of eraseblocks for the index.
+ * get_liability - calculate current liability.
* @c: UBIFS file-system description object
*
- * This function calculates and returns the number of eraseblocks which should
- * be kept for index usage.
+ * This function calculates and returns current UBIFS liability, i.e. the
+ * amount of bytes UBIFS has "promised" to write to the media.
+ */
+static long long get_liability(struct ubifs_info *c)
+{
+ long long liab;
+
+ spin_lock(&c->space_lock);
+ liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
+ spin_unlock(&c->space_lock);
+ return liab;
+}
+
+/**
+ * make_free_space - make more free space on the file-system.
+ * @c: UBIFS file-system description object
+ *
+ * This function is called when an operation cannot be budgeted because there
+ * is supposedly no free space. But in most cases there is some free space:
+ * o budgeting is pessimistic, so it always budgets more than it is actually
+ * needed, so shrinking the liability is one way to make free space - the
+ * cached data will take less space then it was budgeted for;
+ * o GC may turn some dark space into free space (budgeting treats dark space
+ * as not available);
+ * o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
+ *
+ * So this function tries to do the above. Returns %-EAGAIN if some free space
+ * was presumably made and the caller has to re-try budgeting the operation.
+ * Returns %-ENOSPC if it couldn't do more free space, and other negative error
+ * codes on failures.
+ */
+static int make_free_space(struct ubifs_info *c)
+{
+ int err, retries = 0;
+ long long liab1, liab2;
+
+ do {
+ liab1 = get_liability(c);
+ /*
+ * We probably have some dirty pages or inodes (liability), try
+ * to write them back.
+ */
+ dbg_budg("liability %lld, run write-back", liab1);
+ shrink_liability(c, NR_TO_WRITE);
+
+ liab2 = get_liability(c);
+ if (liab2 < liab1)
+ return -EAGAIN;
+
+ dbg_budg("new liability %lld (not shrunk)", liab2);
+
+ /* Liability did not shrink again, try GC */
+ dbg_budg("Run GC");
+ err = run_gc(c);
+ if (!err)
+ return -EAGAIN;
+
+ if (err != -EAGAIN && err != -ENOSPC)
+ /* Some real error happened */
+ return err;
+
+ dbg_budg("Run commit (retries %d)", retries);
+ err = ubifs_run_commit(c);
+ if (err)
+ return err;
+ } while (retries++ < MAX_MKSPC_RETRIES);
+
+ return -ENOSPC;
+}
+#endif
+
+/**
+ * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
+ * @c: UBIFS file-system description object
+ *
+ * This function calculates and returns the number of LEBs which should be kept
+ * for index usage.
*/
int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
{
- int idx_lebs, eff_leb_size = c->leb_size - c->max_idx_node_sz;
+ int idx_lebs;
long long idx_size;
- idx_size = c->old_idx_sz + c->budg_idx_growth + c->budg_uncommitted_idx;
-
+ idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
/* And make sure we have thrice the index size of space reserved */
- idx_size = idx_size + (idx_size << 1);
-
+ idx_size += idx_size << 1;
/*
* We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
* pair, nor similarly the two variables for the new index size, so we
* have to do this costly 64-bit division on fast-path.
*/
- idx_size += eff_leb_size - 1;
- idx_lebs = div_u64(idx_size, eff_leb_size);
+ idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
/*
* The index head is not available for the in-the-gaps method, so add an
* extra LEB to compensate.
@@ -67,6 +195,424 @@ int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
return idx_lebs;
}
+#ifndef __UBOOT__
+/**
+ * ubifs_calc_available - calculate available FS space.
+ * @c: UBIFS file-system description object
+ * @min_idx_lebs: minimum number of LEBs reserved for the index
+ *
+ * This function calculates and returns amount of FS space available for use.
+ */
+long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
+{
+ int subtract_lebs;
+ long long available;
+
+ available = c->main_bytes - c->lst.total_used;
+
+ /*
+ * Now 'available' contains theoretically available flash space
+ * assuming there is no index, so we have to subtract the space which
+ * is reserved for the index.
+ */
+ subtract_lebs = min_idx_lebs;
+
+ /* Take into account that GC reserves one LEB for its own needs */
+ subtract_lebs += 1;
+
+ /*
+ * The GC journal head LEB is not really accessible. And since
+ * different write types go to different heads, we may count only on
+ * one head's space.
+ */
+ subtract_lebs += c->jhead_cnt - 1;
+
+ /* We also reserve one LEB for deletions, which bypass budgeting */
+ subtract_lebs += 1;
+
+ available -= (long long)subtract_lebs * c->leb_size;
+
+ /* Subtract the dead space which is not available for use */
+ available -= c->lst.total_dead;
+
+ /*
+ * Subtract dark space, which might or might not be usable - it depends
+ * on the data which we have on the media and which will be written. If
+ * this is a lot of uncompressed or not-compressible data, the dark
+ * space cannot be used.
+ */
+ available -= c->lst.total_dark;
+
+ /*
+ * However, there is more dark space. The index may be bigger than
+ * @min_idx_lebs. Those extra LEBs are assumed to be available, but
+ * their dark space is not included in total_dark, so it is subtracted
+ * here.
+ */
+ if (c->lst.idx_lebs > min_idx_lebs) {
+ subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
+ available -= subtract_lebs * c->dark_wm;
+ }
+
+ /* The calculations are rough and may end up with a negative number */
+ return available > 0 ? available : 0;
+}
+
+/**
+ * can_use_rp - check whether the user is allowed to use reserved pool.
+ * @c: UBIFS file-system description object
+ *
+ * UBIFS has so-called "reserved pool" which is flash space reserved
+ * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
+ * This function checks whether current user is allowed to use reserved pool.
+ * Returns %1 current user is allowed to use reserved pool and %0 otherwise.
+ */
+static int can_use_rp(struct ubifs_info *c)
+{
+ if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
+ (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
+ return 1;
+ return 0;
+}
+
+/**
+ * do_budget_space - reserve flash space for index and data growth.
+ * @c: UBIFS file-system description object
+ *
+ * This function makes sure UBIFS has enough free LEBs for index growth and
+ * data.
+ *
+ * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
+ * would take if it was consolidated and written to the flash. This guarantees
+ * that the "in-the-gaps" commit method always succeeds and UBIFS will always
+ * be able to commit dirty index. So this function basically adds amount of
+ * budgeted index space to the size of the current index, multiplies this by 3,
+ * and makes sure this does not exceed the amount of free LEBs.
+ *
+ * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
+ * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
+ * be large, because UBIFS does not do any index consolidation as long as
+ * there is free space. IOW, the index may take a lot of LEBs, but the LEBs
+ * will contain a lot of dirt.
+ * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
+ * the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
+ *
+ * This function returns zero in case of success, and %-ENOSPC in case of
+ * failure.
+ */
+static int do_budget_space(struct ubifs_info *c)
+{
+ long long outstanding, available;
+ int lebs, rsvd_idx_lebs, min_idx_lebs;
+
+ /* First budget index space */
+ min_idx_lebs = ubifs_calc_min_idx_lebs(c);
+
+ /* Now 'min_idx_lebs' contains number of LEBs to reserve */
+ if (min_idx_lebs > c->lst.idx_lebs)
+ rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
+ else
+ rsvd_idx_lebs = 0;
+
+ /*
+ * The number of LEBs that are available to be used by the index is:
+ *
+ * @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
+ * @c->lst.taken_empty_lebs
+ *
+ * @c->lst.empty_lebs are available because they are empty.
+ * @c->freeable_cnt are available because they contain only free and
+ * dirty space, @c->idx_gc_cnt are available because they are index
+ * LEBs that have been garbage collected and are awaiting the commit
+ * before they can be used. And the in-the-gaps method will grab these
+ * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
+ * already been allocated for some purpose.
+ *
+ * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
+ * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
+ * are taken until after the commit).
+ *
+ * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
+ * because of the way we serialize LEB allocations and budgeting. See a
+ * comment in 'ubifs_find_free_space()'.
+ */
+ lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
+ c->lst.taken_empty_lebs;
+ if (unlikely(rsvd_idx_lebs > lebs)) {
+ dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
+ min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
+ return -ENOSPC;
+ }
+
+ available = ubifs_calc_available(c, min_idx_lebs);
+ outstanding = c->bi.data_growth + c->bi.dd_growth;
+
+ if (unlikely(available < outstanding)) {
+ dbg_budg("out of data space: available %lld, outstanding %lld",
+ available, outstanding);
+ return -ENOSPC;
+ }
+
+ if (available - outstanding <= c->rp_size && !can_use_rp(c))
+ return -ENOSPC;
+
+ c->bi.min_idx_lebs = min_idx_lebs;
+ return 0;
+}
+
+/**
+ * calc_idx_growth - calculate approximate index growth from budgeting request.
+ * @c: UBIFS file-system description object
+ * @req: budgeting request
+ *
+ * For now we assume each new node adds one znode. But this is rather poor
+ * approximation, though.
+ */
+static int calc_idx_growth(const struct ubifs_info *c,
+ const struct ubifs_budget_req *req)
+{
+ int znodes;
+
+ znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
+ req->new_dent;
+ return znodes * c->max_idx_node_sz;
+}
+
+/**
+ * calc_data_growth - calculate approximate amount of new data from budgeting
+ * request.
+ * @c: UBIFS file-system description object
+ * @req: budgeting request
+ */
+static int calc_data_growth(const struct ubifs_info *c,
+ const struct ubifs_budget_req *req)
+{
+ int data_growth;
+
+ data_growth = req->new_ino ? c->bi.inode_budget : 0;
+ if (req->new_page)
+ data_growth += c->bi.page_budget;
+ if (req->new_dent)
+ data_growth += c->bi.dent_budget;
+ data_growth += req->new_ino_d;
+ return data_growth;
+}
+
+/**
+ * calc_dd_growth - calculate approximate amount of data which makes other data
+ * dirty from budgeting request.
+ * @c: UBIFS file-system description object
+ * @req: budgeting request
+ */
+static int calc_dd_growth(const struct ubifs_info *c,
+ const struct ubifs_budget_req *req)
+{
+ int dd_growth;
+
+ dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
+
+ if (req->dirtied_ino)
+ dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
+ if (req->mod_dent)
+ dd_growth += c->bi.dent_budget;
+ dd_growth += req->dirtied_ino_d;
+ return dd_growth;
+}
+
+/**
+ * ubifs_budget_space - ensure there is enough space to complete an operation.
+ * @c: UBIFS file-system description object
+ * @req: budget request
+ *
+ * This function allocates budget for an operation. It uses pessimistic
+ * approximation of how much flash space the operation needs. The goal of this
+ * function is to make sure UBIFS always has flash space to flush all dirty
+ * pages, dirty inodes, and dirty znodes (liability). This function may force
+ * commit, garbage-collection or write-back. Returns zero in case of success,
+ * %-ENOSPC if there is no free space and other negative error codes in case of
+ * failures.
+ */
+int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
+{
+ int uninitialized_var(cmt_retries), uninitialized_var(wb_retries);
+ int err, idx_growth, data_growth, dd_growth, retried = 0;
+
+ ubifs_assert(req->new_page <= 1);
+ ubifs_assert(req->dirtied_page <= 1);
+ ubifs_assert(req->new_dent <= 1);
+ ubifs_assert(req->mod_dent <= 1);
+ ubifs_assert(req->new_ino <= 1);
+ ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
+ ubifs_assert(req->dirtied_ino <= 4);
+ ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
+ ubifs_assert(!(req->new_ino_d & 7));
+ ubifs_assert(!(req->dirtied_ino_d & 7));
+
+ data_growth = calc_data_growth(c, req);
+ dd_growth = calc_dd_growth(c, req);
+ if (!data_growth && !dd_growth)
+ return 0;
+ idx_growth = calc_idx_growth(c, req);
+
+again:
+ spin_lock(&c->space_lock);
+ ubifs_assert(c->bi.idx_growth >= 0);
+ ubifs_assert(c->bi.data_growth >= 0);
+ ubifs_assert(c->bi.dd_growth >= 0);
+
+ if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
+ dbg_budg("no space");
+ spin_unlock(&c->space_lock);
+ return -ENOSPC;
+ }
+
+ c->bi.idx_growth += idx_growth;
+ c->bi.data_growth += data_growth;
+ c->bi.dd_growth += dd_growth;
+
+ err = do_budget_space(c);
+ if (likely(!err)) {
+ req->idx_growth = idx_growth;
+ req->data_growth = data_growth;
+ req->dd_growth = dd_growth;
+ spin_unlock(&c->space_lock);
+ return 0;
+ }
+
+ /* Restore the old values */
+ c->bi.idx_growth -= idx_growth;
+ c->bi.data_growth -= data_growth;
+ c->bi.dd_growth -= dd_growth;
+ spin_unlock(&c->space_lock);
+
+ if (req->fast) {
+ dbg_budg("no space for fast budgeting");
+ return err;
+ }
+
+ err = make_free_space(c);
+ cond_resched();
+ if (err == -EAGAIN) {
+ dbg_budg("try again");
+ goto again;
+ } else if (err == -ENOSPC) {
+ if (!retried) {
+ retried = 1;
+ dbg_budg("-ENOSPC, but anyway try once again");
+ goto again;
+ }
+ dbg_budg("FS is full, -ENOSPC");
+ c->bi.nospace = 1;
+ if (can_use_rp(c) || c->rp_size == 0)
+ c->bi.nospace_rp = 1;
+ smp_wmb();
+ } else
+ ubifs_err("cannot budget space, error %d", err);
+ return err;
+}
+
+/**
+ * ubifs_release_budget - release budgeted free space.
+ * @c: UBIFS file-system description object
+ * @req: budget request
+ *
+ * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
+ * since the index changes (which were budgeted for in @req->idx_growth) will
+ * only be written to the media on commit, this function moves the index budget
+ * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
+ * by the commit operation.
+ */
+void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
+{
+ ubifs_assert(req->new_page <= 1);
+ ubifs_assert(req->dirtied_page <= 1);
+ ubifs_assert(req->new_dent <= 1);
+ ubifs_assert(req->mod_dent <= 1);
+ ubifs_assert(req->new_ino <= 1);
+ ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
+ ubifs_assert(req->dirtied_ino <= 4);
+ ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
+ ubifs_assert(!(req->new_ino_d & 7));
+ ubifs_assert(!(req->dirtied_ino_d & 7));
+ if (!req->recalculate) {
+ ubifs_assert(req->idx_growth >= 0);
+ ubifs_assert(req->data_growth >= 0);
+ ubifs_assert(req->dd_growth >= 0);
+ }
+
+ if (req->recalculate) {
+ req->data_growth = calc_data_growth(c, req);
+ req->dd_growth = calc_dd_growth(c, req);
+ req->idx_growth = calc_idx_growth(c, req);
+ }
+
+ if (!req->data_growth && !req->dd_growth)
+ return;
+
+ c->bi.nospace = c->bi.nospace_rp = 0;
+ smp_wmb();
+
+ spin_lock(&c->space_lock);
+ c->bi.idx_growth -= req->idx_growth;
+ c->bi.uncommitted_idx += req->idx_growth;
+ c->bi.data_growth -= req->data_growth;
+ c->bi.dd_growth -= req->dd_growth;
+ c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
+
+ ubifs_assert(c->bi.idx_growth >= 0);
+ ubifs_assert(c->bi.data_growth >= 0);
+ ubifs_assert(c->bi.dd_growth >= 0);
+ ubifs_assert(c->bi.min_idx_lebs < c->main_lebs);
+ ubifs_assert(!(c->bi.idx_growth & 7));
+ ubifs_assert(!(c->bi.data_growth & 7));
+ ubifs_assert(!(c->bi.dd_growth & 7));
+ spin_unlock(&c->space_lock);
+}
+
+/**
+ * ubifs_convert_page_budget - convert budget of a new page.
+ * @c: UBIFS file-system description object
+ *
+ * This function converts budget which was allocated for a new page of data to
+ * the budget of changing an existing page of data. The latter is smaller than
+ * the former, so this function only does simple re-calculation and does not
+ * involve any write-back.
+ */
+void ubifs_convert_page_budget(struct ubifs_info *c)
+{
+ spin_lock(&c->space_lock);
+ /* Release the index growth reservation */
+ c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
+ /* Release the data growth reservation */
+ c->bi.data_growth -= c->bi.page_budget;
+ /* Increase the dirty data growth reservation instead */
+ c->bi.dd_growth += c->bi.page_budget;
+ /* And re-calculate the indexing space reservation */
+ c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
+ spin_unlock(&c->space_lock);
+}
+
+/**
+ * ubifs_release_dirty_inode_budget - release dirty inode budget.
+ * @c: UBIFS file-system description object
+ * @ui: UBIFS inode to release the budget for
+ *
+ * This function releases budget corresponding to a dirty inode. It is usually
+ * called when after the inode has been written to the media and marked as
+ * clean. It also causes the "no space" flags to be cleared.
+ */
+void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
+ struct ubifs_inode *ui)
+{
+ struct ubifs_budget_req req;
+
+ memset(&req, 0, sizeof(struct ubifs_budget_req));
+ /* The "no space" flags will be cleared because dd_growth is > 0 */
+ req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
+ ubifs_release_budget(c, &req);
+}
+#endif
+
/**
* ubifs_reported_space - calculate reported free space.
* @c: the UBIFS file-system description object
@@ -111,3 +657,75 @@ long long ubifs_reported_space(const struct ubifs_info *c, long long free)
free *= factor;
return div_u64(free, divisor);
}
+
+#ifndef __UBOOT__
+/**
+ * ubifs_get_free_space_nolock - return amount of free space.
+ * @c: UBIFS file-system description object
+ *
+ * This function calculates amount of free space to report to user-space.
+ *
+ * Because UBIFS may introduce substantial overhead (the index, node headers,
+ * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
+ * free flash space it has (well, because not all dirty space is reclaimable,
+ * UBIFS does not actually know the real amount). If UBIFS did so, it would
+ * bread user expectations about what free space is. Users seem to accustomed
+ * to assume that if the file-system reports N bytes of free space, they would
+ * be able to fit a file of N bytes to the FS. This almost works for
+ * traditional file-systems, because they have way less overhead than UBIFS.
+ * So, to keep users happy, UBIFS tries to take the overhead into account.
+ */
+long long ubifs_get_free_space_nolock(struct ubifs_info *c)
+{
+ int rsvd_idx_lebs, lebs;
+ long long available, outstanding, free;
+
+ ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
+ outstanding = c->bi.data_growth + c->bi.dd_growth;
+ available = ubifs_calc_available(c, c->bi.min_idx_lebs);
+
+ /*
+ * When reporting free space to user-space, UBIFS guarantees that it is
+ * possible to write a file of free space size. This means that for
+ * empty LEBs we may use more precise calculations than
+ * 'ubifs_calc_available()' is using. Namely, we know that in empty
+ * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
+ * Thus, amend the available space.
+ *
+ * Note, the calculations below are similar to what we have in
+ * 'do_budget_space()', so refer there for comments.
+ */
+ if (c->bi.min_idx_lebs > c->lst.idx_lebs)
+ rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
+ else
+ rsvd_idx_lebs = 0;
+ lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
+ c->lst.taken_empty_lebs;
+ lebs -= rsvd_idx_lebs;
+ available += lebs * (c->dark_wm - c->leb_overhead);
+
+ if (available > outstanding)
+ free = ubifs_reported_space(c, available - outstanding);
+ else
+ free = 0;
+ return free;
+}
+
+/**
+ * ubifs_get_free_space - return amount of free space.
+ * @c: UBIFS file-system description object
+ *
+ * This function calculates and returns amount of free space to report to
+ * user-space.
+ */
+long long ubifs_get_free_space(struct ubifs_info *c)
+{
+ long long free;
+
+ spin_lock(&c->space_lock);
+ free = ubifs_get_free_space_nolock(c);
+ spin_unlock(&c->space_lock);
+
+ return free;
+}
+#endif
diff --git a/fs/ubifs/debug.c b/fs/ubifs/debug.c
index 6afb883..2f50a55 100644
--- a/fs/ubifs/debug.c
+++ b/fs/ubifs/debug.c
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
@@ -27,28 +16,44 @@
* various local functions of those subsystems.
*/
-#define UBIFS_DBG_PRESERVE_UBI
-
+#define __UBOOT__
+#ifndef __UBOOT__
+#include <linux/module.h>
+#include <linux/debugfs.h>
+#include <linux/math64.h>
+#include <linux/uaccess.h>
+#include <linux/random.h>
+#else
+#include <linux/compat.h>
+#include <linux/err.h>
+#endif
#include "ubifs.h"
-#ifdef CONFIG_UBIFS_FS_DEBUG
-
-DEFINE_SPINLOCK(dbg_lock);
+#ifndef __UBOOT__
+static DEFINE_SPINLOCK(dbg_lock);
+#endif
-static char dbg_key_buf0[128];
-static char dbg_key_buf1[128];
-
-unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
-unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
-unsigned int ubifs_tst_flags;
-
-module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
-module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
-module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
+static const char *get_key_fmt(int fmt)
+{
+ switch (fmt) {
+ case UBIFS_SIMPLE_KEY_FMT:
+ return "simple";
+ default:
+ return "unknown/invalid format";
+ }
+}
-MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
-MODULE_PARM_DESC(debug_chks, "Debug check flags");
-MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
+static const char *get_key_hash(int hash)
+{
+ switch (hash) {
+ case UBIFS_KEY_HASH_R5:
+ return "R5";
+ case UBIFS_KEY_HASH_TEST:
+ return "test";
+ default:
+ return "unknown/invalid name hash";
+ }
+}
static const char *get_key_type(int type)
{
@@ -68,8 +73,32 @@ static const char *get_key_type(int type)
}
}
-static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
- char *buffer)
+#ifndef __UBOOT__
+static const char *get_dent_type(int type)
+{
+ switch (type) {
+ case UBIFS_ITYPE_REG:
+ return "file";
+ case UBIFS_ITYPE_DIR:
+ return "dir";
+ case UBIFS_ITYPE_LNK:
+ return "symlink";
+ case UBIFS_ITYPE_BLK:
+ return "blkdev";
+ case UBIFS_ITYPE_CHR:
+ return "char dev";
+ case UBIFS_ITYPE_FIFO:
+ return "fifo";
+ case UBIFS_ITYPE_SOCK:
+ return "socket";
+ default:
+ return "unknown/invalid type";
+ }
+}
+#endif
+
+const char *dbg_snprintf_key(const struct ubifs_info *c,
+ const union ubifs_key *key, char *buffer, int len)
{
char *p = buffer;
int type = key_type(c, key);
@@ -77,70 +106,3030 @@ static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
switch (type) {
case UBIFS_INO_KEY:
- sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
- get_key_type(type));
+ len -= snprintf(p, len, "(%lu, %s)",
+ (unsigned long)key_inum(c, key),
+ get_key_type(type));
break;
case UBIFS_DENT_KEY:
case UBIFS_XENT_KEY:
- sprintf(p, "(%lu, %s, %#08x)",
- (unsigned long)key_inum(c, key),
- get_key_type(type), key_hash(c, key));
+ len -= snprintf(p, len, "(%lu, %s, %#08x)",
+ (unsigned long)key_inum(c, key),
+ get_key_type(type), key_hash(c, key));
break;
case UBIFS_DATA_KEY:
- sprintf(p, "(%lu, %s, %u)",
- (unsigned long)key_inum(c, key),
- get_key_type(type), key_block(c, key));
+ len -= snprintf(p, len, "(%lu, %s, %u)",
+ (unsigned long)key_inum(c, key),
+ get_key_type(type), key_block(c, key));
break;
case UBIFS_TRUN_KEY:
- sprintf(p, "(%lu, %s)",
- (unsigned long)key_inum(c, key),
- get_key_type(type));
+ len -= snprintf(p, len, "(%lu, %s)",
+ (unsigned long)key_inum(c, key),
+ get_key_type(type));
break;
default:
- sprintf(p, "(bad key type: %#08x, %#08x)",
- key->u32[0], key->u32[1]);
+ len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
+ key->u32[0], key->u32[1]);
}
} else
- sprintf(p, "bad key format %d", c->key_fmt);
+ len -= snprintf(p, len, "bad key format %d", c->key_fmt);
+ ubifs_assert(len > 0);
+ return p;
}
-const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
+const char *dbg_ntype(int type)
{
- /* dbg_lock must be held */
- sprintf_key(c, key, dbg_key_buf0);
- return dbg_key_buf0;
+ switch (type) {
+ case UBIFS_PAD_NODE:
+ return "padding node";
+ case UBIFS_SB_NODE:
+ return "superblock node";
+ case UBIFS_MST_NODE:
+ return "master node";
+ case UBIFS_REF_NODE:
+ return "reference node";
+ case UBIFS_INO_NODE:
+ return "inode node";
+ case UBIFS_DENT_NODE:
+ return "direntry node";
+ case UBIFS_XENT_NODE:
+ return "xentry node";
+ case UBIFS_DATA_NODE:
+ return "data node";
+ case UBIFS_TRUN_NODE:
+ return "truncate node";
+ case UBIFS_IDX_NODE:
+ return "indexing node";
+ case UBIFS_CS_NODE:
+ return "commit start node";
+ case UBIFS_ORPH_NODE:
+ return "orphan node";
+ default:
+ return "unknown node";
+ }
}
-const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
+static const char *dbg_gtype(int type)
{
- /* dbg_lock must be held */
- sprintf_key(c, key, dbg_key_buf1);
- return dbg_key_buf1;
+ switch (type) {
+ case UBIFS_NO_NODE_GROUP:
+ return "no node group";
+ case UBIFS_IN_NODE_GROUP:
+ return "in node group";
+ case UBIFS_LAST_OF_NODE_GROUP:
+ return "last of node group";
+ default:
+ return "unknown";
+ }
+}
+
+const char *dbg_cstate(int cmt_state)
+{
+ switch (cmt_state) {
+ case COMMIT_RESTING:
+ return "commit resting";
+ case COMMIT_BACKGROUND:
+ return "background commit requested";
+ case COMMIT_REQUIRED:
+ return "commit required";
+ case COMMIT_RUNNING_BACKGROUND:
+ return "BACKGROUND commit running";
+ case COMMIT_RUNNING_REQUIRED:
+ return "commit running and required";
+ case COMMIT_BROKEN:
+ return "broken commit";
+ default:
+ return "unknown commit state";
+ }
+}
+
+const char *dbg_jhead(int jhead)
+{
+ switch (jhead) {
+ case GCHD:
+ return "0 (GC)";
+ case BASEHD:
+ return "1 (base)";
+ case DATAHD:
+ return "2 (data)";
+ default:
+ return "unknown journal head";
+ }
+}
+
+static void dump_ch(const struct ubifs_ch *ch)
+{
+ pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
+ pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
+ pr_err("\tnode_type %d (%s)\n", ch->node_type,
+ dbg_ntype(ch->node_type));
+ pr_err("\tgroup_type %d (%s)\n", ch->group_type,
+ dbg_gtype(ch->group_type));
+ pr_err("\tsqnum %llu\n",
+ (unsigned long long)le64_to_cpu(ch->sqnum));
+ pr_err("\tlen %u\n", le32_to_cpu(ch->len));
+}
+
+void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
+{
+#ifndef __UBOOT__
+ const struct ubifs_inode *ui = ubifs_inode(inode);
+ struct qstr nm = { .name = NULL };
+ union ubifs_key key;
+ struct ubifs_dent_node *dent, *pdent = NULL;
+ int count = 2;
+
+ pr_err("Dump in-memory inode:");
+ pr_err("\tinode %lu\n", inode->i_ino);
+ pr_err("\tsize %llu\n",
+ (unsigned long long)i_size_read(inode));
+ pr_err("\tnlink %u\n", inode->i_nlink);
+ pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
+ pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
+ pr_err("\tatime %u.%u\n",
+ (unsigned int)inode->i_atime.tv_sec,
+ (unsigned int)inode->i_atime.tv_nsec);
+ pr_err("\tmtime %u.%u\n",
+ (unsigned int)inode->i_mtime.tv_sec,
+ (unsigned int)inode->i_mtime.tv_nsec);
+ pr_err("\tctime %u.%u\n",
+ (unsigned int)inode->i_ctime.tv_sec,
+ (unsigned int)inode->i_ctime.tv_nsec);
+ pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
+ pr_err("\txattr_size %u\n", ui->xattr_size);
+ pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
+ pr_err("\txattr_names %u\n", ui->xattr_names);
+ pr_err("\tdirty %u\n", ui->dirty);
+ pr_err("\txattr %u\n", ui->xattr);
+ pr_err("\tbulk_read %u\n", ui->xattr);
+ pr_err("\tsynced_i_size %llu\n",
+ (unsigned long long)ui->synced_i_size);
+ pr_err("\tui_size %llu\n",
+ (unsigned long long)ui->ui_size);
+ pr_err("\tflags %d\n", ui->flags);
+ pr_err("\tcompr_type %d\n", ui->compr_type);
+ pr_err("\tlast_page_read %lu\n", ui->last_page_read);
+ pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
+ pr_err("\tdata_len %d\n", ui->data_len);
+
+ if (!S_ISDIR(inode->i_mode))
+ return;
+
+ pr_err("List of directory entries:\n");
+ ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
+
+ lowest_dent_key(c, &key, inode->i_ino);
+ while (1) {
+ dent = ubifs_tnc_next_ent(c, &key, &nm);
+ if (IS_ERR(dent)) {
+ if (PTR_ERR(dent) != -ENOENT)
+ pr_err("error %ld\n", PTR_ERR(dent));
+ break;
+ }
+
+ pr_err("\t%d: %s (%s)\n",
+ count++, dent->name, get_dent_type(dent->type));
+
+ nm.name = dent->name;
+ nm.len = le16_to_cpu(dent->nlen);
+ kfree(pdent);
+ pdent = dent;
+ key_read(c, &dent->key, &key);
+ }
+ kfree(pdent);
+#endif
+}
+
+void ubifs_dump_node(const struct ubifs_info *c, const void *node)
+{
+ int i, n;
+ union ubifs_key key;
+ const struct ubifs_ch *ch = node;
+ char key_buf[DBG_KEY_BUF_LEN];
+
+ /* If the magic is incorrect, just hexdump the first bytes */
+ if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
+ pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
+ print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
+ (void *)node, UBIFS_CH_SZ, 1);
+ return;
+ }
+
+ spin_lock(&dbg_lock);
+ dump_ch(node);
+
+ switch (ch->node_type) {
+ case UBIFS_PAD_NODE:
+ {
+ const struct ubifs_pad_node *pad = node;
+
+ pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
+ break;
+ }
+ case UBIFS_SB_NODE:
+ {
+ const struct ubifs_sb_node *sup = node;
+ unsigned int sup_flags = le32_to_cpu(sup->flags);
+
+ pr_err("\tkey_hash %d (%s)\n",
+ (int)sup->key_hash, get_key_hash(sup->key_hash));
+ pr_err("\tkey_fmt %d (%s)\n",
+ (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
+ pr_err("\tflags %#x\n", sup_flags);
+ pr_err("\t big_lpt %u\n",
+ !!(sup_flags & UBIFS_FLG_BIGLPT));
+ pr_err("\t space_fixup %u\n",
+ !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
+ pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
+ pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
+ pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
+ pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
+ pr_err("\tmax_bud_bytes %llu\n",
+ (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
+ pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
+ pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
+ pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
+ pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
+ pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
+ pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
+ pr_err("\tdefault_compr %u\n",
+ (int)le16_to_cpu(sup->default_compr));
+ pr_err("\trp_size %llu\n",
+ (unsigned long long)le64_to_cpu(sup->rp_size));
+ pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
+ pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
+ pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
+ pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
+ pr_err("\tUUID %pUB\n", sup->uuid);
+ break;
+ }
+ case UBIFS_MST_NODE:
+ {
+ const struct ubifs_mst_node *mst = node;
+
+ pr_err("\thighest_inum %llu\n",
+ (unsigned long long)le64_to_cpu(mst->highest_inum));
+ pr_err("\tcommit number %llu\n",
+ (unsigned long long)le64_to_cpu(mst->cmt_no));
+ pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
+ pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
+ pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
+ pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
+ pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
+ pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
+ pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
+ pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
+ pr_err("\tindex_size %llu\n",
+ (unsigned long long)le64_to_cpu(mst->index_size));
+ pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
+ pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
+ pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
+ pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
+ pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
+ pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
+ pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
+ pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
+ pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
+ pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
+ pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
+ pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
+ pr_err("\ttotal_free %llu\n",
+ (unsigned long long)le64_to_cpu(mst->total_free));
+ pr_err("\ttotal_dirty %llu\n",
+ (unsigned long long)le64_to_cpu(mst->total_dirty));
+ pr_err("\ttotal_used %llu\n",
+ (unsigned long long)le64_to_cpu(mst->total_used));
+ pr_err("\ttotal_dead %llu\n",
+ (unsigned long long)le64_to_cpu(mst->total_dead));
+ pr_err("\ttotal_dark %llu\n",
+ (unsigned long long)le64_to_cpu(mst->total_dark));
+ break;
+ }
+ case UBIFS_REF_NODE:
+ {
+ const struct ubifs_ref_node *ref = node;
+
+ pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
+ pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
+ pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
+ break;
+ }
+ case UBIFS_INO_NODE:
+ {
+ const struct ubifs_ino_node *ino = node;
+
+ key_read(c, &ino->key, &key);
+ pr_err("\tkey %s\n",
+ dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
+ pr_err("\tcreat_sqnum %llu\n",
+ (unsigned long long)le64_to_cpu(ino->creat_sqnum));
+ pr_err("\tsize %llu\n",
+ (unsigned long long)le64_to_cpu(ino->size));
+ pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
+ pr_err("\tatime %lld.%u\n",
+ (long long)le64_to_cpu(ino->atime_sec),
+ le32_to_cpu(ino->atime_nsec));
+ pr_err("\tmtime %lld.%u\n",
+ (long long)le64_to_cpu(ino->mtime_sec),
+ le32_to_cpu(ino->mtime_nsec));
+ pr_err("\tctime %lld.%u\n",
+ (long long)le64_to_cpu(ino->ctime_sec),
+ le32_to_cpu(ino->ctime_nsec));
+ pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
+ pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
+ pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
+ pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
+ pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
+ pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
+ pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
+ pr_err("\tcompr_type %#x\n",
+ (int)le16_to_cpu(ino->compr_type));
+ pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
+ break;
+ }
+ case UBIFS_DENT_NODE:
+ case UBIFS_XENT_NODE:
+ {
+ const struct ubifs_dent_node *dent = node;
+ int nlen = le16_to_cpu(dent->nlen);
+
+ key_read(c, &dent->key, &key);
+ pr_err("\tkey %s\n",
+ dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
+ pr_err("\tinum %llu\n",
+ (unsigned long long)le64_to_cpu(dent->inum));
+ pr_err("\ttype %d\n", (int)dent->type);
+ pr_err("\tnlen %d\n", nlen);
+ pr_err("\tname ");
+
+ if (nlen > UBIFS_MAX_NLEN)
+ pr_err("(bad name length, not printing, bad or corrupted node)");
+ else {
+ for (i = 0; i < nlen && dent->name[i]; i++)
+ pr_cont("%c", dent->name[i]);
+ }
+ pr_cont("\n");
+
+ break;
+ }
+ case UBIFS_DATA_NODE:
+ {
+ const struct ubifs_data_node *dn = node;
+ int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
+
+ key_read(c, &dn->key, &key);
+ pr_err("\tkey %s\n",
+ dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
+ pr_err("\tsize %u\n", le32_to_cpu(dn->size));
+ pr_err("\tcompr_typ %d\n",
+ (int)le16_to_cpu(dn->compr_type));
+ pr_err("\tdata size %d\n", dlen);
+ pr_err("\tdata:\n");
+ print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
+ (void *)&dn->data, dlen, 0);
+ break;
+ }
+ case UBIFS_TRUN_NODE:
+ {
+ const struct ubifs_trun_node *trun = node;
+
+ pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
+ pr_err("\told_size %llu\n",
+ (unsigned long long)le64_to_cpu(trun->old_size));
+ pr_err("\tnew_size %llu\n",
+ (unsigned long long)le64_to_cpu(trun->new_size));
+ break;
+ }
+ case UBIFS_IDX_NODE:
+ {
+ const struct ubifs_idx_node *idx = node;
+
+ n = le16_to_cpu(idx->child_cnt);
+ pr_err("\tchild_cnt %d\n", n);
+ pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
+ pr_err("\tBranches:\n");
+
+ for (i = 0; i < n && i < c->fanout - 1; i++) {
+ const struct ubifs_branch *br;
+
+ br = ubifs_idx_branch(c, idx, i);
+ key_read(c, &br->key, &key);
+ pr_err("\t%d: LEB %d:%d len %d key %s\n",
+ i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
+ le32_to_cpu(br->len),
+ dbg_snprintf_key(c, &key, key_buf,
+ DBG_KEY_BUF_LEN));
+ }
+ break;
+ }
+ case UBIFS_CS_NODE:
+ break;
+ case UBIFS_ORPH_NODE:
+ {
+ const struct ubifs_orph_node *orph = node;
+
+ pr_err("\tcommit number %llu\n",
+ (unsigned long long)
+ le64_to_cpu(orph->cmt_no) & LLONG_MAX);
+ pr_err("\tlast node flag %llu\n",
+ (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
+ n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
+ pr_err("\t%d orphan inode numbers:\n", n);
+ for (i = 0; i < n; i++)
+ pr_err("\t ino %llu\n",
+ (unsigned long long)le64_to_cpu(orph->inos[i]));
+ break;
+ }
+ default:
+ pr_err("node type %d was not recognized\n",
+ (int)ch->node_type);
+ }
+ spin_unlock(&dbg_lock);
+}
+
+void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
+{
+ spin_lock(&dbg_lock);
+ pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
+ req->new_ino, req->dirtied_ino);
+ pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
+ req->new_ino_d, req->dirtied_ino_d);
+ pr_err("\tnew_page %d, dirtied_page %d\n",
+ req->new_page, req->dirtied_page);
+ pr_err("\tnew_dent %d, mod_dent %d\n",
+ req->new_dent, req->mod_dent);
+ pr_err("\tidx_growth %d\n", req->idx_growth);
+ pr_err("\tdata_growth %d dd_growth %d\n",
+ req->data_growth, req->dd_growth);
+ spin_unlock(&dbg_lock);
+}
+
+void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
+{
+ spin_lock(&dbg_lock);
+ pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
+ current->pid, lst->empty_lebs, lst->idx_lebs);
+ pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
+ lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
+ pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
+ lst->total_used, lst->total_dark, lst->total_dead);
+ spin_unlock(&dbg_lock);
+}
+
+#ifndef __UBOOT__
+void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
+{
+ int i;
+ struct rb_node *rb;
+ struct ubifs_bud *bud;
+ struct ubifs_gced_idx_leb *idx_gc;
+ long long available, outstanding, free;
+
+ spin_lock(&c->space_lock);
+ spin_lock(&dbg_lock);
+ pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
+ current->pid, bi->data_growth + bi->dd_growth,
+ bi->data_growth + bi->dd_growth + bi->idx_growth);
+ pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
+ bi->data_growth, bi->dd_growth, bi->idx_growth);
+ pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
+ bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
+ pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
+ bi->page_budget, bi->inode_budget, bi->dent_budget);
+ pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
+ pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
+ c->dark_wm, c->dead_wm, c->max_idx_node_sz);
+
+ if (bi != &c->bi)
+ /*
+ * If we are dumping saved budgeting data, do not print
+ * additional information which is about the current state, not
+ * the old one which corresponded to the saved budgeting data.
+ */
+ goto out_unlock;
+
+ pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
+ c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
+ pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
+ atomic_long_read(&c->dirty_pg_cnt),
+ atomic_long_read(&c->dirty_zn_cnt),
+ atomic_long_read(&c->clean_zn_cnt));
+ pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
+
+ /* If we are in R/O mode, journal heads do not exist */
+ if (c->jheads)
+ for (i = 0; i < c->jhead_cnt; i++)
+ pr_err("\tjhead %s\t LEB %d\n",
+ dbg_jhead(c->jheads[i].wbuf.jhead),
+ c->jheads[i].wbuf.lnum);
+ for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
+ bud = rb_entry(rb, struct ubifs_bud, rb);
+ pr_err("\tbud LEB %d\n", bud->lnum);
+ }
+ list_for_each_entry(bud, &c->old_buds, list)
+ pr_err("\told bud LEB %d\n", bud->lnum);
+ list_for_each_entry(idx_gc, &c->idx_gc, list)
+ pr_err("\tGC'ed idx LEB %d unmap %d\n",
+ idx_gc->lnum, idx_gc->unmap);
+ pr_err("\tcommit state %d\n", c->cmt_state);
+
+ /* Print budgeting predictions */
+ available = ubifs_calc_available(c, c->bi.min_idx_lebs);
+ outstanding = c->bi.data_growth + c->bi.dd_growth;
+ free = ubifs_get_free_space_nolock(c);
+ pr_err("Budgeting predictions:\n");
+ pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
+ available, outstanding, free);
+out_unlock:
+ spin_unlock(&dbg_lock);
+ spin_unlock(&c->space_lock);
+}
+#else
+void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
+{
+}
+#endif
+
+void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
+{
+ int i, spc, dark = 0, dead = 0;
+ struct rb_node *rb;
+ struct ubifs_bud *bud;
+
+ spc = lp->free + lp->dirty;
+ if (spc < c->dead_wm)
+ dead = spc;
+ else
+ dark = ubifs_calc_dark(c, spc);
+
+ if (lp->flags & LPROPS_INDEX)
+ pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
+ lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
+ lp->flags);
+ else
+ pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
+ lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
+ dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
+
+ if (lp->flags & LPROPS_TAKEN) {
+ if (lp->flags & LPROPS_INDEX)
+ pr_cont("index, taken");
+ else
+ pr_cont("taken");
+ } else {
+ const char *s;
+
+ if (lp->flags & LPROPS_INDEX) {
+ switch (lp->flags & LPROPS_CAT_MASK) {
+ case LPROPS_DIRTY_IDX:
+ s = "dirty index";
+ break;
+ case LPROPS_FRDI_IDX:
+ s = "freeable index";
+ break;
+ default:
+ s = "index";
+ }
+ } else {
+ switch (lp->flags & LPROPS_CAT_MASK) {
+ case LPROPS_UNCAT:
+ s = "not categorized";
+ break;
+ case LPROPS_DIRTY:
+ s = "dirty";
+ break;
+ case LPROPS_FREE:
+ s = "free";
+ break;
+ case LPROPS_EMPTY:
+ s = "empty";
+ break;
+ case LPROPS_FREEABLE:
+ s = "freeable";
+ break;
+ default:
+ s = NULL;
+ break;
+ }
+ }
+ pr_cont("%s", s);
+ }
+
+ for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
+ bud = rb_entry(rb, struct ubifs_bud, rb);
+ if (bud->lnum == lp->lnum) {
+ int head = 0;
+ for (i = 0; i < c->jhead_cnt; i++) {
+ /*
+ * Note, if we are in R/O mode or in the middle
+ * of mounting/re-mounting, the write-buffers do
+ * not exist.
+ */
+ if (c->jheads &&
+ lp->lnum == c->jheads[i].wbuf.lnum) {
+ pr_cont(", jhead %s", dbg_jhead(i));
+ head = 1;
+ }
+ }
+ if (!head)
+ pr_cont(", bud of jhead %s",
+ dbg_jhead(bud->jhead));
+ }
+ }
+ if (lp->lnum == c->gc_lnum)
+ pr_cont(", GC LEB");
+ pr_cont(")\n");
+}
+
+void ubifs_dump_lprops(struct ubifs_info *c)
+{
+ int lnum, err;
+ struct ubifs_lprops lp;
+ struct ubifs_lp_stats lst;
+
+ pr_err("(pid %d) start dumping LEB properties\n", current->pid);
+ ubifs_get_lp_stats(c, &lst);
+ ubifs_dump_lstats(&lst);
+
+ for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
+ err = ubifs_read_one_lp(c, lnum, &lp);
+ if (err)
+ ubifs_err("cannot read lprops for LEB %d", lnum);
+
+ ubifs_dump_lprop(c, &lp);
+ }
+ pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
+}
+
+void ubifs_dump_lpt_info(struct ubifs_info *c)
+{
+ int i;
+
+ spin_lock(&dbg_lock);
+ pr_err("(pid %d) dumping LPT information\n", current->pid);
+ pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
+ pr_err("\tpnode_sz: %d\n", c->pnode_sz);
+ pr_err("\tnnode_sz: %d\n", c->nnode_sz);
+ pr_err("\tltab_sz: %d\n", c->ltab_sz);
+ pr_err("\tlsave_sz: %d\n", c->lsave_sz);
+ pr_err("\tbig_lpt: %d\n", c->big_lpt);
+ pr_err("\tlpt_hght: %d\n", c->lpt_hght);
+ pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
+ pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
+ pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
+ pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
+ pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
+ pr_err("\tspace_bits: %d\n", c->space_bits);
+ pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
+ pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
+ pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
+ pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
+ pr_err("\tlnum_bits: %d\n", c->lnum_bits);
+ pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
+ pr_err("\tLPT head is at %d:%d\n",
+ c->nhead_lnum, c->nhead_offs);
+ pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
+ if (c->big_lpt)
+ pr_err("\tLPT lsave is at %d:%d\n",
+ c->lsave_lnum, c->lsave_offs);
+ for (i = 0; i < c->lpt_lebs; i++)
+ pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
+ i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
+ c->ltab[i].tgc, c->ltab[i].cmt);
+ spin_unlock(&dbg_lock);
+}
+
+void ubifs_dump_sleb(const struct ubifs_info *c,
+ const struct ubifs_scan_leb *sleb, int offs)
+{
+ struct ubifs_scan_node *snod;
+
+ pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
+ current->pid, sleb->lnum, offs);
+
+ list_for_each_entry(snod, &sleb->nodes, list) {
+ cond_resched();
+ pr_err("Dumping node at LEB %d:%d len %d\n",
+ sleb->lnum, snod->offs, snod->len);
+ ubifs_dump_node(c, snod->node);
+ }
+}
+
+void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
+{
+ struct ubifs_scan_leb *sleb;
+ struct ubifs_scan_node *snod;
+ void *buf;
+
+ pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
+
+ buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
+ if (!buf) {
+ ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
+ return;
+ }
+
+ sleb = ubifs_scan(c, lnum, 0, buf, 0);
+ if (IS_ERR(sleb)) {
+ ubifs_err("scan error %d", (int)PTR_ERR(sleb));
+ goto out;
+ }
+
+ pr_err("LEB %d has %d nodes ending at %d\n", lnum,
+ sleb->nodes_cnt, sleb->endpt);
+
+ list_for_each_entry(snod, &sleb->nodes, list) {
+ cond_resched();
+ pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
+ snod->offs, snod->len);
+ ubifs_dump_node(c, snod->node);
+ }
+
+ pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
+ ubifs_scan_destroy(sleb);
+
+out:
+ vfree(buf);
+ return;
+}
+
+void ubifs_dump_znode(const struct ubifs_info *c,
+ const struct ubifs_znode *znode)
+{
+ int n;
+ const struct ubifs_zbranch *zbr;
+ char key_buf[DBG_KEY_BUF_LEN];
+
+ spin_lock(&dbg_lock);
+ if (znode->parent)
+ zbr = &znode->parent->zbranch[znode->iip];
+ else
+ zbr = &c->zroot;
+
+ pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
+ znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
+ znode->level, znode->child_cnt, znode->flags);
+
+ if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
+ spin_unlock(&dbg_lock);
+ return;
+ }
+
+ pr_err("zbranches:\n");
+ for (n = 0; n < znode->child_cnt; n++) {
+ zbr = &znode->zbranch[n];
+ if (znode->level > 0)
+ pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
+ n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
+ dbg_snprintf_key(c, &zbr->key, key_buf,
+ DBG_KEY_BUF_LEN));
+ else
+ pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
+ n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
+ dbg_snprintf_key(c, &zbr->key, key_buf,
+ DBG_KEY_BUF_LEN));
+ }
+ spin_unlock(&dbg_lock);
+}
+
+void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
+{
+ int i;
+
+ pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
+ current->pid, cat, heap->cnt);
+ for (i = 0; i < heap->cnt; i++) {
+ struct ubifs_lprops *lprops = heap->arr[i];
+
+ pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
+ i, lprops->lnum, lprops->hpos, lprops->free,
+ lprops->dirty, lprops->flags);
+ }
+ pr_err("(pid %d) finish dumping heap\n", current->pid);
+}
+
+void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
+ struct ubifs_nnode *parent, int iip)
+{
+ int i;
+
+ pr_err("(pid %d) dumping pnode:\n", current->pid);
+ pr_err("\taddress %zx parent %zx cnext %zx\n",
+ (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
+ pr_err("\tflags %lu iip %d level %d num %d\n",
+ pnode->flags, iip, pnode->level, pnode->num);
+ for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
+ struct ubifs_lprops *lp = &pnode->lprops[i];
+
+ pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
+ i, lp->free, lp->dirty, lp->flags, lp->lnum);
+ }
+}
+
+void ubifs_dump_tnc(struct ubifs_info *c)
+{
+ struct ubifs_znode *znode;
+ int level;
+
+ pr_err("\n");
+ pr_err("(pid %d) start dumping TNC tree\n", current->pid);
+ znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
+ level = znode->level;
+ pr_err("== Level %d ==\n", level);
+ while (znode) {
+ if (level != znode->level) {
+ level = znode->level;
+ pr_err("== Level %d ==\n", level);
+ }
+ ubifs_dump_znode(c, znode);
+ znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
+ }
+ pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
+}
+
+static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
+ void *priv)
+{
+ ubifs_dump_znode(c, znode);
+ return 0;
}
/**
- * ubifs_debugging_init - initialize UBIFS debugging.
+ * ubifs_dump_index - dump the on-flash index.
* @c: UBIFS file-system description object
*
- * This function initializes debugging-related data for the file system.
+ * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
+ * which dumps only in-memory znodes and does not read znodes which from flash.
+ */
+void ubifs_dump_index(struct ubifs_info *c)
+{
+ dbg_walk_index(c, NULL, dump_znode, NULL);
+}
+
+#ifndef __UBOOT__
+/**
+ * dbg_save_space_info - save information about flash space.
+ * @c: UBIFS file-system description object
+ *
+ * This function saves information about UBIFS free space, dirty space, etc, in
+ * order to check it later.
+ */
+void dbg_save_space_info(struct ubifs_info *c)
+{
+ struct ubifs_debug_info *d = c->dbg;
+ int freeable_cnt;
+
+ spin_lock(&c->space_lock);
+ memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
+ memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
+ d->saved_idx_gc_cnt = c->idx_gc_cnt;
+
+ /*
+ * We use a dirty hack here and zero out @c->freeable_cnt, because it
+ * affects the free space calculations, and UBIFS might not know about
+ * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
+ * only when we read their lprops, and we do this only lazily, upon the
+ * need. So at any given point of time @c->freeable_cnt might be not
+ * exactly accurate.
+ *
+ * Just one example about the issue we hit when we did not zero
+ * @c->freeable_cnt.
+ * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
+ * amount of free space in @d->saved_free
+ * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
+ * information from flash, where we cache LEBs from various
+ * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
+ * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
+ * -> 'ubifs_get_pnode()' -> 'update_cats()'
+ * -> 'ubifs_add_to_cat()').
+ * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
+ * becomes %1.
+ * 4. We calculate the amount of free space when the re-mount is
+ * finished in 'dbg_check_space_info()' and it does not match
+ * @d->saved_free.
+ */
+ freeable_cnt = c->freeable_cnt;
+ c->freeable_cnt = 0;
+ d->saved_free = ubifs_get_free_space_nolock(c);
+ c->freeable_cnt = freeable_cnt;
+ spin_unlock(&c->space_lock);
+}
+
+/**
+ * dbg_check_space_info - check flash space information.
+ * @c: UBIFS file-system description object
+ *
+ * This function compares current flash space information with the information
+ * which was saved when the 'dbg_save_space_info()' function was called.
+ * Returns zero if the information has not changed, and %-EINVAL it it has
+ * changed.
+ */
+int dbg_check_space_info(struct ubifs_info *c)
+{
+ struct ubifs_debug_info *d = c->dbg;
+ struct ubifs_lp_stats lst;
+ long long free;
+ int freeable_cnt;
+
+ spin_lock(&c->space_lock);
+ freeable_cnt = c->freeable_cnt;
+ c->freeable_cnt = 0;
+ free = ubifs_get_free_space_nolock(c);
+ c->freeable_cnt = freeable_cnt;
+ spin_unlock(&c->space_lock);
+
+ if (free != d->saved_free) {
+ ubifs_err("free space changed from %lld to %lld",
+ d->saved_free, free);
+ goto out;
+ }
+
+ return 0;
+
+out:
+ ubifs_msg("saved lprops statistics dump");
+ ubifs_dump_lstats(&d->saved_lst);
+ ubifs_msg("saved budgeting info dump");
+ ubifs_dump_budg(c, &d->saved_bi);
+ ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
+ ubifs_msg("current lprops statistics dump");
+ ubifs_get_lp_stats(c, &lst);
+ ubifs_dump_lstats(&lst);
+ ubifs_msg("current budgeting info dump");
+ ubifs_dump_budg(c, &c->bi);
+ dump_stack();
+ return -EINVAL;
+}
+
+/**
+ * dbg_check_synced_i_size - check synchronized inode size.
+ * @c: UBIFS file-system description object
+ * @inode: inode to check
+ *
+ * If inode is clean, synchronized inode size has to be equivalent to current
+ * inode size. This function has to be called only for locked inodes (@i_mutex
+ * has to be locked). Returns %0 if synchronized inode size if correct, and
+ * %-EINVAL if not.
+ */
+int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
+{
+ int err = 0;
+ struct ubifs_inode *ui = ubifs_inode(inode);
+
+ if (!dbg_is_chk_gen(c))
+ return 0;
+ if (!S_ISREG(inode->i_mode))
+ return 0;
+
+ mutex_lock(&ui->ui_mutex);
+ spin_lock(&ui->ui_lock);
+ if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
+ ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode is clean",
+ ui->ui_size, ui->synced_i_size);
+ ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
+ inode->i_mode, i_size_read(inode));
+ dump_stack();
+ err = -EINVAL;
+ }
+ spin_unlock(&ui->ui_lock);
+ mutex_unlock(&ui->ui_mutex);
+ return err;
+}
+
+/*
+ * dbg_check_dir - check directory inode size and link count.
+ * @c: UBIFS file-system description object
+ * @dir: the directory to calculate size for
+ * @size: the result is returned here
+ *
+ * This function makes sure that directory size and link count are correct.
* Returns zero in case of success and a negative error code in case of
* failure.
+ *
+ * Note, it is good idea to make sure the @dir->i_mutex is locked before
+ * calling this function.
+ */
+int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
+{
+ unsigned int nlink = 2;
+ union ubifs_key key;
+ struct ubifs_dent_node *dent, *pdent = NULL;
+ struct qstr nm = { .name = NULL };
+ loff_t size = UBIFS_INO_NODE_SZ;
+
+ if (!dbg_is_chk_gen(c))
+ return 0;
+
+ if (!S_ISDIR(dir->i_mode))
+ return 0;
+
+ lowest_dent_key(c, &key, dir->i_ino);
+ while (1) {
+ int err;
+
+ dent = ubifs_tnc_next_ent(c, &key, &nm);
+ if (IS_ERR(dent)) {
+ err = PTR_ERR(dent);
+ if (err == -ENOENT)
+ break;
+ return err;
+ }
+
+ nm.name = dent->name;
+ nm.len = le16_to_cpu(dent->nlen);
+ size += CALC_DENT_SIZE(nm.len);
+ if (dent->type == UBIFS_ITYPE_DIR)
+ nlink += 1;
+ kfree(pdent);
+ pdent = dent;
+ key_read(c, &dent->key, &key);
+ }
+ kfree(pdent);
+
+ if (i_size_read(dir) != size) {
+ ubifs_err("directory inode %lu has size %llu, but calculated size is %llu",
+ dir->i_ino, (unsigned long long)i_size_read(dir),
+ (unsigned long long)size);
+ ubifs_dump_inode(c, dir);
+ dump_stack();
+ return -EINVAL;
+ }
+ if (dir->i_nlink != nlink) {
+ ubifs_err("directory inode %lu has nlink %u, but calculated nlink is %u",
+ dir->i_ino, dir->i_nlink, nlink);
+ ubifs_dump_inode(c, dir);
+ dump_stack();
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * dbg_check_key_order - make sure that colliding keys are properly ordered.
+ * @c: UBIFS file-system description object
+ * @zbr1: first zbranch
+ * @zbr2: following zbranch
+ *
+ * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
+ * names of the direntries/xentries which are referred by the keys. This
+ * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
+ * sure the name of direntry/xentry referred by @zbr1 is less than
+ * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
+ * and a negative error code in case of failure.
*/
+static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
+ struct ubifs_zbranch *zbr2)
+{
+ int err, nlen1, nlen2, cmp;
+ struct ubifs_dent_node *dent1, *dent2;
+ union ubifs_key key;
+ char key_buf[DBG_KEY_BUF_LEN];
+
+ ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
+ dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
+ if (!dent1)
+ return -ENOMEM;
+ dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
+ if (!dent2) {
+ err = -ENOMEM;
+ goto out_free;
+ }
+
+ err = ubifs_tnc_read_node(c, zbr1, dent1);
+ if (err)
+ goto out_free;
+ err = ubifs_validate_entry(c, dent1);
+ if (err)
+ goto out_free;
+
+ err = ubifs_tnc_read_node(c, zbr2, dent2);
+ if (err)
+ goto out_free;
+ err = ubifs_validate_entry(c, dent2);
+ if (err)
+ goto out_free;
+
+ /* Make sure node keys are the same as in zbranch */
+ err = 1;
+ key_read(c, &dent1->key, &key);
+ if (keys_cmp(c, &zbr1->key, &key)) {
+ ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
+ zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
+ DBG_KEY_BUF_LEN));
+ ubifs_err("but it should have key %s according to tnc",
+ dbg_snprintf_key(c, &zbr1->key, key_buf,
+ DBG_KEY_BUF_LEN));
+ ubifs_dump_node(c, dent1);
+ goto out_free;
+ }
+
+ key_read(c, &dent2->key, &key);
+ if (keys_cmp(c, &zbr2->key, &key)) {
+ ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
+ zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
+ DBG_KEY_BUF_LEN));
+ ubifs_err("but it should have key %s according to tnc",
+ dbg_snprintf_key(c, &zbr2->key, key_buf,
+ DBG_KEY_BUF_LEN));
+ ubifs_dump_node(c, dent2);
+ goto out_free;
+ }
+
+ nlen1 = le16_to_cpu(dent1->nlen);
+ nlen2 = le16_to_cpu(dent2->nlen);
+
+ cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
+ if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
+ err = 0;
+ goto out_free;
+ }
+ if (cmp == 0 && nlen1 == nlen2)
+ ubifs_err("2 xent/dent nodes with the same name");
+ else
+ ubifs_err("bad order of colliding key %s",
+ dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
+
+ ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
+ ubifs_dump_node(c, dent1);
+ ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
+ ubifs_dump_node(c, dent2);
+
+out_free:
+ kfree(dent2);
+ kfree(dent1);
+ return err;
+}
+
+/**
+ * dbg_check_znode - check if znode is all right.
+ * @c: UBIFS file-system description object
+ * @zbr: zbranch which points to this znode
+ *
+ * This function makes sure that znode referred to by @zbr is all right.
+ * Returns zero if it is, and %-EINVAL if it is not.
+ */
+static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
+{
+ struct ubifs_znode *znode = zbr->znode;
+ struct ubifs_znode *zp = znode->parent;
+ int n, err, cmp;
+
+ if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
+ err = 1;
+ goto out;
+ }
+ if (znode->level < 0) {
+ err = 2;
+ goto out;
+ }
+ if (znode->iip < 0 || znode->iip >= c->fanout) {
+ err = 3;
+ goto out;
+ }
+
+ if (zbr->len == 0)
+ /* Only dirty zbranch may have no on-flash nodes */
+ if (!ubifs_zn_dirty(znode)) {
+ err = 4;
+ goto out;
+ }
+
+ if (ubifs_zn_dirty(znode)) {
+ /*
+ * If znode is dirty, its parent has to be dirty as well. The
+ * order of the operation is important, so we have to have
+ * memory barriers.
+ */
+ smp_mb();
+ if (zp && !ubifs_zn_dirty(zp)) {
+ /*
+ * The dirty flag is atomic and is cleared outside the
+ * TNC mutex, so znode's dirty flag may now have
+ * been cleared. The child is always cleared before the
+ * parent, so we just need to check again.
+ */
+ smp_mb();
+ if (ubifs_zn_dirty(znode)) {
+ err = 5;
+ goto out;
+ }
+ }
+ }
+
+ if (zp) {
+ const union ubifs_key *min, *max;
+
+ if (znode->level != zp->level - 1) {
+ err = 6;
+ goto out;
+ }
+
+ /* Make sure the 'parent' pointer in our znode is correct */
+ err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
+ if (!err) {
+ /* This zbranch does not exist in the parent */
+ err = 7;
+ goto out;
+ }
+
+ if (znode->iip >= zp->child_cnt) {
+ err = 8;
+ goto out;
+ }
+
+ if (znode->iip != n) {
+ /* This may happen only in case of collisions */
+ if (keys_cmp(c, &zp->zbranch[n].key,
+ &zp->zbranch[znode->iip].key)) {
+ err = 9;
+ goto out;
+ }
+ n = znode->iip;
+ }
+
+ /*
+ * Make sure that the first key in our znode is greater than or
+ * equal to the key in the pointing zbranch.
+ */
+ min = &zbr->key;
+ cmp = keys_cmp(c, min, &znode->zbranch[0].key);
+ if (cmp == 1) {
+ err = 10;
+ goto out;
+ }
+
+ if (n + 1 < zp->child_cnt) {
+ max = &zp->zbranch[n + 1].key;
+
+ /*
+ * Make sure the last key in our znode is less or
+ * equivalent than the key in the zbranch which goes
+ * after our pointing zbranch.
+ */
+ cmp = keys_cmp(c, max,
+ &znode->zbranch[znode->child_cnt - 1].key);
+ if (cmp == -1) {
+ err = 11;
+ goto out;
+ }
+ }
+ } else {
+ /* This may only be root znode */
+ if (zbr != &c->zroot) {
+ err = 12;
+ goto out;
+ }
+ }
+
+ /*
+ * Make sure that next key is greater or equivalent then the previous
+ * one.
+ */
+ for (n = 1; n < znode->child_cnt; n++) {
+ cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
+ &znode->zbranch[n].key);
+ if (cmp > 0) {
+ err = 13;
+ goto out;
+ }
+ if (cmp == 0) {
+ /* This can only be keys with colliding hash */
+ if (!is_hash_key(c, &znode->zbranch[n].key)) {
+ err = 14;
+ goto out;
+ }
+
+ if (znode->level != 0 || c->replaying)
+ continue;
+
+ /*
+ * Colliding keys should follow binary order of
+ * corresponding xentry/dentry names.
+ */
+ err = dbg_check_key_order(c, &znode->zbranch[n - 1],
+ &znode->zbranch[n]);
+ if (err < 0)
+ return err;
+ if (err) {
+ err = 15;
+ goto out;
+ }
+ }
+ }
+
+ for (n = 0; n < znode->child_cnt; n++) {
+ if (!znode->zbranch[n].znode &&
+ (znode->zbranch[n].lnum == 0 ||
+ znode->zbranch[n].len == 0)) {
+ err = 16;
+ goto out;
+ }
+
+ if (znode->zbranch[n].lnum != 0 &&
+ znode->zbranch[n].len == 0) {
+ err = 17;
+ goto out;
+ }
+
+ if (znode->zbranch[n].lnum == 0 &&
+ znode->zbranch[n].len != 0) {
+ err = 18;
+ goto out;
+ }
+
+ if (znode->zbranch[n].lnum == 0 &&
+ znode->zbranch[n].offs != 0) {
+ err = 19;
+ goto out;
+ }
+
+ if (znode->level != 0 && znode->zbranch[n].znode)
+ if (znode->zbranch[n].znode->parent != znode) {
+ err = 20;
+ goto out;
+ }
+ }
+
+ return 0;
+
+out:
+ ubifs_err("failed, error %d", err);
+ ubifs_msg("dump of the znode");
+ ubifs_dump_znode(c, znode);
+ if (zp) {
+ ubifs_msg("dump of the parent znode");
+ ubifs_dump_znode(c, zp);
+ }
+ dump_stack();
+ return -EINVAL;
+}
+#else
+
+int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
+{
+ return 0;
+}
+
+void dbg_debugfs_exit_fs(struct ubifs_info *c)
+{
+ return;
+}
+
int ubifs_debugging_init(struct ubifs_info *c)
{
- c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
- if (!c->dbg)
+ return 0;
+}
+void ubifs_debugging_exit(struct ubifs_info *c)
+{
+}
+int dbg_check_filesystem(struct ubifs_info *c)
+{
+ return 0;
+}
+int dbg_debugfs_init_fs(struct ubifs_info *c)
+{
+ return 0;
+}
+#endif
+
+#ifndef __UBOOT__
+/**
+ * dbg_check_tnc - check TNC tree.
+ * @c: UBIFS file-system description object
+ * @extra: do extra checks that are possible at start commit
+ *
+ * This function traverses whole TNC tree and checks every znode. Returns zero
+ * if everything is all right and %-EINVAL if something is wrong with TNC.
+ */
+int dbg_check_tnc(struct ubifs_info *c, int extra)
+{
+ struct ubifs_znode *znode;
+ long clean_cnt = 0, dirty_cnt = 0;
+ int err, last;
+
+ if (!dbg_is_chk_index(c))
+ return 0;
+
+ ubifs_assert(mutex_is_locked(&c->tnc_mutex));
+ if (!c->zroot.znode)
+ return 0;
+
+ znode = ubifs_tnc_postorder_first(c->zroot.znode);
+ while (1) {
+ struct ubifs_znode *prev;
+ struct ubifs_zbranch *zbr;
+
+ if (!znode->parent)
+ zbr = &c->zroot;
+ else
+ zbr = &znode->parent->zbranch[znode->iip];
+
+ err = dbg_check_znode(c, zbr);
+ if (err)
+ return err;
+
+ if (extra) {
+ if (ubifs_zn_dirty(znode))
+ dirty_cnt += 1;
+ else
+ clean_cnt += 1;
+ }
+
+ prev = znode;
+ znode = ubifs_tnc_postorder_next(znode);
+ if (!znode)
+ break;
+
+ /*
+ * If the last key of this znode is equivalent to the first key
+ * of the next znode (collision), then check order of the keys.
+ */
+ last = prev->child_cnt - 1;
+ if (prev->level == 0 && znode->level == 0 && !c->replaying &&
+ !keys_cmp(c, &prev->zbranch[last].key,
+ &znode->zbranch[0].key)) {
+ err = dbg_check_key_order(c, &prev->zbranch[last],
+ &znode->zbranch[0]);
+ if (err < 0)
+ return err;
+ if (err) {
+ ubifs_msg("first znode");
+ ubifs_dump_znode(c, prev);
+ ubifs_msg("second znode");
+ ubifs_dump_znode(c, znode);
+ return -EINVAL;
+ }
+ }
+ }
+
+ if (extra) {
+ if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
+ ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
+ atomic_long_read(&c->clean_zn_cnt),
+ clean_cnt);
+ return -EINVAL;
+ }
+ if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
+ ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
+ atomic_long_read(&c->dirty_zn_cnt),
+ dirty_cnt);
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+#else
+int dbg_check_tnc(struct ubifs_info *c, int extra)
+{
+ return 0;
+}
+#endif
+
+/**
+ * dbg_walk_index - walk the on-flash index.
+ * @c: UBIFS file-system description object
+ * @leaf_cb: called for each leaf node
+ * @znode_cb: called for each indexing node
+ * @priv: private data which is passed to callbacks
+ *
+ * This function walks the UBIFS index and calls the @leaf_cb for each leaf
+ * node and @znode_cb for each indexing node. Returns zero in case of success
+ * and a negative error code in case of failure.
+ *
+ * It would be better if this function removed every znode it pulled to into
+ * the TNC, so that the behavior more closely matched the non-debugging
+ * behavior.
+ */
+int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
+ dbg_znode_callback znode_cb, void *priv)
+{
+ int err;
+ struct ubifs_zbranch *zbr;
+ struct ubifs_znode *znode, *child;
+
+ mutex_lock(&c->tnc_mutex);
+ /* If the root indexing node is not in TNC - pull it */
+ if (!c->zroot.znode) {
+ c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
+ if (IS_ERR(c->zroot.znode)) {
+ err = PTR_ERR(c->zroot.znode);
+ c->zroot.znode = NULL;
+ goto out_unlock;
+ }
+ }
+
+ /*
+ * We are going to traverse the indexing tree in the postorder manner.
+ * Go down and find the leftmost indexing node where we are going to
+ * start from.
+ */
+ znode = c->zroot.znode;
+ while (znode->level > 0) {
+ zbr = &znode->zbranch[0];
+ child = zbr->znode;
+ if (!child) {
+ child = ubifs_load_znode(c, zbr, znode, 0);
+ if (IS_ERR(child)) {
+ err = PTR_ERR(child);
+ goto out_unlock;
+ }
+ zbr->znode = child;
+ }
+
+ znode = child;
+ }
+
+ /* Iterate over all indexing nodes */
+ while (1) {
+ int idx;
+
+ cond_resched();
+
+ if (znode_cb) {
+ err = znode_cb(c, znode, priv);
+ if (err) {
+ ubifs_err("znode checking function returned error %d",
+ err);
+ ubifs_dump_znode(c, znode);
+ goto out_dump;
+ }
+ }
+ if (leaf_cb && znode->level == 0) {
+ for (idx = 0; idx < znode->child_cnt; idx++) {
+ zbr = &znode->zbranch[idx];
+ err = leaf_cb(c, zbr, priv);
+ if (err) {
+ ubifs_err("leaf checking function returned error %d, for leaf at LEB %d:%d",
+ err, zbr->lnum, zbr->offs);
+ goto out_dump;
+ }
+ }
+ }
+
+ if (!znode->parent)
+ break;
+
+ idx = znode->iip + 1;
+ znode = znode->parent;
+ if (idx < znode->child_cnt) {
+ /* Switch to the next index in the parent */
+ zbr = &znode->zbranch[idx];
+ child = zbr->znode;
+ if (!child) {
+ child = ubifs_load_znode(c, zbr, znode, idx);
+ if (IS_ERR(child)) {
+ err = PTR_ERR(child);
+ goto out_unlock;
+ }
+ zbr->znode = child;
+ }
+ znode = child;
+ } else
+ /*
+ * This is the last child, switch to the parent and
+ * continue.
+ */
+ continue;
+
+ /* Go to the lowest leftmost znode in the new sub-tree */
+ while (znode->level > 0) {
+ zbr = &znode->zbranch[0];
+ child = zbr->znode;
+ if (!child) {
+ child = ubifs_load_znode(c, zbr, znode, 0);
+ if (IS_ERR(child)) {
+ err = PTR_ERR(child);
+ goto out_unlock;
+ }
+ zbr->znode = child;
+ }
+ znode = child;
+ }
+ }
+
+ mutex_unlock(&c->tnc_mutex);
+ return 0;
+
+out_dump:
+ if (znode->parent)
+ zbr = &znode->parent->zbranch[znode->iip];
+ else
+ zbr = &c->zroot;
+ ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
+ ubifs_dump_znode(c, znode);
+out_unlock:
+ mutex_unlock(&c->tnc_mutex);
+ return err;
+}
+
+/**
+ * add_size - add znode size to partially calculated index size.
+ * @c: UBIFS file-system description object
+ * @znode: znode to add size for
+ * @priv: partially calculated index size
+ *
+ * This is a helper function for 'dbg_check_idx_size()' which is called for
+ * every indexing node and adds its size to the 'long long' variable pointed to
+ * by @priv.
+ */
+static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
+{
+ long long *idx_size = priv;
+ int add;
+
+ add = ubifs_idx_node_sz(c, znode->child_cnt);
+ add = ALIGN(add, 8);
+ *idx_size += add;
+ return 0;
+}
+
+/**
+ * dbg_check_idx_size - check index size.
+ * @c: UBIFS file-system description object
+ * @idx_size: size to check
+ *
+ * This function walks the UBIFS index, calculates its size and checks that the
+ * size is equivalent to @idx_size. Returns zero in case of success and a
+ * negative error code in case of failure.
+ */
+int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
+{
+ int err;
+ long long calc = 0;
+
+ if (!dbg_is_chk_index(c))
+ return 0;
+
+ err = dbg_walk_index(c, NULL, add_size, &calc);
+ if (err) {
+ ubifs_err("error %d while walking the index", err);
+ return err;
+ }
+
+ if (calc != idx_size) {
+ ubifs_err("index size check failed: calculated size is %lld, should be %lld",
+ calc, idx_size);
+ dump_stack();
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+#ifndef __UBOOT__
+/**
+ * struct fsck_inode - information about an inode used when checking the file-system.
+ * @rb: link in the RB-tree of inodes
+ * @inum: inode number
+ * @mode: inode type, permissions, etc
+ * @nlink: inode link count
+ * @xattr_cnt: count of extended attributes
+ * @references: how many directory/xattr entries refer this inode (calculated
+ * while walking the index)
+ * @calc_cnt: for directory inode count of child directories
+ * @size: inode size (read from on-flash inode)
+ * @xattr_sz: summary size of all extended attributes (read from on-flash
+ * inode)
+ * @calc_sz: for directories calculated directory size
+ * @calc_xcnt: count of extended attributes
+ * @calc_xsz: calculated summary size of all extended attributes
+ * @xattr_nms: sum of lengths of all extended attribute names belonging to this
+ * inode (read from on-flash inode)
+ * @calc_xnms: calculated sum of lengths of all extended attribute names
+ */
+struct fsck_inode {
+ struct rb_node rb;
+ ino_t inum;
+ umode_t mode;
+ unsigned int nlink;
+ unsigned int xattr_cnt;
+ int references;
+ int calc_cnt;
+ long long size;
+ unsigned int xattr_sz;
+ long long calc_sz;
+ long long calc_xcnt;
+ long long calc_xsz;
+ unsigned int xattr_nms;
+ long long calc_xnms;
+};
+
+/**
+ * struct fsck_data - private FS checking information.
+ * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
+ */
+struct fsck_data {
+ struct rb_root inodes;
+};
+
+/**
+ * add_inode - add inode information to RB-tree of inodes.
+ * @c: UBIFS file-system description object
+ * @fsckd: FS checking information
+ * @ino: raw UBIFS inode to add
+ *
+ * This is a helper function for 'check_leaf()' which adds information about
+ * inode @ino to the RB-tree of inodes. Returns inode information pointer in
+ * case of success and a negative error code in case of failure.
+ */
+static struct fsck_inode *add_inode(struct ubifs_info *c,
+ struct fsck_data *fsckd,
+ struct ubifs_ino_node *ino)
+{
+ struct rb_node **p, *parent = NULL;
+ struct fsck_inode *fscki;
+ ino_t inum = key_inum_flash(c, &ino->key);
+ struct inode *inode;
+ struct ubifs_inode *ui;
+
+ p = &fsckd->inodes.rb_node;
+ while (*p) {
+ parent = *p;
+ fscki = rb_entry(parent, struct fsck_inode, rb);
+ if (inum < fscki->inum)
+ p = &(*p)->rb_left;
+ else if (inum > fscki->inum)
+ p = &(*p)->rb_right;
+ else
+ return fscki;
+ }
+
+ if (inum > c->highest_inum) {
+ ubifs_err("too high inode number, max. is %lu",
+ (unsigned long)c->highest_inum);
+ return ERR_PTR(-EINVAL);
+ }
+
+ fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
+ if (!fscki)
+ return ERR_PTR(-ENOMEM);
+
+ inode = ilookup(c->vfs_sb, inum);
+
+ fscki->inum = inum;
+ /*
+ * If the inode is present in the VFS inode cache, use it instead of
+ * the on-flash inode which might be out-of-date. E.g., the size might
+ * be out-of-date. If we do not do this, the following may happen, for
+ * example:
+ * 1. A power cut happens
+ * 2. We mount the file-system R/O, the replay process fixes up the
+ * inode size in the VFS cache, but on on-flash.
+ * 3. 'check_leaf()' fails because it hits a data node beyond inode
+ * size.
+ */
+ if (!inode) {
+ fscki->nlink = le32_to_cpu(ino->nlink);
+ fscki->size = le64_to_cpu(ino->size);
+ fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
+ fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
+ fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
+ fscki->mode = le32_to_cpu(ino->mode);
+ } else {
+ ui = ubifs_inode(inode);
+ fscki->nlink = inode->i_nlink;
+ fscki->size = inode->i_size;
+ fscki->xattr_cnt = ui->xattr_cnt;
+ fscki->xattr_sz = ui->xattr_size;
+ fscki->xattr_nms = ui->xattr_names;
+ fscki->mode = inode->i_mode;
+ iput(inode);
+ }
+
+ if (S_ISDIR(fscki->mode)) {
+ fscki->calc_sz = UBIFS_INO_NODE_SZ;
+ fscki->calc_cnt = 2;
+ }
+
+ rb_link_node(&fscki->rb, parent, p);
+ rb_insert_color(&fscki->rb, &fsckd->inodes);
+
+ return fscki;
+}
+
+/**
+ * search_inode - search inode in the RB-tree of inodes.
+ * @fsckd: FS checking information
+ * @inum: inode number to search
+ *
+ * This is a helper function for 'check_leaf()' which searches inode @inum in
+ * the RB-tree of inodes and returns an inode information pointer or %NULL if
+ * the inode was not found.
+ */
+static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
+{
+ struct rb_node *p;
+ struct fsck_inode *fscki;
+
+ p = fsckd->inodes.rb_node;
+ while (p) {
+ fscki = rb_entry(p, struct fsck_inode, rb);
+ if (inum < fscki->inum)
+ p = p->rb_left;
+ else if (inum > fscki->inum)
+ p = p->rb_right;
+ else
+ return fscki;
+ }
+ return NULL;
+}
+
+/**
+ * read_add_inode - read inode node and add it to RB-tree of inodes.
+ * @c: UBIFS file-system description object
+ * @fsckd: FS checking information
+ * @inum: inode number to read
+ *
+ * This is a helper function for 'check_leaf()' which finds inode node @inum in
+ * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
+ * information pointer in case of success and a negative error code in case of
+ * failure.
+ */
+static struct fsck_inode *read_add_inode(struct ubifs_info *c,
+ struct fsck_data *fsckd, ino_t inum)
+{
+ int n, err;
+ union ubifs_key key;
+ struct ubifs_znode *znode;
+ struct ubifs_zbranch *zbr;
+ struct ubifs_ino_node *ino;
+ struct fsck_inode *fscki;
+
+ fscki = search_inode(fsckd, inum);
+ if (fscki)
+ return fscki;
+
+ ino_key_init(c, &key, inum);
+ err = ubifs_lookup_level0(c, &key, &znode, &n);
+ if (!err) {
+ ubifs_err("inode %lu not found in index", (unsigned long)inum);
+ return ERR_PTR(-ENOENT);
+ } else if (err < 0) {
+ ubifs_err("error %d while looking up inode %lu",
+ err, (unsigned long)inum);
+ return ERR_PTR(err);
+ }
+
+ zbr = &znode->zbranch[n];
+ if (zbr->len < UBIFS_INO_NODE_SZ) {
+ ubifs_err("bad node %lu node length %d",
+ (unsigned long)inum, zbr->len);
+ return ERR_PTR(-EINVAL);
+ }
+
+ ino = kmalloc(zbr->len, GFP_NOFS);
+ if (!ino)
+ return ERR_PTR(-ENOMEM);
+
+ err = ubifs_tnc_read_node(c, zbr, ino);
+ if (err) {
+ ubifs_err("cannot read inode node at LEB %d:%d, error %d",
+ zbr->lnum, zbr->offs, err);
+ kfree(ino);
+ return ERR_PTR(err);
+ }
+
+ fscki = add_inode(c, fsckd, ino);
+ kfree(ino);
+ if (IS_ERR(fscki)) {
+ ubifs_err("error %ld while adding inode %lu node",
+ PTR_ERR(fscki), (unsigned long)inum);
+ return fscki;
+ }
+
+ return fscki;
+}
+
+/**
+ * check_leaf - check leaf node.
+ * @c: UBIFS file-system description object
+ * @zbr: zbranch of the leaf node to check
+ * @priv: FS checking information
+ *
+ * This is a helper function for 'dbg_check_filesystem()' which is called for
+ * every single leaf node while walking the indexing tree. It checks that the
+ * leaf node referred from the indexing tree exists, has correct CRC, and does
+ * some other basic validation. This function is also responsible for building
+ * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
+ * calculates reference count, size, etc for each inode in order to later
+ * compare them to the information stored inside the inodes and detect possible
+ * inconsistencies. Returns zero in case of success and a negative error code
+ * in case of failure.
+ */
+static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
+ void *priv)
+{
+ ino_t inum;
+ void *node;
+ struct ubifs_ch *ch;
+ int err, type = key_type(c, &zbr->key);
+ struct fsck_inode *fscki;
+
+ if (zbr->len < UBIFS_CH_SZ) {
+ ubifs_err("bad leaf length %d (LEB %d:%d)",
+ zbr->len, zbr->lnum, zbr->offs);
+ return -EINVAL;
+ }
+
+ node = kmalloc(zbr->len, GFP_NOFS);
+ if (!node)
return -ENOMEM;
- c->dbg->buf = vmalloc(c->leb_size);
- if (!c->dbg->buf)
+ err = ubifs_tnc_read_node(c, zbr, node);
+ if (err) {
+ ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
+ zbr->lnum, zbr->offs, err);
+ goto out_free;
+ }
+
+ /* If this is an inode node, add it to RB-tree of inodes */
+ if (type == UBIFS_INO_KEY) {
+ fscki = add_inode(c, priv, node);
+ if (IS_ERR(fscki)) {
+ err = PTR_ERR(fscki);
+ ubifs_err("error %d while adding inode node", err);
+ goto out_dump;
+ }
goto out;
+ }
+
+ if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
+ type != UBIFS_DATA_KEY) {
+ ubifs_err("unexpected node type %d at LEB %d:%d",
+ type, zbr->lnum, zbr->offs);
+ err = -EINVAL;
+ goto out_free;
+ }
+
+ ch = node;
+ if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
+ ubifs_err("too high sequence number, max. is %llu",
+ c->max_sqnum);
+ err = -EINVAL;
+ goto out_dump;
+ }
+
+ if (type == UBIFS_DATA_KEY) {
+ long long blk_offs;
+ struct ubifs_data_node *dn = node;
+
+ /*
+ * Search the inode node this data node belongs to and insert
+ * it to the RB-tree of inodes.
+ */
+ inum = key_inum_flash(c, &dn->key);
+ fscki = read_add_inode(c, priv, inum);
+ if (IS_ERR(fscki)) {
+ err = PTR_ERR(fscki);
+ ubifs_err("error %d while processing data node and trying to find inode node %lu",
+ err, (unsigned long)inum);
+ goto out_dump;
+ }
+
+ /* Make sure the data node is within inode size */
+ blk_offs = key_block_flash(c, &dn->key);
+ blk_offs <<= UBIFS_BLOCK_SHIFT;
+ blk_offs += le32_to_cpu(dn->size);
+ if (blk_offs > fscki->size) {
+ ubifs_err("data node at LEB %d:%d is not within inode size %lld",
+ zbr->lnum, zbr->offs, fscki->size);
+ err = -EINVAL;
+ goto out_dump;
+ }
+ } else {
+ int nlen;
+ struct ubifs_dent_node *dent = node;
+ struct fsck_inode *fscki1;
+
+ err = ubifs_validate_entry(c, dent);
+ if (err)
+ goto out_dump;
+
+ /*
+ * Search the inode node this entry refers to and the parent
+ * inode node and insert them to the RB-tree of inodes.
+ */
+ inum = le64_to_cpu(dent->inum);
+ fscki = read_add_inode(c, priv, inum);
+ if (IS_ERR(fscki)) {
+ err = PTR_ERR(fscki);
+ ubifs_err("error %d while processing entry node and trying to find inode node %lu",
+ err, (unsigned long)inum);
+ goto out_dump;
+ }
+
+ /* Count how many direntries or xentries refers this inode */
+ fscki->references += 1;
+
+ inum = key_inum_flash(c, &dent->key);
+ fscki1 = read_add_inode(c, priv, inum);
+ if (IS_ERR(fscki1)) {
+ err = PTR_ERR(fscki1);
+ ubifs_err("error %d while processing entry node and trying to find parent inode node %lu",
+ err, (unsigned long)inum);
+ goto out_dump;
+ }
+
+ nlen = le16_to_cpu(dent->nlen);
+ if (type == UBIFS_XENT_KEY) {
+ fscki1->calc_xcnt += 1;
+ fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
+ fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
+ fscki1->calc_xnms += nlen;
+ } else {
+ fscki1->calc_sz += CALC_DENT_SIZE(nlen);
+ if (dent->type == UBIFS_ITYPE_DIR)
+ fscki1->calc_cnt += 1;
+ }
+ }
+
+out:
+ kfree(node);
+ return 0;
+
+out_dump:
+ ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
+ ubifs_dump_node(c, node);
+out_free:
+ kfree(node);
+ return err;
+}
+
+/**
+ * free_inodes - free RB-tree of inodes.
+ * @fsckd: FS checking information
+ */
+static void free_inodes(struct fsck_data *fsckd)
+{
+ struct fsck_inode *fscki, *n;
+
+ rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
+ kfree(fscki);
+}
+
+/**
+ * check_inodes - checks all inodes.
+ * @c: UBIFS file-system description object
+ * @fsckd: FS checking information
+ *
+ * This is a helper function for 'dbg_check_filesystem()' which walks the
+ * RB-tree of inodes after the index scan has been finished, and checks that
+ * inode nlink, size, etc are correct. Returns zero if inodes are fine,
+ * %-EINVAL if not, and a negative error code in case of failure.
+ */
+static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
+{
+ int n, err;
+ union ubifs_key key;
+ struct ubifs_znode *znode;
+ struct ubifs_zbranch *zbr;
+ struct ubifs_ino_node *ino;
+ struct fsck_inode *fscki;
+ struct rb_node *this = rb_first(&fsckd->inodes);
+
+ while (this) {
+ fscki = rb_entry(this, struct fsck_inode, rb);
+ this = rb_next(this);
+
+ if (S_ISDIR(fscki->mode)) {
+ /*
+ * Directories have to have exactly one reference (they
+ * cannot have hardlinks), although root inode is an
+ * exception.
+ */
+ if (fscki->inum != UBIFS_ROOT_INO &&
+ fscki->references != 1) {
+ ubifs_err("directory inode %lu has %d direntries which refer it, but should be 1",
+ (unsigned long)fscki->inum,
+ fscki->references);
+ goto out_dump;
+ }
+ if (fscki->inum == UBIFS_ROOT_INO &&
+ fscki->references != 0) {
+ ubifs_err("root inode %lu has non-zero (%d) direntries which refer it",
+ (unsigned long)fscki->inum,
+ fscki->references);
+ goto out_dump;
+ }
+ if (fscki->calc_sz != fscki->size) {
+ ubifs_err("directory inode %lu size is %lld, but calculated size is %lld",
+ (unsigned long)fscki->inum,
+ fscki->size, fscki->calc_sz);
+ goto out_dump;
+ }
+ if (fscki->calc_cnt != fscki->nlink) {
+ ubifs_err("directory inode %lu nlink is %d, but calculated nlink is %d",
+ (unsigned long)fscki->inum,
+ fscki->nlink, fscki->calc_cnt);
+ goto out_dump;
+ }
+ } else {
+ if (fscki->references != fscki->nlink) {
+ ubifs_err("inode %lu nlink is %d, but calculated nlink is %d",
+ (unsigned long)fscki->inum,
+ fscki->nlink, fscki->references);
+ goto out_dump;
+ }
+ }
+ if (fscki->xattr_sz != fscki->calc_xsz) {
+ ubifs_err("inode %lu has xattr size %u, but calculated size is %lld",
+ (unsigned long)fscki->inum, fscki->xattr_sz,
+ fscki->calc_xsz);
+ goto out_dump;
+ }
+ if (fscki->xattr_cnt != fscki->calc_xcnt) {
+ ubifs_err("inode %lu has %u xattrs, but calculated count is %lld",
+ (unsigned long)fscki->inum,
+ fscki->xattr_cnt, fscki->calc_xcnt);
+ goto out_dump;
+ }
+ if (fscki->xattr_nms != fscki->calc_xnms) {
+ ubifs_err("inode %lu has xattr names' size %u, but calculated names' size is %lld",
+ (unsigned long)fscki->inum, fscki->xattr_nms,
+ fscki->calc_xnms);
+ goto out_dump;
+ }
+ }
+
+ return 0;
+
+out_dump:
+ /* Read the bad inode and dump it */
+ ino_key_init(c, &key, fscki->inum);
+ err = ubifs_lookup_level0(c, &key, &znode, &n);
+ if (!err) {
+ ubifs_err("inode %lu not found in index",
+ (unsigned long)fscki->inum);
+ return -ENOENT;
+ } else if (err < 0) {
+ ubifs_err("error %d while looking up inode %lu",
+ err, (unsigned long)fscki->inum);
+ return err;
+ }
+
+ zbr = &znode->zbranch[n];
+ ino = kmalloc(zbr->len, GFP_NOFS);
+ if (!ino)
+ return -ENOMEM;
+
+ err = ubifs_tnc_read_node(c, zbr, ino);
+ if (err) {
+ ubifs_err("cannot read inode node at LEB %d:%d, error %d",
+ zbr->lnum, zbr->offs, err);
+ kfree(ino);
+ return err;
+ }
+
+ ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
+ (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
+ ubifs_dump_node(c, ino);
+ kfree(ino);
+ return -EINVAL;
+}
+
+/**
+ * dbg_check_filesystem - check the file-system.
+ * @c: UBIFS file-system description object
+ *
+ * This function checks the file system, namely:
+ * o makes sure that all leaf nodes exist and their CRCs are correct;
+ * o makes sure inode nlink, size, xattr size/count are correct (for all
+ * inodes).
+ *
+ * The function reads whole indexing tree and all nodes, so it is pretty
+ * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
+ * not, and a negative error code in case of failure.
+ */
+int dbg_check_filesystem(struct ubifs_info *c)
+{
+ int err;
+ struct fsck_data fsckd;
+
+ if (!dbg_is_chk_fs(c))
+ return 0;
+
+ fsckd.inodes = RB_ROOT;
+ err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
+ if (err)
+ goto out_free;
+
+ err = check_inodes(c, &fsckd);
+ if (err)
+ goto out_free;
+
+ free_inodes(&fsckd);
+ return 0;
+
+out_free:
+ ubifs_err("file-system check failed with error %d", err);
+ dump_stack();
+ free_inodes(&fsckd);
+ return err;
+}
+
+/**
+ * dbg_check_data_nodes_order - check that list of data nodes is sorted.
+ * @c: UBIFS file-system description object
+ * @head: the list of nodes ('struct ubifs_scan_node' objects)
+ *
+ * This function returns zero if the list of data nodes is sorted correctly,
+ * and %-EINVAL if not.
+ */
+int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
+{
+ struct list_head *cur;
+ struct ubifs_scan_node *sa, *sb;
+
+ if (!dbg_is_chk_gen(c))
+ return 0;
+
+ for (cur = head->next; cur->next != head; cur = cur->next) {
+ ino_t inuma, inumb;
+ uint32_t blka, blkb;
+
+ cond_resched();
+ sa = container_of(cur, struct ubifs_scan_node, list);
+ sb = container_of(cur->next, struct ubifs_scan_node, list);
+
+ if (sa->type != UBIFS_DATA_NODE) {
+ ubifs_err("bad node type %d", sa->type);
+ ubifs_dump_node(c, sa->node);
+ return -EINVAL;
+ }
+ if (sb->type != UBIFS_DATA_NODE) {
+ ubifs_err("bad node type %d", sb->type);
+ ubifs_dump_node(c, sb->node);
+ return -EINVAL;
+ }
+
+ inuma = key_inum(c, &sa->key);
+ inumb = key_inum(c, &sb->key);
+
+ if (inuma < inumb)
+ continue;
+ if (inuma > inumb) {
+ ubifs_err("larger inum %lu goes before inum %lu",
+ (unsigned long)inuma, (unsigned long)inumb);
+ goto error_dump;
+ }
+
+ blka = key_block(c, &sa->key);
+ blkb = key_block(c, &sb->key);
+
+ if (blka > blkb) {
+ ubifs_err("larger block %u goes before %u", blka, blkb);
+ goto error_dump;
+ }
+ if (blka == blkb) {
+ ubifs_err("two data nodes for the same block");
+ goto error_dump;
+ }
+ }
return 0;
+error_dump:
+ ubifs_dump_node(c, sa->node);
+ ubifs_dump_node(c, sb->node);
+ return -EINVAL;
+}
+
+/**
+ * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
+ * @c: UBIFS file-system description object
+ * @head: the list of nodes ('struct ubifs_scan_node' objects)
+ *
+ * This function returns zero if the list of non-data nodes is sorted correctly,
+ * and %-EINVAL if not.
+ */
+int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
+{
+ struct list_head *cur;
+ struct ubifs_scan_node *sa, *sb;
+
+ if (!dbg_is_chk_gen(c))
+ return 0;
+
+ for (cur = head->next; cur->next != head; cur = cur->next) {
+ ino_t inuma, inumb;
+ uint32_t hasha, hashb;
+
+ cond_resched();
+ sa = container_of(cur, struct ubifs_scan_node, list);
+ sb = container_of(cur->next, struct ubifs_scan_node, list);
+
+ if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
+ sa->type != UBIFS_XENT_NODE) {
+ ubifs_err("bad node type %d", sa->type);
+ ubifs_dump_node(c, sa->node);
+ return -EINVAL;
+ }
+ if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
+ sa->type != UBIFS_XENT_NODE) {
+ ubifs_err("bad node type %d", sb->type);
+ ubifs_dump_node(c, sb->node);
+ return -EINVAL;
+ }
+
+ if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
+ ubifs_err("non-inode node goes before inode node");
+ goto error_dump;
+ }
+
+ if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
+ continue;
+
+ if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
+ /* Inode nodes are sorted in descending size order */
+ if (sa->len < sb->len) {
+ ubifs_err("smaller inode node goes first");
+ goto error_dump;
+ }
+ continue;
+ }
+
+ /*
+ * This is either a dentry or xentry, which should be sorted in
+ * ascending (parent ino, hash) order.
+ */
+ inuma = key_inum(c, &sa->key);
+ inumb = key_inum(c, &sb->key);
+
+ if (inuma < inumb)
+ continue;
+ if (inuma > inumb) {
+ ubifs_err("larger inum %lu goes before inum %lu",
+ (unsigned long)inuma, (unsigned long)inumb);
+ goto error_dump;
+ }
+
+ hasha = key_block(c, &sa->key);
+ hashb = key_block(c, &sb->key);
+
+ if (hasha > hashb) {
+ ubifs_err("larger hash %u goes before %u",
+ hasha, hashb);
+ goto error_dump;
+ }
+ }
+
+ return 0;
+
+error_dump:
+ ubifs_msg("dumping first node");
+ ubifs_dump_node(c, sa->node);
+ ubifs_msg("dumping second node");
+ ubifs_dump_node(c, sb->node);
+ return -EINVAL;
+ return 0;
+}
+
+static inline int chance(unsigned int n, unsigned int out_of)
+{
+ return !!((prandom_u32() % out_of) + 1 <= n);
+
+}
+
+static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
+{
+ struct ubifs_debug_info *d = c->dbg;
+
+ ubifs_assert(dbg_is_tst_rcvry(c));
+
+ if (!d->pc_cnt) {
+ /* First call - decide delay to the power cut */
+ if (chance(1, 2)) {
+ unsigned long delay;
+
+ if (chance(1, 2)) {
+ d->pc_delay = 1;
+ /* Fail withing 1 minute */
+ delay = prandom_u32() % 60000;
+ d->pc_timeout = jiffies;
+ d->pc_timeout += msecs_to_jiffies(delay);
+ ubifs_warn("failing after %lums", delay);
+ } else {
+ d->pc_delay = 2;
+ delay = prandom_u32() % 10000;
+ /* Fail within 10000 operations */
+ d->pc_cnt_max = delay;
+ ubifs_warn("failing after %lu calls", delay);
+ }
+ }
+
+ d->pc_cnt += 1;
+ }
+
+ /* Determine if failure delay has expired */
+ if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
+ return 0;
+ if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
+ return 0;
+
+ if (lnum == UBIFS_SB_LNUM) {
+ if (write && chance(1, 2))
+ return 0;
+ if (chance(19, 20))
+ return 0;
+ ubifs_warn("failing in super block LEB %d", lnum);
+ } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
+ if (chance(19, 20))
+ return 0;
+ ubifs_warn("failing in master LEB %d", lnum);
+ } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
+ if (write && chance(99, 100))
+ return 0;
+ if (chance(399, 400))
+ return 0;
+ ubifs_warn("failing in log LEB %d", lnum);
+ } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
+ if (write && chance(7, 8))
+ return 0;
+ if (chance(19, 20))
+ return 0;
+ ubifs_warn("failing in LPT LEB %d", lnum);
+ } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
+ if (write && chance(1, 2))
+ return 0;
+ if (chance(9, 10))
+ return 0;
+ ubifs_warn("failing in orphan LEB %d", lnum);
+ } else if (lnum == c->ihead_lnum) {
+ if (chance(99, 100))
+ return 0;
+ ubifs_warn("failing in index head LEB %d", lnum);
+ } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
+ if (chance(9, 10))
+ return 0;
+ ubifs_warn("failing in GC head LEB %d", lnum);
+ } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
+ !ubifs_search_bud(c, lnum)) {
+ if (chance(19, 20))
+ return 0;
+ ubifs_warn("failing in non-bud LEB %d", lnum);
+ } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
+ c->cmt_state == COMMIT_RUNNING_REQUIRED) {
+ if (chance(999, 1000))
+ return 0;
+ ubifs_warn("failing in bud LEB %d commit running", lnum);
+ } else {
+ if (chance(9999, 10000))
+ return 0;
+ ubifs_warn("failing in bud LEB %d commit not running", lnum);
+ }
+
+ d->pc_happened = 1;
+ ubifs_warn("========== Power cut emulated ==========");
+ dump_stack();
+ return 1;
+}
+
+static int corrupt_data(const struct ubifs_info *c, const void *buf,
+ unsigned int len)
+{
+ unsigned int from, to, ffs = chance(1, 2);
+ unsigned char *p = (void *)buf;
+
+ from = prandom_u32() % len;
+ /* Corruption span max to end of write unit */
+ to = min(len, ALIGN(from + 1, c->max_write_size));
+
+ ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
+ ffs ? "0xFFs" : "random data");
+
+ if (ffs)
+ memset(p + from, 0xFF, to - from);
+ else
+ prandom_bytes(p + from, to - from);
+
+ return to;
+}
+
+int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
+ int offs, int len)
+{
+ int err, failing;
+
+ if (c->dbg->pc_happened)
+ return -EROFS;
+
+ failing = power_cut_emulated(c, lnum, 1);
+ if (failing) {
+ len = corrupt_data(c, buf, len);
+ ubifs_warn("actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
+ len, lnum, offs);
+ }
+ err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
+ if (err)
+ return err;
+ if (failing)
+ return -EROFS;
+ return 0;
+}
+
+int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
+ int len)
+{
+ int err;
+
+ if (c->dbg->pc_happened)
+ return -EROFS;
+ if (power_cut_emulated(c, lnum, 1))
+ return -EROFS;
+ err = ubi_leb_change(c->ubi, lnum, buf, len);
+ if (err)
+ return err;
+ if (power_cut_emulated(c, lnum, 1))
+ return -EROFS;
+ return 0;
+}
+
+int dbg_leb_unmap(struct ubifs_info *c, int lnum)
+{
+ int err;
+
+ if (c->dbg->pc_happened)
+ return -EROFS;
+ if (power_cut_emulated(c, lnum, 0))
+ return -EROFS;
+ err = ubi_leb_unmap(c->ubi, lnum);
+ if (err)
+ return err;
+ if (power_cut_emulated(c, lnum, 0))
+ return -EROFS;
+ return 0;
+}
+
+int dbg_leb_map(struct ubifs_info *c, int lnum)
+{
+ int err;
+
+ if (c->dbg->pc_happened)
+ return -EROFS;
+ if (power_cut_emulated(c, lnum, 0))
+ return -EROFS;
+ err = ubi_leb_map(c->ubi, lnum);
+ if (err)
+ return err;
+ if (power_cut_emulated(c, lnum, 0))
+ return -EROFS;
+ return 0;
+}
+
+/*
+ * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
+ * contain the stuff specific to particular file-system mounts.
+ */
+static struct dentry *dfs_rootdir;
+
+static int dfs_file_open(struct inode *inode, struct file *file)
+{
+ file->private_data = inode->i_private;
+ return nonseekable_open(inode, file);
+}
+
+/**
+ * provide_user_output - provide output to the user reading a debugfs file.
+ * @val: boolean value for the answer
+ * @u: the buffer to store the answer at
+ * @count: size of the buffer
+ * @ppos: position in the @u output buffer
+ *
+ * This is a simple helper function which stores @val boolean value in the user
+ * buffer when the user reads one of UBIFS debugfs files. Returns amount of
+ * bytes written to @u in case of success and a negative error code in case of
+ * failure.
+ */
+static int provide_user_output(int val, char __user *u, size_t count,
+ loff_t *ppos)
+{
+ char buf[3];
+
+ if (val)
+ buf[0] = '1';
+ else
+ buf[0] = '0';
+ buf[1] = '\n';
+ buf[2] = 0x00;
+
+ return simple_read_from_buffer(u, count, ppos, buf, 2);
+}
+
+static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
+ loff_t *ppos)
+{
+ struct dentry *dent = file->f_path.dentry;
+ struct ubifs_info *c = file->private_data;
+ struct ubifs_debug_info *d = c->dbg;
+ int val;
+
+ if (dent == d->dfs_chk_gen)
+ val = d->chk_gen;
+ else if (dent == d->dfs_chk_index)
+ val = d->chk_index;
+ else if (dent == d->dfs_chk_orph)
+ val = d->chk_orph;
+ else if (dent == d->dfs_chk_lprops)
+ val = d->chk_lprops;
+ else if (dent == d->dfs_chk_fs)
+ val = d->chk_fs;
+ else if (dent == d->dfs_tst_rcvry)
+ val = d->tst_rcvry;
+ else if (dent == d->dfs_ro_error)
+ val = c->ro_error;
+ else
+ return -EINVAL;
+
+ return provide_user_output(val, u, count, ppos);
+}
+
+/**
+ * interpret_user_input - interpret user debugfs file input.
+ * @u: user-provided buffer with the input
+ * @count: buffer size
+ *
+ * This is a helper function which interpret user input to a boolean UBIFS
+ * debugfs file. Returns %0 or %1 in case of success and a negative error code
+ * in case of failure.
+ */
+static int interpret_user_input(const char __user *u, size_t count)
+{
+ size_t buf_size;
+ char buf[8];
+
+ buf_size = min_t(size_t, count, (sizeof(buf) - 1));
+ if (copy_from_user(buf, u, buf_size))
+ return -EFAULT;
+
+ if (buf[0] == '1')
+ return 1;
+ else if (buf[0] == '0')
+ return 0;
+
+ return -EINVAL;
+}
+
+static ssize_t dfs_file_write(struct file *file, const char __user *u,
+ size_t count, loff_t *ppos)
+{
+ struct ubifs_info *c = file->private_data;
+ struct ubifs_debug_info *d = c->dbg;
+ struct dentry *dent = file->f_path.dentry;
+ int val;
+
+ /*
+ * TODO: this is racy - the file-system might have already been
+ * unmounted and we'd oops in this case. The plan is to fix it with
+ * help of 'iterate_supers_type()' which we should have in v3.0: when
+ * a debugfs opened, we rember FS's UUID in file->private_data. Then
+ * whenever we access the FS via a debugfs file, we iterate all UBIFS
+ * superblocks and fine the one with the same UUID, and take the
+ * locking right.
+ *
+ * The other way to go suggested by Al Viro is to create a separate
+ * 'ubifs-debug' file-system instead.
+ */
+ if (file->f_path.dentry == d->dfs_dump_lprops) {
+ ubifs_dump_lprops(c);
+ return count;
+ }
+ if (file->f_path.dentry == d->dfs_dump_budg) {
+ ubifs_dump_budg(c, &c->bi);
+ return count;
+ }
+ if (file->f_path.dentry == d->dfs_dump_tnc) {
+ mutex_lock(&c->tnc_mutex);
+ ubifs_dump_tnc(c);
+ mutex_unlock(&c->tnc_mutex);
+ return count;
+ }
+
+ val = interpret_user_input(u, count);
+ if (val < 0)
+ return val;
+
+ if (dent == d->dfs_chk_gen)
+ d->chk_gen = val;
+ else if (dent == d->dfs_chk_index)
+ d->chk_index = val;
+ else if (dent == d->dfs_chk_orph)
+ d->chk_orph = val;
+ else if (dent == d->dfs_chk_lprops)
+ d->chk_lprops = val;
+ else if (dent == d->dfs_chk_fs)
+ d->chk_fs = val;
+ else if (dent == d->dfs_tst_rcvry)
+ d->tst_rcvry = val;
+ else if (dent == d->dfs_ro_error)
+ c->ro_error = !!val;
+ else
+ return -EINVAL;
+
+ return count;
+}
+
+static const struct file_operations dfs_fops = {
+ .open = dfs_file_open,
+ .read = dfs_file_read,
+ .write = dfs_file_write,
+ .owner = THIS_MODULE,
+ .llseek = no_llseek,
+};
+
+/**
+ * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
+ * @c: UBIFS file-system description object
+ *
+ * This function creates all debugfs files for this instance of UBIFS. Returns
+ * zero in case of success and a negative error code in case of failure.
+ *
+ * Note, the only reason we have not merged this function with the
+ * 'ubifs_debugging_init()' function is because it is better to initialize
+ * debugfs interfaces at the very end of the mount process, and remove them at
+ * the very beginning of the mount process.
+ */
+int dbg_debugfs_init_fs(struct ubifs_info *c)
+{
+ int err, n;
+ const char *fname;
+ struct dentry *dent;
+ struct ubifs_debug_info *d = c->dbg;
+
+ if (!IS_ENABLED(CONFIG_DEBUG_FS))
+ return 0;
+
+ n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
+ c->vi.ubi_num, c->vi.vol_id);
+ if (n == UBIFS_DFS_DIR_LEN) {
+ /* The array size is too small */
+ fname = UBIFS_DFS_DIR_NAME;
+ dent = ERR_PTR(-EINVAL);
+ goto out;
+ }
+
+ fname = d->dfs_dir_name;
+ dent = debugfs_create_dir(fname, dfs_rootdir);
+ if (IS_ERR_OR_NULL(dent))
+ goto out;
+ d->dfs_dir = dent;
+
+ fname = "dump_lprops";
+ dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ d->dfs_dump_lprops = dent;
+
+ fname = "dump_budg";
+ dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ d->dfs_dump_budg = dent;
+
+ fname = "dump_tnc";
+ dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ d->dfs_dump_tnc = dent;
+
+ fname = "chk_general";
+ dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
+ &dfs_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ d->dfs_chk_gen = dent;
+
+ fname = "chk_index";
+ dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
+ &dfs_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ d->dfs_chk_index = dent;
+
+ fname = "chk_orphans";
+ dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
+ &dfs_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ d->dfs_chk_orph = dent;
+
+ fname = "chk_lprops";
+ dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
+ &dfs_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ d->dfs_chk_lprops = dent;
+
+ fname = "chk_fs";
+ dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
+ &dfs_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ d->dfs_chk_fs = dent;
+
+ fname = "tst_recovery";
+ dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
+ &dfs_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ d->dfs_tst_rcvry = dent;
+
+ fname = "ro_error";
+ dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
+ &dfs_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ d->dfs_ro_error = dent;
+
+ return 0;
+
+out_remove:
+ debugfs_remove_recursive(d->dfs_dir);
out:
- kfree(c->dbg);
- return -ENOMEM;
+ err = dent ? PTR_ERR(dent) : -ENODEV;
+ ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
+ fname, err);
+ return err;
+}
+
+/**
+ * dbg_debugfs_exit_fs - remove all debugfs files.
+ * @c: UBIFS file-system description object
+ */
+void dbg_debugfs_exit_fs(struct ubifs_info *c)
+{
+ if (IS_ENABLED(CONFIG_DEBUG_FS))
+ debugfs_remove_recursive(c->dbg->dfs_dir);
+}
+
+struct ubifs_global_debug_info ubifs_dbg;
+
+static struct dentry *dfs_chk_gen;
+static struct dentry *dfs_chk_index;
+static struct dentry *dfs_chk_orph;
+static struct dentry *dfs_chk_lprops;
+static struct dentry *dfs_chk_fs;
+static struct dentry *dfs_tst_rcvry;
+
+static ssize_t dfs_global_file_read(struct file *file, char __user *u,
+ size_t count, loff_t *ppos)
+{
+ struct dentry *dent = file->f_path.dentry;
+ int val;
+
+ if (dent == dfs_chk_gen)
+ val = ubifs_dbg.chk_gen;
+ else if (dent == dfs_chk_index)
+ val = ubifs_dbg.chk_index;
+ else if (dent == dfs_chk_orph)
+ val = ubifs_dbg.chk_orph;
+ else if (dent == dfs_chk_lprops)
+ val = ubifs_dbg.chk_lprops;
+ else if (dent == dfs_chk_fs)
+ val = ubifs_dbg.chk_fs;
+ else if (dent == dfs_tst_rcvry)
+ val = ubifs_dbg.tst_rcvry;
+ else
+ return -EINVAL;
+
+ return provide_user_output(val, u, count, ppos);
+}
+
+static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
+ size_t count, loff_t *ppos)
+{
+ struct dentry *dent = file->f_path.dentry;
+ int val;
+
+ val = interpret_user_input(u, count);
+ if (val < 0)
+ return val;
+
+ if (dent == dfs_chk_gen)
+ ubifs_dbg.chk_gen = val;
+ else if (dent == dfs_chk_index)
+ ubifs_dbg.chk_index = val;
+ else if (dent == dfs_chk_orph)
+ ubifs_dbg.chk_orph = val;
+ else if (dent == dfs_chk_lprops)
+ ubifs_dbg.chk_lprops = val;
+ else if (dent == dfs_chk_fs)
+ ubifs_dbg.chk_fs = val;
+ else if (dent == dfs_tst_rcvry)
+ ubifs_dbg.tst_rcvry = val;
+ else
+ return -EINVAL;
+
+ return count;
+}
+
+static const struct file_operations dfs_global_fops = {
+ .read = dfs_global_file_read,
+ .write = dfs_global_file_write,
+ .owner = THIS_MODULE,
+ .llseek = no_llseek,
+};
+
+/**
+ * dbg_debugfs_init - initialize debugfs file-system.
+ *
+ * UBIFS uses debugfs file-system to expose various debugging knobs to
+ * user-space. This function creates "ubifs" directory in the debugfs
+ * file-system. Returns zero in case of success and a negative error code in
+ * case of failure.
+ */
+int dbg_debugfs_init(void)
+{
+ int err;
+ const char *fname;
+ struct dentry *dent;
+
+ if (!IS_ENABLED(CONFIG_DEBUG_FS))
+ return 0;
+
+ fname = "ubifs";
+ dent = debugfs_create_dir(fname, NULL);
+ if (IS_ERR_OR_NULL(dent))
+ goto out;
+ dfs_rootdir = dent;
+
+ fname = "chk_general";
+ dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
+ &dfs_global_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ dfs_chk_gen = dent;
+
+ fname = "chk_index";
+ dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
+ &dfs_global_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ dfs_chk_index = dent;
+
+ fname = "chk_orphans";
+ dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
+ &dfs_global_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ dfs_chk_orph = dent;
+
+ fname = "chk_lprops";
+ dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
+ &dfs_global_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ dfs_chk_lprops = dent;
+
+ fname = "chk_fs";
+ dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
+ &dfs_global_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ dfs_chk_fs = dent;
+
+ fname = "tst_recovery";
+ dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
+ &dfs_global_fops);
+ if (IS_ERR_OR_NULL(dent))
+ goto out_remove;
+ dfs_tst_rcvry = dent;
+
+ return 0;
+
+out_remove:
+ debugfs_remove_recursive(dfs_rootdir);
+out:
+ err = dent ? PTR_ERR(dent) : -ENODEV;
+ ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
+ fname, err);
+ return err;
+}
+
+/**
+ * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
+ */
+void dbg_debugfs_exit(void)
+{
+ if (IS_ENABLED(CONFIG_DEBUG_FS))
+ debugfs_remove_recursive(dfs_rootdir);
+}
+
+/**
+ * ubifs_debugging_init - initialize UBIFS debugging.
+ * @c: UBIFS file-system description object
+ *
+ * This function initializes debugging-related data for the file system.
+ * Returns zero in case of success and a negative error code in case of
+ * failure.
+ */
+int ubifs_debugging_init(struct ubifs_info *c)
+{
+ c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
+ if (!c->dbg)
+ return -ENOMEM;
+
+ return 0;
}
/**
@@ -149,8 +3138,6 @@ out:
*/
void ubifs_debugging_exit(struct ubifs_info *c)
{
- vfree(c->dbg->buf);
kfree(c->dbg);
}
-
-#endif /* CONFIG_UBIFS_FS_DEBUG */
+#endif
diff --git a/fs/ubifs/debug.h b/fs/ubifs/debug.h
index 62617b6..6d325af 100644
--- a/fs/ubifs/debug.h
+++ b/fs/ubifs/debug.h
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
@@ -23,19 +12,32 @@
#ifndef __UBIFS_DEBUG_H__
#define __UBIFS_DEBUG_H__
-#ifdef CONFIG_UBIFS_FS_DEBUG
+#define __UBOOT__
+/* Checking helper functions */
+typedef int (*dbg_leaf_callback)(struct ubifs_info *c,
+ struct ubifs_zbranch *zbr, void *priv);
+typedef int (*dbg_znode_callback)(struct ubifs_info *c,
+ struct ubifs_znode *znode, void *priv);
+
+/*
+ * The UBIFS debugfs directory name pattern and maximum name length (3 for "ubi"
+ * + 1 for "_" and plus 2x2 for 2 UBI numbers and 1 for the trailing zero byte.
+ */
+#define UBIFS_DFS_DIR_NAME "ubi%d_%d"
+#define UBIFS_DFS_DIR_LEN (3 + 1 + 2*2 + 1)
/**
* ubifs_debug_info - per-FS debugging information.
- * @buf: a buffer of LEB size, used for various purposes
* @old_zroot: old index root - used by 'dbg_check_old_index()'
* @old_zroot_level: old index root level - used by 'dbg_check_old_index()'
* @old_zroot_sqnum: old index root sqnum - used by 'dbg_check_old_index()'
- * @failure_mode: failure mode for recovery testing
- * @fail_delay: 0=>don't delay, 1=>delay a time, 2=>delay a number of calls
- * @fail_timeout: time in jiffies when delay of failure mode expires
- * @fail_cnt: current number of calls to failure mode I/O functions
- * @fail_cnt_max: number of calls by which to delay failure mode
+ *
+ * @pc_happened: non-zero if an emulated power cut happened
+ * @pc_delay: 0=>don't delay, 1=>delay a time, 2=>delay a number of calls
+ * @pc_timeout: time in jiffies when delay of failure mode expires
+ * @pc_cnt: current number of calls to failure mode I/O functions
+ * @pc_cnt_max: number of calls by which to delay failure mode
+ *
* @chk_lpt_sz: used by LPT tree size checker
* @chk_lpt_sz2: used by LPT tree size checker
* @chk_lpt_wastage: used by LPT tree size checker
@@ -45,24 +47,44 @@
* @new_ihead_offs: used by debugging to check @c->ihead_offs
*
* @saved_lst: saved lprops statistics (used by 'dbg_save_space_info()')
- * @saved_free: saved free space (used by 'dbg_save_space_info()')
+ * @saved_bi: saved budgeting information
+ * @saved_free: saved amount of free space
+ * @saved_idx_gc_cnt: saved value of @c->idx_gc_cnt
+ *
+ * @chk_gen: if general extra checks are enabled
+ * @chk_index: if index xtra checks are enabled
+ * @chk_orph: if orphans extra checks are enabled
+ * @chk_lprops: if lprops extra checks are enabled
+ * @chk_fs: if UBIFS contents extra checks are enabled
+ * @tst_rcvry: if UBIFS recovery testing mode enabled
*
- * dfs_dir_name: name of debugfs directory containing this file-system's files
- * dfs_dir: direntry object of the file-system debugfs directory
- * dfs_dump_lprops: "dump lprops" debugfs knob
- * dfs_dump_budg: "dump budgeting information" debugfs knob
- * dfs_dump_tnc: "dump TNC" debugfs knob
+ * @dfs_dir_name: name of debugfs directory containing this file-system's files
+ * @dfs_dir: direntry object of the file-system debugfs directory
+ * @dfs_dump_lprops: "dump lprops" debugfs knob
+ * @dfs_dump_budg: "dump budgeting information" debugfs knob
+ * @dfs_dump_tnc: "dump TNC" debugfs knob
+ * @dfs_chk_gen: debugfs knob to enable UBIFS general extra checks
+ * @dfs_chk_index: debugfs knob to enable UBIFS index extra checks
+ * @dfs_chk_orph: debugfs knob to enable UBIFS orphans extra checks
+ * @dfs_chk_lprops: debugfs knob to enable UBIFS LEP properties extra checks
+ * @dfs_chk_fs: debugfs knob to enable UBIFS contents extra checks
+ * @dfs_tst_rcvry: debugfs knob to enable UBIFS recovery testing
+ * @dfs_ro_error: debugfs knob to switch UBIFS to R/O mode (different to
+ * re-mounting to R/O mode because it does not flush any buffers
+ * and UBIFS just starts returning -EROFS on all write
+ * operations)
*/
struct ubifs_debug_info {
- void *buf;
struct ubifs_zbranch old_zroot;
int old_zroot_level;
unsigned long long old_zroot_sqnum;
- int failure_mode;
- int fail_delay;
- unsigned long fail_timeout;
- unsigned int fail_cnt;
- unsigned int fail_cnt_max;
+
+ int pc_happened;
+ int pc_delay;
+ unsigned long pc_timeout;
+ unsigned int pc_cnt;
+ unsigned int pc_cnt_max;
+
long long chk_lpt_sz;
long long chk_lpt_sz2;
long long chk_lpt_wastage;
@@ -72,321 +94,285 @@ struct ubifs_debug_info {
int new_ihead_offs;
struct ubifs_lp_stats saved_lst;
+ struct ubifs_budg_info saved_bi;
long long saved_free;
+ int saved_idx_gc_cnt;
+
+ unsigned int chk_gen:1;
+ unsigned int chk_index:1;
+ unsigned int chk_orph:1;
+ unsigned int chk_lprops:1;
+ unsigned int chk_fs:1;
+ unsigned int tst_rcvry:1;
- char dfs_dir_name[100];
+ char dfs_dir_name[UBIFS_DFS_DIR_LEN + 1];
struct dentry *dfs_dir;
struct dentry *dfs_dump_lprops;
struct dentry *dfs_dump_budg;
struct dentry *dfs_dump_tnc;
+ struct dentry *dfs_chk_gen;
+ struct dentry *dfs_chk_index;
+ struct dentry *dfs_chk_orph;
+ struct dentry *dfs_chk_lprops;
+ struct dentry *dfs_chk_fs;
+ struct dentry *dfs_tst_rcvry;
+ struct dentry *dfs_ro_error;
};
-#define UBIFS_DBG(op) op
+/**
+ * ubifs_global_debug_info - global (not per-FS) UBIFS debugging information.
+ *
+ * @chk_gen: if general extra checks are enabled
+ * @chk_index: if index xtra checks are enabled
+ * @chk_orph: if orphans extra checks are enabled
+ * @chk_lprops: if lprops extra checks are enabled
+ * @chk_fs: if UBIFS contents extra checks are enabled
+ * @tst_rcvry: if UBIFS recovery testing mode enabled
+ */
+struct ubifs_global_debug_info {
+ unsigned int chk_gen:1;
+ unsigned int chk_index:1;
+ unsigned int chk_orph:1;
+ unsigned int chk_lprops:1;
+ unsigned int chk_fs:1;
+ unsigned int tst_rcvry:1;
+};
+#ifndef __UBOOT__
#define ubifs_assert(expr) do { \
if (unlikely(!(expr))) { \
- printk(KERN_CRIT "UBIFS assert failed in %s at %u (pid %d)\n", \
- __func__, __LINE__, 0); \
- dbg_dump_stack(); \
+ pr_crit("UBIFS assert failed in %s at %u (pid %d)\n", \
+ __func__, __LINE__, current->pid); \
+ dump_stack(); \
} \
} while (0)
#define ubifs_assert_cmt_locked(c) do { \
if (unlikely(down_write_trylock(&(c)->commit_sem))) { \
up_write(&(c)->commit_sem); \
- printk(KERN_CRIT "commit lock is not locked!\n"); \
+ pr_crit("commit lock is not locked!\n"); \
ubifs_assert(0); \
} \
} while (0)
-#define dbg_dump_stack() do { \
- if (!dbg_failure_mode) \
+#define ubifs_dbg_msg(type, fmt, ...) \
+ pr_debug("UBIFS DBG " type " (pid %d): " fmt "\n", current->pid, \
+ ##__VA_ARGS__)
+
+#define DBG_KEY_BUF_LEN 48
+#define ubifs_dbg_msg_key(type, key, fmt, ...) do { \
+ char __tmp_key_buf[DBG_KEY_BUF_LEN]; \
+ pr_debug("UBIFS DBG " type " (pid %d): " fmt "%s\n", current->pid, \
+ ##__VA_ARGS__, \
+ dbg_snprintf_key(c, key, __tmp_key_buf, DBG_KEY_BUF_LEN)); \
+} while (0)
+#else
+#define ubifs_assert(expr) do { \
+ if (unlikely(!(expr))) { \
+ pr_crit("UBIFS assert failed in %s at %u\n", \
+ __func__, __LINE__); \
dump_stack(); \
+ } \
} while (0)
-/* Generic debugging messages */
-#define dbg_msg(fmt, ...) do { \
- spin_lock(&dbg_lock); \
- printk(KERN_DEBUG "UBIFS DBG (pid %d): %s: " fmt "\n", 0, \
- __func__, ##__VA_ARGS__); \
- spin_unlock(&dbg_lock); \
+#define ubifs_assert_cmt_locked(c) do { \
+ if (unlikely(down_write_trylock(&(c)->commit_sem))) { \
+ up_write(&(c)->commit_sem); \
+ pr_crit("commit lock is not locked!\n"); \
+ ubifs_assert(0); \
+ } \
} while (0)
-#define dbg_do_msg(typ, fmt, ...) do { \
- if (ubifs_msg_flags & typ) \
- dbg_msg(fmt, ##__VA_ARGS__); \
+#define ubifs_dbg_msg(type, fmt, ...) \
+ pr_debug("UBIFS DBG " type ": " fmt "\n", \
+ ##__VA_ARGS__)
+
+#define DBG_KEY_BUF_LEN 48
+#if defined CONFIG_MTD_DEBUG
+#define ubifs_dbg_msg_key(type, key, fmt, ...) do { \
+ char __tmp_key_buf[DBG_KEY_BUF_LEN]; \
+ pr_debug("UBIFS DBG " type ": " fmt "%s\n", \
+ ##__VA_ARGS__, \
+ dbg_snprintf_key(c, key, __tmp_key_buf, DBG_KEY_BUF_LEN)); \
} while (0)
-
-#define dbg_err(fmt, ...) do { \
- spin_lock(&dbg_lock); \
- ubifs_err(fmt, ##__VA_ARGS__); \
- spin_unlock(&dbg_lock); \
+#else
+#define ubifs_dbg_msg_key(type, key, fmt, ...) do { \
+ pr_debug("UBIFS DBG\n"); \
} while (0)
-const char *dbg_key_str0(const struct ubifs_info *c,
- const union ubifs_key *key);
-const char *dbg_key_str1(const struct ubifs_info *c,
- const union ubifs_key *key);
+#endif
-/*
- * DBGKEY macros require @dbg_lock to be held, which it is in the dbg message
- * macros.
- */
-#define DBGKEY(key) dbg_key_str0(c, (key))
-#define DBGKEY1(key) dbg_key_str1(c, (key))
+#endif
/* General messages */
-#define dbg_gen(fmt, ...) dbg_do_msg(UBIFS_MSG_GEN, fmt, ##__VA_ARGS__)
-
+#define dbg_gen(fmt, ...) ubifs_dbg_msg("gen", fmt, ##__VA_ARGS__)
/* Additional journal messages */
-#define dbg_jnl(fmt, ...) dbg_do_msg(UBIFS_MSG_JNL, fmt, ##__VA_ARGS__)
-
+#define dbg_jnl(fmt, ...) ubifs_dbg_msg("jnl", fmt, ##__VA_ARGS__)
+#define dbg_jnlk(key, fmt, ...) \
+ ubifs_dbg_msg_key("jnl", key, fmt, ##__VA_ARGS__)
/* Additional TNC messages */
-#define dbg_tnc(fmt, ...) dbg_do_msg(UBIFS_MSG_TNC, fmt, ##__VA_ARGS__)
-
+#define dbg_tnc(fmt, ...) ubifs_dbg_msg("tnc", fmt, ##__VA_ARGS__)
+#define dbg_tnck(key, fmt, ...) \
+ ubifs_dbg_msg_key("tnc", key, fmt, ##__VA_ARGS__)
/* Additional lprops messages */
-#define dbg_lp(fmt, ...) dbg_do_msg(UBIFS_MSG_LP, fmt, ##__VA_ARGS__)
-
+#define dbg_lp(fmt, ...) ubifs_dbg_msg("lp", fmt, ##__VA_ARGS__)
/* Additional LEB find messages */
-#define dbg_find(fmt, ...) dbg_do_msg(UBIFS_MSG_FIND, fmt, ##__VA_ARGS__)
-
+#define dbg_find(fmt, ...) ubifs_dbg_msg("find", fmt, ##__VA_ARGS__)
/* Additional mount messages */
-#define dbg_mnt(fmt, ...) dbg_do_msg(UBIFS_MSG_MNT, fmt, ##__VA_ARGS__)
-
+#define dbg_mnt(fmt, ...) ubifs_dbg_msg("mnt", fmt, ##__VA_ARGS__)
+#define dbg_mntk(key, fmt, ...) \
+ ubifs_dbg_msg_key("mnt", key, fmt, ##__VA_ARGS__)
/* Additional I/O messages */
-#define dbg_io(fmt, ...) dbg_do_msg(UBIFS_MSG_IO, fmt, ##__VA_ARGS__)
-
+#define dbg_io(fmt, ...) ubifs_dbg_msg("io", fmt, ##__VA_ARGS__)
/* Additional commit messages */
-#define dbg_cmt(fmt, ...) dbg_do_msg(UBIFS_MSG_CMT, fmt, ##__VA_ARGS__)
-
+#define dbg_cmt(fmt, ...) ubifs_dbg_msg("cmt", fmt, ##__VA_ARGS__)
/* Additional budgeting messages */
-#define dbg_budg(fmt, ...) dbg_do_msg(UBIFS_MSG_BUDG, fmt, ##__VA_ARGS__)
-
+#define dbg_budg(fmt, ...) ubifs_dbg_msg("budg", fmt, ##__VA_ARGS__)
/* Additional log messages */
-#define dbg_log(fmt, ...) dbg_do_msg(UBIFS_MSG_LOG, fmt, ##__VA_ARGS__)
-
+#define dbg_log(fmt, ...) ubifs_dbg_msg("log", fmt, ##__VA_ARGS__)
/* Additional gc messages */
-#define dbg_gc(fmt, ...) dbg_do_msg(UBIFS_MSG_GC, fmt, ##__VA_ARGS__)
-
+#define dbg_gc(fmt, ...) ubifs_dbg_msg("gc", fmt, ##__VA_ARGS__)
/* Additional scan messages */
-#define dbg_scan(fmt, ...) dbg_do_msg(UBIFS_MSG_SCAN, fmt, ##__VA_ARGS__)
-
+#define dbg_scan(fmt, ...) ubifs_dbg_msg("scan", fmt, ##__VA_ARGS__)
/* Additional recovery messages */
-#define dbg_rcvry(fmt, ...) dbg_do_msg(UBIFS_MSG_RCVRY, fmt, ##__VA_ARGS__)
+#define dbg_rcvry(fmt, ...) ubifs_dbg_msg("rcvry", fmt, ##__VA_ARGS__)
+
+#ifndef __UBOOT__
+extern struct ubifs_global_debug_info ubifs_dbg;
+
+static inline int dbg_is_chk_gen(const struct ubifs_info *c)
+{
+ return !!(ubifs_dbg.chk_gen || c->dbg->chk_gen);
+}
+static inline int dbg_is_chk_index(const struct ubifs_info *c)
+{
+ return !!(ubifs_dbg.chk_index || c->dbg->chk_index);
+}
+static inline int dbg_is_chk_orph(const struct ubifs_info *c)
+{
+ return !!(ubifs_dbg.chk_orph || c->dbg->chk_orph);
+}
+static inline int dbg_is_chk_lprops(const struct ubifs_info *c)
+{
+ return !!(ubifs_dbg.chk_lprops || c->dbg->chk_lprops);
+}
+static inline int dbg_is_chk_fs(const struct ubifs_info *c)
+{
+ return !!(ubifs_dbg.chk_fs || c->dbg->chk_fs);
+}
+static inline int dbg_is_tst_rcvry(const struct ubifs_info *c)
+{
+ return !!(ubifs_dbg.tst_rcvry || c->dbg->tst_rcvry);
+}
+static inline int dbg_is_power_cut(const struct ubifs_info *c)
+{
+ return !!c->dbg->pc_happened;
+}
-/*
- * Debugging message type flags (must match msg_type_names in debug.c).
- *
- * UBIFS_MSG_GEN: general messages
- * UBIFS_MSG_JNL: journal messages
- * UBIFS_MSG_MNT: mount messages
- * UBIFS_MSG_CMT: commit messages
- * UBIFS_MSG_FIND: LEB find messages
- * UBIFS_MSG_BUDG: budgeting messages
- * UBIFS_MSG_GC: garbage collection messages
- * UBIFS_MSG_TNC: TNC messages
- * UBIFS_MSG_LP: lprops messages
- * UBIFS_MSG_IO: I/O messages
- * UBIFS_MSG_LOG: log messages
- * UBIFS_MSG_SCAN: scan messages
- * UBIFS_MSG_RCVRY: recovery messages
- */
-enum {
- UBIFS_MSG_GEN = 0x1,
- UBIFS_MSG_JNL = 0x2,
- UBIFS_MSG_MNT = 0x4,
- UBIFS_MSG_CMT = 0x8,
- UBIFS_MSG_FIND = 0x10,
- UBIFS_MSG_BUDG = 0x20,
- UBIFS_MSG_GC = 0x40,
- UBIFS_MSG_TNC = 0x80,
- UBIFS_MSG_LP = 0x100,
- UBIFS_MSG_IO = 0x200,
- UBIFS_MSG_LOG = 0x400,
- UBIFS_MSG_SCAN = 0x800,
- UBIFS_MSG_RCVRY = 0x1000,
-};
-
-/* Debugging message type flags for each default debug message level */
-#define UBIFS_MSG_LVL_0 0
-#define UBIFS_MSG_LVL_1 0x1
-#define UBIFS_MSG_LVL_2 0x7f
-#define UBIFS_MSG_LVL_3 0xffff
-
-/*
- * Debugging check flags (must match chk_names in debug.c).
- *
- * UBIFS_CHK_GEN: general checks
- * UBIFS_CHK_TNC: check TNC
- * UBIFS_CHK_IDX_SZ: check index size
- * UBIFS_CHK_ORPH: check orphans
- * UBIFS_CHK_OLD_IDX: check the old index
- * UBIFS_CHK_LPROPS: check lprops
- * UBIFS_CHK_FS: check the file-system
- */
-enum {
- UBIFS_CHK_GEN = 0x1,
- UBIFS_CHK_TNC = 0x2,
- UBIFS_CHK_IDX_SZ = 0x4,
- UBIFS_CHK_ORPH = 0x8,
- UBIFS_CHK_OLD_IDX = 0x10,
- UBIFS_CHK_LPROPS = 0x20,
- UBIFS_CHK_FS = 0x40,
-};
-
-/*
- * Special testing flags (must match tst_names in debug.c).
- *
- * UBIFS_TST_FORCE_IN_THE_GAPS: force the use of in-the-gaps method
- * UBIFS_TST_RCVRY: failure mode for recovery testing
- */
-enum {
- UBIFS_TST_FORCE_IN_THE_GAPS = 0x2,
- UBIFS_TST_RCVRY = 0x4,
-};
-
-#if CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 1
-#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_1
-#elif CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 2
-#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_2
-#elif CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 3
-#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_3
-#else
-#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_0
-#endif
-
-#ifdef CONFIG_UBIFS_FS_DEBUG_CHKS
-#define UBIFS_CHK_FLAGS_DEFAULT 0xffffffff
+int ubifs_debugging_init(struct ubifs_info *c);
+void ubifs_debugging_exit(struct ubifs_info *c);
#else
-#define UBIFS_CHK_FLAGS_DEFAULT 0
-#endif
-
-#define dbg_ntype(type) ""
-#define dbg_cstate(cmt_state) ""
-#define dbg_get_key_dump(c, key) ({})
-#define dbg_dump_inode(c, inode) ({})
-#define dbg_dump_node(c, node) ({})
-#define dbg_dump_budget_req(req) ({})
-#define dbg_dump_lstats(lst) ({})
-#define dbg_dump_budg(c) ({})
-#define dbg_dump_lprop(c, lp) ({})
-#define dbg_dump_lprops(c) ({})
-#define dbg_dump_lpt_info(c) ({})
-#define dbg_dump_leb(c, lnum) ({})
-#define dbg_dump_znode(c, znode) ({})
-#define dbg_dump_heap(c, heap, cat) ({})
-#define dbg_dump_pnode(c, pnode, parent, iip) ({})
-#define dbg_dump_tnc(c) ({})
-#define dbg_dump_index(c) ({})
-
-#define dbg_walk_index(c, leaf_cb, znode_cb, priv) 0
-#define dbg_old_index_check_init(c, zroot) 0
-#define dbg_check_old_index(c, zroot) 0
-#define dbg_check_cats(c) 0
-#define dbg_check_ltab(c) 0
-#define dbg_chk_lpt_free_spc(c) 0
-#define dbg_chk_lpt_sz(c, action, len) 0
-#define dbg_check_synced_i_size(inode) 0
-#define dbg_check_dir_size(c, dir) 0
-#define dbg_check_tnc(c, x) 0
-#define dbg_check_idx_size(c, idx_size) 0
-#define dbg_check_filesystem(c) 0
-#define dbg_check_heap(c, heap, cat, add_pos) ({})
-#define dbg_check_lprops(c) 0
-#define dbg_check_lpt_nodes(c, cnode, row, col) 0
-#define dbg_force_in_the_gaps_enabled 0
-#define dbg_force_in_the_gaps() 0
-#define dbg_failure_mode 0
-#define dbg_failure_mode_registration(c) ({})
-#define dbg_failure_mode_deregistration(c) ({})
+static inline int dbg_is_chk_gen(const struct ubifs_info *c)
+{
+ return 0;
+}
+static inline int dbg_is_chk_index(const struct ubifs_info *c)
+{
+ return 0;
+}
+static inline int dbg_is_chk_orph(const struct ubifs_info *c)
+{
+ return 0;
+}
+static inline int dbg_is_chk_lprops(const struct ubifs_info *c)
+{
+ return 0;
+}
+static inline int dbg_is_chk_fs(const struct ubifs_info *c)
+{
+ return 0;
+}
+static inline int dbg_is_tst_rcvry(const struct ubifs_info *c)
+{
+ return 0;
+}
+static inline int dbg_is_power_cut(const struct ubifs_info *c)
+{
+ return 0;
+}
int ubifs_debugging_init(struct ubifs_info *c);
void ubifs_debugging_exit(struct ubifs_info *c);
-#else /* !CONFIG_UBIFS_FS_DEBUG */
-
-#define UBIFS_DBG(op)
-
-/* Use "if (0)" to make compiler check arguments even if debugging is off */
-#define ubifs_assert(expr) do { \
- if (0 && (expr)) \
- printk(KERN_CRIT "UBIFS assert failed in %s at %u (pid %d)\n", \
- __func__, __LINE__, 0); \
-} while (0)
-
-#define dbg_err(fmt, ...) do { \
- if (0) \
- ubifs_err(fmt, ##__VA_ARGS__); \
-} while (0)
-
-#define dbg_msg(fmt, ...) do { \
- if (0) \
- printk(KERN_DEBUG "UBIFS DBG (pid %d): %s: " fmt "\n", \
- 0, __func__, ##__VA_ARGS__); \
-} while (0)
-
-#define dbg_dump_stack()
-#define ubifs_assert_cmt_locked(c)
-
-#define dbg_gen(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_jnl(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_tnc(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_lp(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_find(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_mnt(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_io(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_cmt(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_budg(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_log(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_gc(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_scan(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_rcvry(fmt, ...) dbg_msg(fmt, ##__VA_ARGS__)
-
-#define DBGKEY(key) ((char *)(key))
-#define DBGKEY1(key) ((char *)(key))
-
-#define ubifs_debugging_init(c) 0
-#define ubifs_debugging_exit(c) ({})
-
-#define dbg_ntype(type) ""
-#define dbg_cstate(cmt_state) ""
-#define dbg_get_key_dump(c, key) ({})
-#define dbg_dump_inode(c, inode) ({})
-#define dbg_dump_node(c, node) ({})
-#define dbg_dump_budget_req(req) ({})
-#define dbg_dump_lstats(lst) ({})
-#define dbg_dump_budg(c) ({})
-#define dbg_dump_lprop(c, lp) ({})
-#define dbg_dump_lprops(c) ({})
-#define dbg_dump_lpt_info(c) ({})
-#define dbg_dump_leb(c, lnum) ({})
-#define dbg_dump_znode(c, znode) ({})
-#define dbg_dump_heap(c, heap, cat) ({})
-#define dbg_dump_pnode(c, pnode, parent, iip) ({})
-#define dbg_dump_tnc(c) ({})
-#define dbg_dump_index(c) ({})
-
-#define dbg_walk_index(c, leaf_cb, znode_cb, priv) 0
-#define dbg_old_index_check_init(c, zroot) 0
-#define dbg_check_old_index(c, zroot) 0
-#define dbg_check_cats(c) 0
-#define dbg_check_ltab(c) 0
-#define dbg_chk_lpt_free_spc(c) 0
-#define dbg_chk_lpt_sz(c, action, len) 0
-#define dbg_check_synced_i_size(inode) 0
-#define dbg_check_dir_size(c, dir) 0
-#define dbg_check_tnc(c, x) 0
-#define dbg_check_idx_size(c, idx_size) 0
-#define dbg_check_filesystem(c) 0
-#define dbg_check_heap(c, heap, cat, add_pos) ({})
-#define dbg_check_lprops(c) 0
-#define dbg_check_lpt_nodes(c, cnode, row, col) 0
-#define dbg_force_in_the_gaps_enabled 0
-#define dbg_force_in_the_gaps() 0
-#define dbg_failure_mode 0
-#define dbg_failure_mode_registration(c) ({})
-#define dbg_failure_mode_deregistration(c) ({})
+#endif
-#endif /* !CONFIG_UBIFS_FS_DEBUG */
+/* Dump functions */
+const char *dbg_ntype(int type);
+const char *dbg_cstate(int cmt_state);
+const char *dbg_jhead(int jhead);
+const char *dbg_get_key_dump(const struct ubifs_info *c,
+ const union ubifs_key *key);
+const char *dbg_snprintf_key(const struct ubifs_info *c,
+ const union ubifs_key *key, char *buffer, int len);
+void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode);
+void ubifs_dump_node(const struct ubifs_info *c, const void *node);
+void ubifs_dump_budget_req(const struct ubifs_budget_req *req);
+void ubifs_dump_lstats(const struct ubifs_lp_stats *lst);
+void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi);
+void ubifs_dump_lprop(const struct ubifs_info *c,
+ const struct ubifs_lprops *lp);
+void ubifs_dump_lprops(struct ubifs_info *c);
+void ubifs_dump_lpt_info(struct ubifs_info *c);
+void ubifs_dump_leb(const struct ubifs_info *c, int lnum);
+void ubifs_dump_sleb(const struct ubifs_info *c,
+ const struct ubifs_scan_leb *sleb, int offs);
+void ubifs_dump_znode(const struct ubifs_info *c,
+ const struct ubifs_znode *znode);
+void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
+ int cat);
+void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
+ struct ubifs_nnode *parent, int iip);
+void ubifs_dump_tnc(struct ubifs_info *c);
+void ubifs_dump_index(struct ubifs_info *c);
+void ubifs_dump_lpt_lebs(const struct ubifs_info *c);
+
+int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
+ dbg_znode_callback znode_cb, void *priv);
+
+/* Checking functions */
+void dbg_save_space_info(struct ubifs_info *c);
+int dbg_check_space_info(struct ubifs_info *c);
+int dbg_check_lprops(struct ubifs_info *c);
+int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot);
+int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot);
+int dbg_check_cats(struct ubifs_info *c);
+int dbg_check_ltab(struct ubifs_info *c);
+int dbg_chk_lpt_free_spc(struct ubifs_info *c);
+int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len);
+int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode);
+int dbg_check_dir(struct ubifs_info *c, const struct inode *dir);
+int dbg_check_tnc(struct ubifs_info *c, int extra);
+int dbg_check_idx_size(struct ubifs_info *c, long long idx_size);
+int dbg_check_filesystem(struct ubifs_info *c);
+void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
+ int add_pos);
+int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
+ int row, int col);
+int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
+ loff_t size);
+int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head);
+int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head);
+
+int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
+ int len);
+int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len);
+int dbg_leb_unmap(struct ubifs_info *c, int lnum);
+int dbg_leb_map(struct ubifs_info *c, int lnum);
+
+/* Debugfs-related stuff */
+int dbg_debugfs_init(void);
+void dbg_debugfs_exit(void);
+int dbg_debugfs_init_fs(struct ubifs_info *c);
+void dbg_debugfs_exit_fs(struct ubifs_info *c);
#endif /* !__UBIFS_DEBUG_H__ */
diff --git a/fs/ubifs/io.c b/fs/ubifs/io.c
index aae5c65..f87341e 100644
--- a/fs/ubifs/io.c
+++ b/fs/ubifs/io.c
@@ -4,18 +4,7 @@
* Copyright (C) 2006-2008 Nokia Corporation.
* Copyright (C) 2006, 2007 University of Szeged, Hungary
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
@@ -31,6 +20,26 @@
* buffer is full or when it is not used for some time (by timer). This is
* similar to the mechanism is used by JFFS2.
*
+ * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
+ * write size (@c->max_write_size). The latter is the maximum amount of bytes
+ * the underlying flash is able to program at a time, and writing in
+ * @c->max_write_size units should presumably be faster. Obviously,
+ * @c->min_io_size <= @c->max_write_size. Write-buffers are of
+ * @c->max_write_size bytes in size for maximum performance. However, when a
+ * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
+ * boundary) which contains data is written, not the whole write-buffer,
+ * because this is more space-efficient.
+ *
+ * This optimization adds few complications to the code. Indeed, on the one
+ * hand, we want to write in optimal @c->max_write_size bytes chunks, which
+ * also means aligning writes at the @c->max_write_size bytes offsets. On the
+ * other hand, we do not want to waste space when synchronizing the write
+ * buffer, so during synchronization we writes in smaller chunks. And this makes
+ * the next write offset to be not aligned to @c->max_write_size bytes. So the
+ * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
+ * to @c->max_write_size bytes again. We do this by temporarily shrinking
+ * write-buffer size (@wbuf->size).
+ *
* Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
* mutexes defined inside these objects. Since sometimes upper-level code
* has to lock the write-buffer (e.g. journal space reservation code), many
@@ -46,10 +55,18 @@
* UBIFS uses padding when it pads to the next min. I/O unit. In this case it
* uses padding nodes or padding bytes, if the padding node does not fit.
*
- * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
- * every time they are read from the flash media.
+ * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
+ * they are read from the flash media.
*/
+#define __UBOOT__
+#ifndef __UBOOT__
+#include <linux/crc32.h>
+#include <linux/slab.h>
+#else
+#include <linux/compat.h>
+#include <linux/err.h>
+#endif
#include "ubifs.h"
/**
@@ -59,12 +76,129 @@
*/
void ubifs_ro_mode(struct ubifs_info *c, int err)
{
- if (!c->ro_media) {
- c->ro_media = 1;
+ if (!c->ro_error) {
+ c->ro_error = 1;
c->no_chk_data_crc = 0;
+ c->vfs_sb->s_flags |= MS_RDONLY;
ubifs_warn("switched to read-only mode, error %d", err);
- dbg_dump_stack();
+ dump_stack();
+ }
+}
+
+/*
+ * Below are simple wrappers over UBI I/O functions which include some
+ * additional checks and UBIFS debugging stuff. See corresponding UBI function
+ * for more information.
+ */
+
+int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
+ int len, int even_ebadmsg)
+{
+ int err;
+
+ err = ubi_read(c->ubi, lnum, buf, offs, len);
+ /*
+ * In case of %-EBADMSG print the error message only if the
+ * @even_ebadmsg is true.
+ */
+ if (err && (err != -EBADMSG || even_ebadmsg)) {
+ ubifs_err("reading %d bytes from LEB %d:%d failed, error %d",
+ len, lnum, offs, err);
+ dump_stack();
+ }
+ return err;
+}
+
+int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
+ int len)
+{
+ int err;
+
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->ro_error)
+ return -EROFS;
+ if (!dbg_is_tst_rcvry(c))
+ err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
+ else
+ err = dbg_leb_write(c, lnum, buf, offs, len);
+ if (err) {
+ ubifs_err("writing %d bytes to LEB %d:%d failed, error %d",
+ len, lnum, offs, err);
+ ubifs_ro_mode(c, err);
+ dump_stack();
+ }
+ return err;
+}
+
+int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
+{
+ int err;
+
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->ro_error)
+ return -EROFS;
+ if (!dbg_is_tst_rcvry(c))
+ err = ubi_leb_change(c->ubi, lnum, buf, len);
+ else
+ err = dbg_leb_change(c, lnum, buf, len);
+ if (err) {
+ ubifs_err("changing %d bytes in LEB %d failed, error %d",
+ len, lnum, err);
+ ubifs_ro_mode(c, err);
+ dump_stack();
}
+ return err;
+}
+
+int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
+{
+ int err;
+
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->ro_error)
+ return -EROFS;
+ if (!dbg_is_tst_rcvry(c))
+ err = ubi_leb_unmap(c->ubi, lnum);
+ else
+ err = dbg_leb_unmap(c, lnum);
+ if (err) {
+ ubifs_err("unmap LEB %d failed, error %d", lnum, err);
+ ubifs_ro_mode(c, err);
+ dump_stack();
+ }
+ return err;
+}
+
+int ubifs_leb_map(struct ubifs_info *c, int lnum)
+{
+ int err;
+
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->ro_error)
+ return -EROFS;
+ if (!dbg_is_tst_rcvry(c))
+ err = ubi_leb_map(c->ubi, lnum);
+ else
+ err = dbg_leb_map(c, lnum);
+ if (err) {
+ ubifs_err("mapping LEB %d failed, error %d", lnum, err);
+ ubifs_ro_mode(c, err);
+ dump_stack();
+ }
+ return err;
+}
+
+int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
+{
+ int err;
+
+ err = ubi_is_mapped(c->ubi, lnum);
+ if (err < 0) {
+ ubifs_err("ubi_is_mapped failed for LEB %d, error %d",
+ lnum, err);
+ dump_stack();
+ }
+ return err;
}
/**
@@ -85,8 +219,12 @@ void ubifs_ro_mode(struct ubifs_info *c, int err)
* This function may skip data nodes CRC checking if @c->no_chk_data_crc is
* true, which is controlled by corresponding UBIFS mount option. However, if
* @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
- * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is
- * ignored and CRC is checked.
+ * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
+ * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
+ * is checked. This is because during mounting or re-mounting from R/O mode to
+ * R/W mode we may read journal nodes (when replying the journal or doing the
+ * recovery) and the journal nodes may potentially be corrupted, so checking is
+ * required.
*
* This function returns zero in case of success and %-EUCLEAN in case of bad
* CRC or magic.
@@ -128,8 +266,8 @@ int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
node_len > c->ranges[type].max_len)
goto out_len;
- if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc &&
- c->no_chk_data_crc)
+ if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
+ !c->remounting_rw && c->no_chk_data_crc)
return 0;
crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
@@ -150,8 +288,8 @@ out_len:
out:
if (!quiet) {
ubifs_err("bad node at LEB %d:%d", lnum, offs);
- dbg_dump_node(c, buf);
- dbg_dump_stack();
+ ubifs_dump_node(c, buf);
+ dump_stack();
}
return err;
}
@@ -257,6 +395,571 @@ void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
}
/**
+ * ubifs_prep_grp_node - prepare node of a group to be written to flash.
+ * @c: UBIFS file-system description object
+ * @node: the node to pad
+ * @len: node length
+ * @last: indicates the last node of the group
+ *
+ * This function prepares node at @node to be written to the media - it
+ * calculates node CRC and fills the common header.
+ */
+void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
+{
+ uint32_t crc;
+ struct ubifs_ch *ch = node;
+ unsigned long long sqnum = next_sqnum(c);
+
+ ubifs_assert(len >= UBIFS_CH_SZ);
+
+ ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
+ ch->len = cpu_to_le32(len);
+ if (last)
+ ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
+ else
+ ch->group_type = UBIFS_IN_NODE_GROUP;
+ ch->sqnum = cpu_to_le64(sqnum);
+ ch->padding[0] = ch->padding[1] = 0;
+ crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
+ ch->crc = cpu_to_le32(crc);
+}
+
+#ifndef __UBOOT__
+/**
+ * wbuf_timer_callback - write-buffer timer callback function.
+ * @data: timer data (write-buffer descriptor)
+ *
+ * This function is called when the write-buffer timer expires.
+ */
+static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
+{
+ struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
+
+ dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
+ wbuf->need_sync = 1;
+ wbuf->c->need_wbuf_sync = 1;
+ ubifs_wake_up_bgt(wbuf->c);
+ return HRTIMER_NORESTART;
+}
+
+/**
+ * new_wbuf_timer - start new write-buffer timer.
+ * @wbuf: write-buffer descriptor
+ */
+static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
+{
+ ubifs_assert(!hrtimer_active(&wbuf->timer));
+
+ if (wbuf->no_timer)
+ return;
+ dbg_io("set timer for jhead %s, %llu-%llu millisecs",
+ dbg_jhead(wbuf->jhead),
+ div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
+ div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
+ USEC_PER_SEC));
+ hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
+ HRTIMER_MODE_REL);
+}
+#endif
+
+/**
+ * cancel_wbuf_timer - cancel write-buffer timer.
+ * @wbuf: write-buffer descriptor
+ */
+static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
+{
+ if (wbuf->no_timer)
+ return;
+ wbuf->need_sync = 0;
+#ifndef __UBOOT__
+ hrtimer_cancel(&wbuf->timer);
+#endif
+}
+
+/**
+ * ubifs_wbuf_sync_nolock - synchronize write-buffer.
+ * @wbuf: write-buffer to synchronize
+ *
+ * This function synchronizes write-buffer @buf and returns zero in case of
+ * success or a negative error code in case of failure.
+ *
+ * Note, although write-buffers are of @c->max_write_size, this function does
+ * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
+ * if the write-buffer is only partially filled with data, only the used part
+ * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
+ * This way we waste less space.
+ */
+int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
+{
+ struct ubifs_info *c = wbuf->c;
+ int err, dirt, sync_len;
+
+ cancel_wbuf_timer_nolock(wbuf);
+ if (!wbuf->used || wbuf->lnum == -1)
+ /* Write-buffer is empty or not seeked */
+ return 0;
+
+ dbg_io("LEB %d:%d, %d bytes, jhead %s",
+ wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
+ ubifs_assert(!(wbuf->avail & 7));
+ ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
+ ubifs_assert(wbuf->size >= c->min_io_size);
+ ubifs_assert(wbuf->size <= c->max_write_size);
+ ubifs_assert(wbuf->size % c->min_io_size == 0);
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
+
+ if (c->ro_error)
+ return -EROFS;
+
+ /*
+ * Do not write whole write buffer but write only the minimum necessary
+ * amount of min. I/O units.
+ */
+ sync_len = ALIGN(wbuf->used, c->min_io_size);
+ dirt = sync_len - wbuf->used;
+ if (dirt)
+ ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
+ err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
+ if (err)
+ return err;
+
+ spin_lock(&wbuf->lock);
+ wbuf->offs += sync_len;
+ /*
+ * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
+ * But our goal is to optimize writes and make sure we write in
+ * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
+ * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
+ * sure that @wbuf->offs + @wbuf->size is aligned to
+ * @c->max_write_size. This way we make sure that after next
+ * write-buffer flush we are again at the optimal offset (aligned to
+ * @c->max_write_size).
+ */
+ if (c->leb_size - wbuf->offs < c->max_write_size)
+ wbuf->size = c->leb_size - wbuf->offs;
+ else if (wbuf->offs & (c->max_write_size - 1))
+ wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
+ else
+ wbuf->size = c->max_write_size;
+ wbuf->avail = wbuf->size;
+ wbuf->used = 0;
+ wbuf->next_ino = 0;
+ spin_unlock(&wbuf->lock);
+
+ if (wbuf->sync_callback)
+ err = wbuf->sync_callback(c, wbuf->lnum,
+ c->leb_size - wbuf->offs, dirt);
+ return err;
+}
+
+/**
+ * ubifs_wbuf_seek_nolock - seek write-buffer.
+ * @wbuf: write-buffer
+ * @lnum: logical eraseblock number to seek to
+ * @offs: logical eraseblock offset to seek to
+ *
+ * This function targets the write-buffer to logical eraseblock @lnum:@offs.
+ * The write-buffer has to be empty. Returns zero in case of success and a
+ * negative error code in case of failure.
+ */
+int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
+{
+ const struct ubifs_info *c = wbuf->c;
+
+ dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
+ ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
+ ubifs_assert(offs >= 0 && offs <= c->leb_size);
+ ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
+ ubifs_assert(lnum != wbuf->lnum);
+ ubifs_assert(wbuf->used == 0);
+
+ spin_lock(&wbuf->lock);
+ wbuf->lnum = lnum;
+ wbuf->offs = offs;
+ if (c->leb_size - wbuf->offs < c->max_write_size)
+ wbuf->size = c->leb_size - wbuf->offs;
+ else if (wbuf->offs & (c->max_write_size - 1))
+ wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
+ else
+ wbuf->size = c->max_write_size;
+ wbuf->avail = wbuf->size;
+ wbuf->used = 0;
+ spin_unlock(&wbuf->lock);
+
+ return 0;
+}
+
+#ifndef __UBOOT__
+/**
+ * ubifs_bg_wbufs_sync - synchronize write-buffers.
+ * @c: UBIFS file-system description object
+ *
+ * This function is called by background thread to synchronize write-buffers.
+ * Returns zero in case of success and a negative error code in case of
+ * failure.
+ */
+int ubifs_bg_wbufs_sync(struct ubifs_info *c)
+{
+ int err, i;
+
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (!c->need_wbuf_sync)
+ return 0;
+ c->need_wbuf_sync = 0;
+
+ if (c->ro_error) {
+ err = -EROFS;
+ goto out_timers;
+ }
+
+ dbg_io("synchronize");
+ for (i = 0; i < c->jhead_cnt; i++) {
+ struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
+
+ cond_resched();
+
+ /*
+ * If the mutex is locked then wbuf is being changed, so
+ * synchronization is not necessary.
+ */
+ if (mutex_is_locked(&wbuf->io_mutex))
+ continue;
+
+ mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
+ if (!wbuf->need_sync) {
+ mutex_unlock(&wbuf->io_mutex);
+ continue;
+ }
+
+ err = ubifs_wbuf_sync_nolock(wbuf);
+ mutex_unlock(&wbuf->io_mutex);
+ if (err) {
+ ubifs_err("cannot sync write-buffer, error %d", err);
+ ubifs_ro_mode(c, err);
+ goto out_timers;
+ }
+ }
+
+ return 0;
+
+out_timers:
+ /* Cancel all timers to prevent repeated errors */
+ for (i = 0; i < c->jhead_cnt; i++) {
+ struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
+
+ mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
+ cancel_wbuf_timer_nolock(wbuf);
+ mutex_unlock(&wbuf->io_mutex);
+ }
+ return err;
+}
+
+/**
+ * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
+ * @wbuf: write-buffer
+ * @buf: node to write
+ * @len: node length
+ *
+ * This function writes data to flash via write-buffer @wbuf. This means that
+ * the last piece of the node won't reach the flash media immediately if it
+ * does not take whole max. write unit (@c->max_write_size). Instead, the node
+ * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
+ * because more data are appended to the write-buffer).
+ *
+ * This function returns zero in case of success and a negative error code in
+ * case of failure. If the node cannot be written because there is no more
+ * space in this logical eraseblock, %-ENOSPC is returned.
+ */
+int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
+{
+ struct ubifs_info *c = wbuf->c;
+ int err, written, n, aligned_len = ALIGN(len, 8);
+
+ dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
+ dbg_ntype(((struct ubifs_ch *)buf)->node_type),
+ dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
+ ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
+ ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
+ ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
+ ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
+ ubifs_assert(wbuf->size >= c->min_io_size);
+ ubifs_assert(wbuf->size <= c->max_write_size);
+ ubifs_assert(wbuf->size % c->min_io_size == 0);
+ ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ ubifs_assert(!c->space_fixup);
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
+
+ if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
+ err = -ENOSPC;
+ goto out;
+ }
+
+ cancel_wbuf_timer_nolock(wbuf);
+
+ if (c->ro_error)
+ return -EROFS;
+
+ if (aligned_len <= wbuf->avail) {
+ /*
+ * The node is not very large and fits entirely within
+ * write-buffer.
+ */
+ memcpy(wbuf->buf + wbuf->used, buf, len);
+
+ if (aligned_len == wbuf->avail) {
+ dbg_io("flush jhead %s wbuf to LEB %d:%d",
+ dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
+ err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
+ wbuf->offs, wbuf->size);
+ if (err)
+ goto out;
+
+ spin_lock(&wbuf->lock);
+ wbuf->offs += wbuf->size;
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ wbuf->size = c->max_write_size;
+ else
+ wbuf->size = c->leb_size - wbuf->offs;
+ wbuf->avail = wbuf->size;
+ wbuf->used = 0;
+ wbuf->next_ino = 0;
+ spin_unlock(&wbuf->lock);
+ } else {
+ spin_lock(&wbuf->lock);
+ wbuf->avail -= aligned_len;
+ wbuf->used += aligned_len;
+ spin_unlock(&wbuf->lock);
+ }
+
+ goto exit;
+ }
+
+ written = 0;
+
+ if (wbuf->used) {
+ /*
+ * The node is large enough and does not fit entirely within
+ * current available space. We have to fill and flush
+ * write-buffer and switch to the next max. write unit.
+ */
+ dbg_io("flush jhead %s wbuf to LEB %d:%d",
+ dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
+ memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
+ err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
+ wbuf->size);
+ if (err)
+ goto out;
+
+ wbuf->offs += wbuf->size;
+ len -= wbuf->avail;
+ aligned_len -= wbuf->avail;
+ written += wbuf->avail;
+ } else if (wbuf->offs & (c->max_write_size - 1)) {
+ /*
+ * The write-buffer offset is not aligned to
+ * @c->max_write_size and @wbuf->size is less than
+ * @c->max_write_size. Write @wbuf->size bytes to make sure the
+ * following writes are done in optimal @c->max_write_size
+ * chunks.
+ */
+ dbg_io("write %d bytes to LEB %d:%d",
+ wbuf->size, wbuf->lnum, wbuf->offs);
+ err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
+ wbuf->size);
+ if (err)
+ goto out;
+
+ wbuf->offs += wbuf->size;
+ len -= wbuf->size;
+ aligned_len -= wbuf->size;
+ written += wbuf->size;
+ }
+
+ /*
+ * The remaining data may take more whole max. write units, so write the
+ * remains multiple to max. write unit size directly to the flash media.
+ * We align node length to 8-byte boundary because we anyway flash wbuf
+ * if the remaining space is less than 8 bytes.
+ */
+ n = aligned_len >> c->max_write_shift;
+ if (n) {
+ n <<= c->max_write_shift;
+ dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
+ wbuf->offs);
+ err = ubifs_leb_write(c, wbuf->lnum, buf + written,
+ wbuf->offs, n);
+ if (err)
+ goto out;
+ wbuf->offs += n;
+ aligned_len -= n;
+ len -= n;
+ written += n;
+ }
+
+ spin_lock(&wbuf->lock);
+ if (aligned_len)
+ /*
+ * And now we have what's left and what does not take whole
+ * max. write unit, so write it to the write-buffer and we are
+ * done.
+ */
+ memcpy(wbuf->buf, buf + written, len);
+
+ if (c->leb_size - wbuf->offs >= c->max_write_size)
+ wbuf->size = c->max_write_size;
+ else
+ wbuf->size = c->leb_size - wbuf->offs;
+ wbuf->avail = wbuf->size - aligned_len;
+ wbuf->used = aligned_len;
+ wbuf->next_ino = 0;
+ spin_unlock(&wbuf->lock);
+
+exit:
+ if (wbuf->sync_callback) {
+ int free = c->leb_size - wbuf->offs - wbuf->used;
+
+ err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
+ if (err)
+ goto out;
+ }
+
+ if (wbuf->used)
+ new_wbuf_timer_nolock(wbuf);
+
+ return 0;
+
+out:
+ ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
+ len, wbuf->lnum, wbuf->offs, err);
+ ubifs_dump_node(c, buf);
+ dump_stack();
+ ubifs_dump_leb(c, wbuf->lnum);
+ return err;
+}
+
+/**
+ * ubifs_write_node - write node to the media.
+ * @c: UBIFS file-system description object
+ * @buf: the node to write
+ * @len: node length
+ * @lnum: logical eraseblock number
+ * @offs: offset within the logical eraseblock
+ *
+ * This function automatically fills node magic number, assigns sequence
+ * number, and calculates node CRC checksum. The length of the @buf buffer has
+ * to be aligned to the minimal I/O unit size. This function automatically
+ * appends padding node and padding bytes if needed. Returns zero in case of
+ * success and a negative error code in case of failure.
+ */
+int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
+ int offs)
+{
+ int err, buf_len = ALIGN(len, c->min_io_size);
+
+ dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
+ lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
+ buf_len);
+ ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
+ ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ ubifs_assert(!c->space_fixup);
+
+ if (c->ro_error)
+ return -EROFS;
+
+ ubifs_prepare_node(c, buf, len, 1);
+ err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
+ if (err)
+ ubifs_dump_node(c, buf);
+
+ return err;
+}
+#endif
+
+/**
+ * ubifs_read_node_wbuf - read node from the media or write-buffer.
+ * @wbuf: wbuf to check for un-written data
+ * @buf: buffer to read to
+ * @type: node type
+ * @len: node length
+ * @lnum: logical eraseblock number
+ * @offs: offset within the logical eraseblock
+ *
+ * This function reads a node of known type and length, checks it and stores
+ * in @buf. If the node partially or fully sits in the write-buffer, this
+ * function takes data from the buffer, otherwise it reads the flash media.
+ * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
+ * error code in case of failure.
+ */
+int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
+ int lnum, int offs)
+{
+ const struct ubifs_info *c = wbuf->c;
+ int err, rlen, overlap;
+ struct ubifs_ch *ch = buf;
+
+ dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
+ dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
+ ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
+ ubifs_assert(!(offs & 7) && offs < c->leb_size);
+ ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
+
+ spin_lock(&wbuf->lock);
+ overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
+ if (!overlap) {
+ /* We may safely unlock the write-buffer and read the data */
+ spin_unlock(&wbuf->lock);
+ return ubifs_read_node(c, buf, type, len, lnum, offs);
+ }
+
+ /* Don't read under wbuf */
+ rlen = wbuf->offs - offs;
+ if (rlen < 0)
+ rlen = 0;
+
+ /* Copy the rest from the write-buffer */
+ memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
+ spin_unlock(&wbuf->lock);
+
+ if (rlen > 0) {
+ /* Read everything that goes before write-buffer */
+ err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
+ if (err && err != -EBADMSG)
+ return err;
+ }
+
+ if (type != ch->node_type) {
+ ubifs_err("bad node type (%d but expected %d)",
+ ch->node_type, type);
+ goto out;
+ }
+
+ err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
+ if (err) {
+ ubifs_err("expected node type %d", type);
+ return err;
+ }
+
+ rlen = le32_to_cpu(ch->len);
+ if (rlen != len) {
+ ubifs_err("bad node length %d, expected %d", rlen, len);
+ goto out;
+ }
+
+ return 0;
+
+out:
+ ubifs_err("bad node at LEB %d:%d", lnum, offs);
+ ubifs_dump_node(c, buf);
+ dump_stack();
+ return -EINVAL;
+}
+
+/**
* ubifs_read_node - read node.
* @c: UBIFS file-system description object
* @buf: buffer to read to
@@ -281,12 +984,9 @@ int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
ubifs_assert(!(offs & 7) && offs < c->leb_size);
ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
- err = ubi_read(c->ubi, lnum, buf, offs, len);
- if (err && err != -EBADMSG) {
- ubifs_err("cannot read node %d from LEB %d:%d, error %d",
- type, lnum, offs, err);
+ err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
+ if (err && err != -EBADMSG)
return err;
- }
if (type != ch->node_type) {
ubifs_err("bad node type (%d but expected %d)",
@@ -309,8 +1009,143 @@ int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
return 0;
out:
- ubifs_err("bad node at LEB %d:%d", lnum, offs);
- dbg_dump_node(c, buf);
- dbg_dump_stack();
+ ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs,
+ ubi_is_mapped(c->ubi, lnum));
+ ubifs_dump_node(c, buf);
+ dump_stack();
return -EINVAL;
}
+
+/**
+ * ubifs_wbuf_init - initialize write-buffer.
+ * @c: UBIFS file-system description object
+ * @wbuf: write-buffer to initialize
+ *
+ * This function initializes write-buffer. Returns zero in case of success
+ * %-ENOMEM in case of failure.
+ */
+int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
+{
+ size_t size;
+
+ wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
+ if (!wbuf->buf)
+ return -ENOMEM;
+
+ size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
+ wbuf->inodes = kmalloc(size, GFP_KERNEL);
+ if (!wbuf->inodes) {
+ kfree(wbuf->buf);
+ wbuf->buf = NULL;
+ return -ENOMEM;
+ }
+
+ wbuf->used = 0;
+ wbuf->lnum = wbuf->offs = -1;
+ /*
+ * If the LEB starts at the max. write size aligned address, then
+ * write-buffer size has to be set to @c->max_write_size. Otherwise,
+ * set it to something smaller so that it ends at the closest max.
+ * write size boundary.
+ */
+ size = c->max_write_size - (c->leb_start % c->max_write_size);
+ wbuf->avail = wbuf->size = size;
+ wbuf->sync_callback = NULL;
+ mutex_init(&wbuf->io_mutex);
+ spin_lock_init(&wbuf->lock);
+ wbuf->c = c;
+ wbuf->next_ino = 0;
+
+#ifndef __UBOOT__
+ hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+ wbuf->timer.function = wbuf_timer_callback_nolock;
+ wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
+ wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
+ wbuf->delta *= 1000000000ULL;
+ ubifs_assert(wbuf->delta <= ULONG_MAX);
+#endif
+ return 0;
+}
+
+/**
+ * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
+ * @wbuf: the write-buffer where to add
+ * @inum: the inode number
+ *
+ * This function adds an inode number to the inode array of the write-buffer.
+ */
+void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
+{
+ if (!wbuf->buf)
+ /* NOR flash or something similar */
+ return;
+
+ spin_lock(&wbuf->lock);
+ if (wbuf->used)
+ wbuf->inodes[wbuf->next_ino++] = inum;
+ spin_unlock(&wbuf->lock);
+}
+
+/**
+ * wbuf_has_ino - returns if the wbuf contains data from the inode.
+ * @wbuf: the write-buffer
+ * @inum: the inode number
+ *
+ * This function returns with %1 if the write-buffer contains some data from the
+ * given inode otherwise it returns with %0.
+ */
+static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
+{
+ int i, ret = 0;
+
+ spin_lock(&wbuf->lock);
+ for (i = 0; i < wbuf->next_ino; i++)
+ if (inum == wbuf->inodes[i]) {
+ ret = 1;
+ break;
+ }
+ spin_unlock(&wbuf->lock);
+
+ return ret;
+}
+
+/**
+ * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
+ * @c: UBIFS file-system description object
+ * @inode: inode to synchronize
+ *
+ * This function synchronizes write-buffers which contain nodes belonging to
+ * @inode. Returns zero in case of success and a negative error code in case of
+ * failure.
+ */
+int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
+{
+ int i, err = 0;
+
+ for (i = 0; i < c->jhead_cnt; i++) {
+ struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
+
+ if (i == GCHD)
+ /*
+ * GC head is special, do not look at it. Even if the
+ * head contains something related to this inode, it is
+ * a _copy_ of corresponding on-flash node which sits
+ * somewhere else.
+ */
+ continue;
+
+ if (!wbuf_has_ino(wbuf, inode->i_ino))
+ continue;
+
+ mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
+ if (wbuf_has_ino(wbuf, inode->i_ino))
+ err = ubifs_wbuf_sync_nolock(wbuf);
+ mutex_unlock(&wbuf->io_mutex);
+
+ if (err) {
+ ubifs_ro_mode(c, err);
+ return err;
+ }
+ }
+ return 0;
+}
diff --git a/fs/ubifs/key.h b/fs/ubifs/key.h
index efb3430..b5c4884 100644
--- a/fs/ubifs/key.h
+++ b/fs/ubifs/key.h
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
@@ -229,23 +218,6 @@ static inline void xent_key_init(const struct ubifs_info *c,
}
/**
- * xent_key_init_hash - initialize extended attribute entry key without
- * re-calculating hash function.
- * @c: UBIFS file-system description object
- * @key: key to initialize
- * @inum: host inode number
- * @hash: extended attribute entry name hash
- */
-static inline void xent_key_init_hash(const struct ubifs_info *c,
- union ubifs_key *key, ino_t inum,
- uint32_t hash)
-{
- ubifs_assert(!(hash & ~UBIFS_S_KEY_HASH_MASK));
- key->u32[0] = inum;
- key->u32[1] = hash | (UBIFS_XENT_KEY << UBIFS_S_KEY_HASH_BITS);
-}
-
-/**
* xent_key_init_flash - initialize on-flash extended attribute entry key.
* @c: UBIFS file-system description object
* @k: key to initialize
@@ -295,22 +267,15 @@ static inline void data_key_init(const struct ubifs_info *c,
}
/**
- * data_key_init_flash - initialize on-flash data key.
+ * highest_data_key - get the highest possible data key for an inode.
* @c: UBIFS file-system description object
- * @k: key to initialize
+ * @key: key to initialize
* @inum: inode number
- * @block: block number
*/
-static inline void data_key_init_flash(const struct ubifs_info *c, void *k,
- ino_t inum, unsigned int block)
+static inline void highest_data_key(const struct ubifs_info *c,
+ union ubifs_key *key, ino_t inum)
{
- union ubifs_key *key = k;
-
- ubifs_assert(!(block & ~UBIFS_S_KEY_BLOCK_MASK));
- key->j32[0] = cpu_to_le32(inum);
- key->j32[1] = cpu_to_le32(block |
- (UBIFS_DATA_KEY << UBIFS_S_KEY_BLOCK_BITS));
- memset(k + 8, 0, UBIFS_MAX_KEY_LEN - 8);
+ data_key_init(c, key, inum, UBIFS_S_KEY_BLOCK_MASK);
}
/**
@@ -330,6 +295,20 @@ static inline void trun_key_init(const struct ubifs_info *c,
}
/**
+ * invalid_key_init - initialize invalid node key.
+ * @c: UBIFS file-system description object
+ * @key: key to initialize
+ *
+ * This is a helper function which marks a @key object as invalid.
+ */
+static inline void invalid_key_init(const struct ubifs_info *c,
+ union ubifs_key *key)
+{
+ key->u32[0] = 0xDEADBEAF;
+ key->u32[1] = UBIFS_INVALID_KEY;
+}
+
+/**
* key_type - get key type.
* @c: UBIFS file-system description object
* @key: key to get type of
@@ -381,8 +360,8 @@ static inline ino_t key_inum_flash(const struct ubifs_info *c, const void *k)
* @c: UBIFS file-system description object
* @key: the key to get hash from
*/
-static inline int key_hash(const struct ubifs_info *c,
- const union ubifs_key *key)
+static inline uint32_t key_hash(const struct ubifs_info *c,
+ const union ubifs_key *key)
{
return key->u32[1] & UBIFS_S_KEY_HASH_MASK;
}
@@ -392,7 +371,7 @@ static inline int key_hash(const struct ubifs_info *c,
* @c: UBIFS file-system description object
* @k: the key to get hash from
*/
-static inline int key_hash_flash(const struct ubifs_info *c, const void *k)
+static inline uint32_t key_hash_flash(const struct ubifs_info *c, const void *k)
{
const union ubifs_key *key = k;
@@ -554,4 +533,5 @@ static inline unsigned long long key_max_inode_size(const struct ubifs_info *c)
return 0;
}
}
+
#endif /* !__UBIFS_KEY_H__ */
diff --git a/fs/ubifs/log.c b/fs/ubifs/log.c
index 68a9bd9..ced0424 100644
--- a/fs/ubifs/log.c
+++ b/fs/ubifs/log.c
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
@@ -27,8 +16,14 @@
* journal.
*/
+#define __UBOOT__
+#ifdef __UBOOT__
+#include <linux/err.h>
+#endif
#include "ubifs.h"
+static int dbg_check_bud_bytes(struct ubifs_info *c);
+
/**
* ubifs_search_bud - search bud LEB.
* @c: UBIFS file-system description object
@@ -60,6 +55,57 @@ struct ubifs_bud *ubifs_search_bud(struct ubifs_info *c, int lnum)
}
/**
+ * ubifs_get_wbuf - get the wbuf associated with a LEB, if there is one.
+ * @c: UBIFS file-system description object
+ * @lnum: logical eraseblock number to search
+ *
+ * This functions returns the wbuf for @lnum or %NULL if there is not one.
+ */
+struct ubifs_wbuf *ubifs_get_wbuf(struct ubifs_info *c, int lnum)
+{
+ struct rb_node *p;
+ struct ubifs_bud *bud;
+ int jhead;
+
+ if (!c->jheads)
+ return NULL;
+
+ spin_lock(&c->buds_lock);
+ p = c->buds.rb_node;
+ while (p) {
+ bud = rb_entry(p, struct ubifs_bud, rb);
+ if (lnum < bud->lnum)
+ p = p->rb_left;
+ else if (lnum > bud->lnum)
+ p = p->rb_right;
+ else {
+ jhead = bud->jhead;
+ spin_unlock(&c->buds_lock);
+ return &c->jheads[jhead].wbuf;
+ }
+ }
+ spin_unlock(&c->buds_lock);
+ return NULL;
+}
+
+/**
+ * empty_log_bytes - calculate amount of empty space in the log.
+ * @c: UBIFS file-system description object
+ */
+static inline long long empty_log_bytes(const struct ubifs_info *c)
+{
+ long long h, t;
+
+ h = (long long)c->lhead_lnum * c->leb_size + c->lhead_offs;
+ t = (long long)c->ltail_lnum * c->leb_size;
+
+ if (h >= t)
+ return c->log_bytes - h + t;
+ else
+ return t - h;
+}
+
+/**
* ubifs_add_bud - add bud LEB to the tree of buds and its journal head list.
* @c: UBIFS file-system description object
* @bud: the bud to add
@@ -88,7 +134,7 @@ void ubifs_add_bud(struct ubifs_info *c, struct ubifs_bud *bud)
jhead = &c->jheads[bud->jhead];
list_add_tail(&bud->list, &jhead->buds_list);
} else
- ubifs_assert(c->replaying && (c->vfs_sb->s_flags & MS_RDONLY));
+ ubifs_assert(c->replaying && c->ro_mount);
/*
* Note, although this is a new bud, we anyway account this space now,
@@ -98,7 +144,594 @@ void ubifs_add_bud(struct ubifs_info *c, struct ubifs_bud *bud)
*/
c->bud_bytes += c->leb_size - bud->start;
- dbg_log("LEB %d:%d, jhead %d, bud_bytes %lld", bud->lnum,
- bud->start, bud->jhead, c->bud_bytes);
+ dbg_log("LEB %d:%d, jhead %s, bud_bytes %lld", bud->lnum,
+ bud->start, dbg_jhead(bud->jhead), c->bud_bytes);
+ spin_unlock(&c->buds_lock);
+}
+
+/**
+ * ubifs_add_bud_to_log - add a new bud to the log.
+ * @c: UBIFS file-system description object
+ * @jhead: journal head the bud belongs to
+ * @lnum: LEB number of the bud
+ * @offs: starting offset of the bud
+ *
+ * This function writes reference node for the new bud LEB @lnum it to the log,
+ * and adds it to the buds tress. It also makes sure that log size does not
+ * exceed the 'c->max_bud_bytes' limit. Returns zero in case of success,
+ * %-EAGAIN if commit is required, and a negative error codes in case of
+ * failure.
+ */
+int ubifs_add_bud_to_log(struct ubifs_info *c, int jhead, int lnum, int offs)
+{
+ int err;
+ struct ubifs_bud *bud;
+ struct ubifs_ref_node *ref;
+
+ bud = kmalloc(sizeof(struct ubifs_bud), GFP_NOFS);
+ if (!bud)
+ return -ENOMEM;
+ ref = kzalloc(c->ref_node_alsz, GFP_NOFS);
+ if (!ref) {
+ kfree(bud);
+ return -ENOMEM;
+ }
+
+ mutex_lock(&c->log_mutex);
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->ro_error) {
+ err = -EROFS;
+ goto out_unlock;
+ }
+
+ /* Make sure we have enough space in the log */
+ if (empty_log_bytes(c) - c->ref_node_alsz < c->min_log_bytes) {
+ dbg_log("not enough log space - %lld, required %d",
+ empty_log_bytes(c), c->min_log_bytes);
+ ubifs_commit_required(c);
+ err = -EAGAIN;
+ goto out_unlock;
+ }
+
+ /*
+ * Make sure the amount of space in buds will not exceed the
+ * 'c->max_bud_bytes' limit, because we want to guarantee mount time
+ * limits.
+ *
+ * It is not necessary to hold @c->buds_lock when reading @c->bud_bytes
+ * because we are holding @c->log_mutex. All @c->bud_bytes take place
+ * when both @c->log_mutex and @c->bud_bytes are locked.
+ */
+ if (c->bud_bytes + c->leb_size - offs > c->max_bud_bytes) {
+ dbg_log("bud bytes %lld (%lld max), require commit",
+ c->bud_bytes, c->max_bud_bytes);
+ ubifs_commit_required(c);
+ err = -EAGAIN;
+ goto out_unlock;
+ }
+
+ /*
+ * If the journal is full enough - start background commit. Note, it is
+ * OK to read 'c->cmt_state' without spinlock because integer reads
+ * are atomic in the kernel.
+ */
+ if (c->bud_bytes >= c->bg_bud_bytes &&
+ c->cmt_state == COMMIT_RESTING) {
+ dbg_log("bud bytes %lld (%lld max), initiate BG commit",
+ c->bud_bytes, c->max_bud_bytes);
+ ubifs_request_bg_commit(c);
+ }
+
+ bud->lnum = lnum;
+ bud->start = offs;
+ bud->jhead = jhead;
+
+ ref->ch.node_type = UBIFS_REF_NODE;
+ ref->lnum = cpu_to_le32(bud->lnum);
+ ref->offs = cpu_to_le32(bud->start);
+ ref->jhead = cpu_to_le32(jhead);
+
+ if (c->lhead_offs > c->leb_size - c->ref_node_alsz) {
+ c->lhead_lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
+ c->lhead_offs = 0;
+ }
+
+ if (c->lhead_offs == 0) {
+ /* Must ensure next log LEB has been unmapped */
+ err = ubifs_leb_unmap(c, c->lhead_lnum);
+ if (err)
+ goto out_unlock;
+ }
+
+ if (bud->start == 0) {
+ /*
+ * Before writing the LEB reference which refers an empty LEB
+ * to the log, we have to make sure it is mapped, because
+ * otherwise we'd risk to refer an LEB with garbage in case of
+ * an unclean reboot, because the target LEB might have been
+ * unmapped, but not yet physically erased.
+ */
+ err = ubifs_leb_map(c, bud->lnum);
+ if (err)
+ goto out_unlock;
+ }
+
+ dbg_log("write ref LEB %d:%d",
+ c->lhead_lnum, c->lhead_offs);
+ err = ubifs_write_node(c, ref, UBIFS_REF_NODE_SZ, c->lhead_lnum,
+ c->lhead_offs);
+ if (err)
+ goto out_unlock;
+
+ c->lhead_offs += c->ref_node_alsz;
+
+ ubifs_add_bud(c, bud);
+
+ mutex_unlock(&c->log_mutex);
+ kfree(ref);
+ return 0;
+
+out_unlock:
+ mutex_unlock(&c->log_mutex);
+ kfree(ref);
+ kfree(bud);
+ return err;
+}
+
+/**
+ * remove_buds - remove used buds.
+ * @c: UBIFS file-system description object
+ *
+ * This function removes use buds from the buds tree. It does not remove the
+ * buds which are pointed to by journal heads.
+ */
+static void remove_buds(struct ubifs_info *c)
+{
+ struct rb_node *p;
+
+ ubifs_assert(list_empty(&c->old_buds));
+ c->cmt_bud_bytes = 0;
+ spin_lock(&c->buds_lock);
+ p = rb_first(&c->buds);
+ while (p) {
+ struct rb_node *p1 = p;
+ struct ubifs_bud *bud;
+ struct ubifs_wbuf *wbuf;
+
+ p = rb_next(p);
+ bud = rb_entry(p1, struct ubifs_bud, rb);
+ wbuf = &c->jheads[bud->jhead].wbuf;
+
+ if (wbuf->lnum == bud->lnum) {
+ /*
+ * Do not remove buds which are pointed to by journal
+ * heads (non-closed buds).
+ */
+ c->cmt_bud_bytes += wbuf->offs - bud->start;
+ dbg_log("preserve %d:%d, jhead %s, bud bytes %d, cmt_bud_bytes %lld",
+ bud->lnum, bud->start, dbg_jhead(bud->jhead),
+ wbuf->offs - bud->start, c->cmt_bud_bytes);
+ bud->start = wbuf->offs;
+ } else {
+ c->cmt_bud_bytes += c->leb_size - bud->start;
+ dbg_log("remove %d:%d, jhead %s, bud bytes %d, cmt_bud_bytes %lld",
+ bud->lnum, bud->start, dbg_jhead(bud->jhead),
+ c->leb_size - bud->start, c->cmt_bud_bytes);
+ rb_erase(p1, &c->buds);
+ /*
+ * If the commit does not finish, the recovery will need
+ * to replay the journal, in which case the old buds
+ * must be unchanged. Do not release them until post
+ * commit i.e. do not allow them to be garbage
+ * collected.
+ */
+ list_move(&bud->list, &c->old_buds);
+ }
+ }
+ spin_unlock(&c->buds_lock);
+}
+
+/**
+ * ubifs_log_start_commit - start commit.
+ * @c: UBIFS file-system description object
+ * @ltail_lnum: return new log tail LEB number
+ *
+ * The commit operation starts with writing "commit start" node to the log and
+ * reference nodes for all journal heads which will define new journal after
+ * the commit has been finished. The commit start and reference nodes are
+ * written in one go to the nearest empty log LEB (hence, when commit is
+ * finished UBIFS may safely unmap all the previous log LEBs). This function
+ * returns zero in case of success and a negative error code in case of
+ * failure.
+ */
+int ubifs_log_start_commit(struct ubifs_info *c, int *ltail_lnum)
+{
+ void *buf;
+ struct ubifs_cs_node *cs;
+ struct ubifs_ref_node *ref;
+ int err, i, max_len, len;
+
+ err = dbg_check_bud_bytes(c);
+ if (err)
+ return err;
+
+ max_len = UBIFS_CS_NODE_SZ + c->jhead_cnt * UBIFS_REF_NODE_SZ;
+ max_len = ALIGN(max_len, c->min_io_size);
+ buf = cs = kmalloc(max_len, GFP_NOFS);
+ if (!buf)
+ return -ENOMEM;
+
+ cs->ch.node_type = UBIFS_CS_NODE;
+ cs->cmt_no = cpu_to_le64(c->cmt_no);
+ ubifs_prepare_node(c, cs, UBIFS_CS_NODE_SZ, 0);
+
+ /*
+ * Note, we do not lock 'c->log_mutex' because this is the commit start
+ * phase and we are exclusively using the log. And we do not lock
+ * write-buffer because nobody can write to the file-system at this
+ * phase.
+ */
+
+ len = UBIFS_CS_NODE_SZ;
+ for (i = 0; i < c->jhead_cnt; i++) {
+ int lnum = c->jheads[i].wbuf.lnum;
+ int offs = c->jheads[i].wbuf.offs;
+
+ if (lnum == -1 || offs == c->leb_size)
+ continue;
+
+ dbg_log("add ref to LEB %d:%d for jhead %s",
+ lnum, offs, dbg_jhead(i));
+ ref = buf + len;
+ ref->ch.node_type = UBIFS_REF_NODE;
+ ref->lnum = cpu_to_le32(lnum);
+ ref->offs = cpu_to_le32(offs);
+ ref->jhead = cpu_to_le32(i);
+
+ ubifs_prepare_node(c, ref, UBIFS_REF_NODE_SZ, 0);
+ len += UBIFS_REF_NODE_SZ;
+ }
+
+ ubifs_pad(c, buf + len, ALIGN(len, c->min_io_size) - len);
+
+ /* Switch to the next log LEB */
+ if (c->lhead_offs) {
+ c->lhead_lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
+ c->lhead_offs = 0;
+ }
+
+ if (c->lhead_offs == 0) {
+ /* Must ensure next LEB has been unmapped */
+ err = ubifs_leb_unmap(c, c->lhead_lnum);
+ if (err)
+ goto out;
+ }
+
+ len = ALIGN(len, c->min_io_size);
+ dbg_log("writing commit start at LEB %d:0, len %d", c->lhead_lnum, len);
+ err = ubifs_leb_write(c, c->lhead_lnum, cs, 0, len);
+ if (err)
+ goto out;
+
+ *ltail_lnum = c->lhead_lnum;
+
+ c->lhead_offs += len;
+ if (c->lhead_offs == c->leb_size) {
+ c->lhead_lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
+ c->lhead_offs = 0;
+ }
+
+ remove_buds(c);
+
+ /*
+ * We have started the commit and now users may use the rest of the log
+ * for new writes.
+ */
+ c->min_log_bytes = 0;
+
+out:
+ kfree(buf);
+ return err;
+}
+
+/**
+ * ubifs_log_end_commit - end commit.
+ * @c: UBIFS file-system description object
+ * @ltail_lnum: new log tail LEB number
+ *
+ * This function is called on when the commit operation was finished. It
+ * moves log tail to new position and unmaps LEBs which contain obsolete data.
+ * Returns zero in case of success and a negative error code in case of
+ * failure.
+ */
+int ubifs_log_end_commit(struct ubifs_info *c, int ltail_lnum)
+{
+ int err;
+
+ /*
+ * At this phase we have to lock 'c->log_mutex' because UBIFS allows FS
+ * writes during commit. Its only short "commit" start phase when
+ * writers are blocked.
+ */
+ mutex_lock(&c->log_mutex);
+
+ dbg_log("old tail was LEB %d:0, new tail is LEB %d:0",
+ c->ltail_lnum, ltail_lnum);
+
+ c->ltail_lnum = ltail_lnum;
+ /*
+ * The commit is finished and from now on it must be guaranteed that
+ * there is always enough space for the next commit.
+ */
+ c->min_log_bytes = c->leb_size;
+
+ spin_lock(&c->buds_lock);
+ c->bud_bytes -= c->cmt_bud_bytes;
+ spin_unlock(&c->buds_lock);
+
+ err = dbg_check_bud_bytes(c);
+
+ mutex_unlock(&c->log_mutex);
+ return err;
+}
+
+/**
+ * ubifs_log_post_commit - things to do after commit is completed.
+ * @c: UBIFS file-system description object
+ * @old_ltail_lnum: old log tail LEB number
+ *
+ * Release buds only after commit is completed, because they must be unchanged
+ * if recovery is needed.
+ *
+ * Unmap log LEBs only after commit is completed, because they may be needed for
+ * recovery.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int ubifs_log_post_commit(struct ubifs_info *c, int old_ltail_lnum)
+{
+ int lnum, err = 0;
+
+ while (!list_empty(&c->old_buds)) {
+ struct ubifs_bud *bud;
+
+ bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
+ err = ubifs_return_leb(c, bud->lnum);
+ if (err)
+ return err;
+ list_del(&bud->list);
+ kfree(bud);
+ }
+ mutex_lock(&c->log_mutex);
+ for (lnum = old_ltail_lnum; lnum != c->ltail_lnum;
+ lnum = ubifs_next_log_lnum(c, lnum)) {
+ dbg_log("unmap log LEB %d", lnum);
+ err = ubifs_leb_unmap(c, lnum);
+ if (err)
+ goto out;
+ }
+out:
+ mutex_unlock(&c->log_mutex);
+ return err;
+}
+
+/**
+ * struct done_ref - references that have been done.
+ * @rb: rb-tree node
+ * @lnum: LEB number
+ */
+struct done_ref {
+ struct rb_node rb;
+ int lnum;
+};
+
+/**
+ * done_already - determine if a reference has been done already.
+ * @done_tree: rb-tree to store references that have been done
+ * @lnum: LEB number of reference
+ *
+ * This function returns %1 if the reference has been done, %0 if not, otherwise
+ * a negative error code is returned.
+ */
+static int done_already(struct rb_root *done_tree, int lnum)
+{
+ struct rb_node **p = &done_tree->rb_node, *parent = NULL;
+ struct done_ref *dr;
+
+ while (*p) {
+ parent = *p;
+ dr = rb_entry(parent, struct done_ref, rb);
+ if (lnum < dr->lnum)
+ p = &(*p)->rb_left;
+ else if (lnum > dr->lnum)
+ p = &(*p)->rb_right;
+ else
+ return 1;
+ }
+
+ dr = kzalloc(sizeof(struct done_ref), GFP_NOFS);
+ if (!dr)
+ return -ENOMEM;
+
+ dr->lnum = lnum;
+
+ rb_link_node(&dr->rb, parent, p);
+ rb_insert_color(&dr->rb, done_tree);
+
+ return 0;
+}
+
+/**
+ * destroy_done_tree - destroy the done tree.
+ * @done_tree: done tree to destroy
+ */
+static void destroy_done_tree(struct rb_root *done_tree)
+{
+ struct done_ref *dr, *n;
+
+ rbtree_postorder_for_each_entry_safe(dr, n, done_tree, rb)
+ kfree(dr);
+}
+
+/**
+ * add_node - add a node to the consolidated log.
+ * @c: UBIFS file-system description object
+ * @buf: buffer to which to add
+ * @lnum: LEB number to which to write is passed and returned here
+ * @offs: offset to where to write is passed and returned here
+ * @node: node to add
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int add_node(struct ubifs_info *c, void *buf, int *lnum, int *offs,
+ void *node)
+{
+ struct ubifs_ch *ch = node;
+ int len = le32_to_cpu(ch->len), remains = c->leb_size - *offs;
+
+ if (len > remains) {
+ int sz = ALIGN(*offs, c->min_io_size), err;
+
+ ubifs_pad(c, buf + *offs, sz - *offs);
+ err = ubifs_leb_change(c, *lnum, buf, sz);
+ if (err)
+ return err;
+ *lnum = ubifs_next_log_lnum(c, *lnum);
+ *offs = 0;
+ }
+ memcpy(buf + *offs, node, len);
+ *offs += ALIGN(len, 8);
+ return 0;
+}
+
+/**
+ * ubifs_consolidate_log - consolidate the log.
+ * @c: UBIFS file-system description object
+ *
+ * Repeated failed commits could cause the log to be full, but at least 1 LEB is
+ * needed for commit. This function rewrites the reference nodes in the log
+ * omitting duplicates, and failed CS nodes, and leaving no gaps.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int ubifs_consolidate_log(struct ubifs_info *c)
+{
+ struct ubifs_scan_leb *sleb;
+ struct ubifs_scan_node *snod;
+ struct rb_root done_tree = RB_ROOT;
+ int lnum, err, first = 1, write_lnum, offs = 0;
+ void *buf;
+
+ dbg_rcvry("log tail LEB %d, log head LEB %d", c->ltail_lnum,
+ c->lhead_lnum);
+ buf = vmalloc(c->leb_size);
+ if (!buf)
+ return -ENOMEM;
+ lnum = c->ltail_lnum;
+ write_lnum = lnum;
+ while (1) {
+ sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
+ if (IS_ERR(sleb)) {
+ err = PTR_ERR(sleb);
+ goto out_free;
+ }
+ list_for_each_entry(snod, &sleb->nodes, list) {
+ switch (snod->type) {
+ case UBIFS_REF_NODE: {
+ struct ubifs_ref_node *ref = snod->node;
+ int ref_lnum = le32_to_cpu(ref->lnum);
+
+ err = done_already(&done_tree, ref_lnum);
+ if (err < 0)
+ goto out_scan;
+ if (err != 1) {
+ err = add_node(c, buf, &write_lnum,
+ &offs, snod->node);
+ if (err)
+ goto out_scan;
+ }
+ break;
+ }
+ case UBIFS_CS_NODE:
+ if (!first)
+ break;
+ err = add_node(c, buf, &write_lnum, &offs,
+ snod->node);
+ if (err)
+ goto out_scan;
+ first = 0;
+ break;
+ }
+ }
+ ubifs_scan_destroy(sleb);
+ if (lnum == c->lhead_lnum)
+ break;
+ lnum = ubifs_next_log_lnum(c, lnum);
+ }
+ if (offs) {
+ int sz = ALIGN(offs, c->min_io_size);
+
+ ubifs_pad(c, buf + offs, sz - offs);
+ err = ubifs_leb_change(c, write_lnum, buf, sz);
+ if (err)
+ goto out_free;
+ offs = ALIGN(offs, c->min_io_size);
+ }
+ destroy_done_tree(&done_tree);
+ vfree(buf);
+ if (write_lnum == c->lhead_lnum) {
+ ubifs_err("log is too full");
+ return -EINVAL;
+ }
+ /* Unmap remaining LEBs */
+ lnum = write_lnum;
+ do {
+ lnum = ubifs_next_log_lnum(c, lnum);
+ err = ubifs_leb_unmap(c, lnum);
+ if (err)
+ return err;
+ } while (lnum != c->lhead_lnum);
+ c->lhead_lnum = write_lnum;
+ c->lhead_offs = offs;
+ dbg_rcvry("new log head at %d:%d", c->lhead_lnum, c->lhead_offs);
+ return 0;
+
+out_scan:
+ ubifs_scan_destroy(sleb);
+out_free:
+ destroy_done_tree(&done_tree);
+ vfree(buf);
+ return err;
+}
+
+/**
+ * dbg_check_bud_bytes - make sure bud bytes calculation are all right.
+ * @c: UBIFS file-system description object
+ *
+ * This function makes sure the amount of flash space used by closed buds
+ * ('c->bud_bytes' is correct). Returns zero in case of success and %-EINVAL in
+ * case of failure.
+ */
+static int dbg_check_bud_bytes(struct ubifs_info *c)
+{
+ int i, err = 0;
+ struct ubifs_bud *bud;
+ long long bud_bytes = 0;
+
+ if (!dbg_is_chk_gen(c))
+ return 0;
+
+ spin_lock(&c->buds_lock);
+ for (i = 0; i < c->jhead_cnt; i++)
+ list_for_each_entry(bud, &c->jheads[i].buds_list, list)
+ bud_bytes += c->leb_size - bud->start;
+
+ if (c->bud_bytes != bud_bytes) {
+ ubifs_err("bad bud_bytes %lld, calculated %lld",
+ c->bud_bytes, bud_bytes);
+ err = -EINVAL;
+ }
spin_unlock(&c->buds_lock);
+
+ return err;
}
diff --git a/fs/ubifs/lprops.c b/fs/ubifs/lprops.c
index 8ce4949..fc6686b 100644
--- a/fs/ubifs/lprops.c
+++ b/fs/ubifs/lprops.c
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Adrian Hunter
* Artem Bityutskiy (Битюцкий Артём)
@@ -28,6 +17,10 @@
* an empty LEB for the journal, or a very dirty LEB for garbage collection.
*/
+#define __UBOOT__
+#ifdef __UBOOT__
+#include <linux/err.h>
+#endif
#include "ubifs.h"
/**
@@ -281,7 +274,7 @@ void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
case LPROPS_FREE:
if (add_to_lpt_heap(c, lprops, cat))
break;
- /* No more room on heap so make it uncategorized */
+ /* No more room on heap so make it un-categorized */
cat = LPROPS_UNCAT;
/* Fall through */
case LPROPS_UNCAT:
@@ -300,8 +293,11 @@ void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
default:
ubifs_assert(0);
}
+
lprops->flags &= ~LPROPS_CAT_MASK;
lprops->flags |= cat;
+ c->in_a_category_cnt += 1;
+ ubifs_assert(c->in_a_category_cnt <= c->main_lebs);
}
/**
@@ -334,6 +330,9 @@ static void ubifs_remove_from_cat(struct ubifs_info *c,
default:
ubifs_assert(0);
}
+
+ c->in_a_category_cnt -= 1;
+ ubifs_assert(c->in_a_category_cnt >= 0);
}
/**
@@ -375,8 +374,8 @@ void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
* @lprops: LEB properties
*
* A LEB may have fallen off of the bottom of a heap, and ended up as
- * uncategorized even though it has enough space for us now. If that is the case
- * this function will put the LEB back onto a heap.
+ * un-categorized even though it has enough space for us now. If that is the
+ * case this function will put the LEB back onto a heap.
*/
void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
{
@@ -436,10 +435,10 @@ int ubifs_categorize_lprops(const struct ubifs_info *c,
/**
* change_category - change LEB properties category.
* @c: UBIFS file-system description object
- * @lprops: LEB properties to recategorize
+ * @lprops: LEB properties to re-categorize
*
* LEB properties are categorized to enable fast find operations. When the LEB
- * properties change they must be recategorized.
+ * properties change they must be re-categorized.
*/
static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
{
@@ -447,7 +446,7 @@ static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
int new_cat = ubifs_categorize_lprops(c, lprops);
if (old_cat == new_cat) {
- struct ubifs_lpt_heap *heap = &c->lpt_heap[new_cat - 1];
+ struct ubifs_lpt_heap *heap;
/* lprops on a heap now must be moved up or down */
if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
@@ -461,21 +460,18 @@ static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
}
/**
- * calc_dark - calculate LEB dark space size.
+ * ubifs_calc_dark - calculate LEB dark space size.
* @c: the UBIFS file-system description object
* @spc: amount of free and dirty space in the LEB
*
- * This function calculates amount of dark space in an LEB which has @spc bytes
- * of free and dirty space. Returns the calculations result.
+ * This function calculates and returns amount of dark space in an LEB which
+ * has @spc bytes of free and dirty space.
*
- * Dark space is the space which is not always usable - it depends on which
- * nodes are written in which order. E.g., if an LEB has only 512 free bytes,
- * it is dark space, because it cannot fit a large data node. So UBIFS cannot
- * count on this LEB and treat these 512 bytes as usable because it is not true
- * if, for example, only big chunks of uncompressible data will be written to
- * the FS.
+ * UBIFS is trying to account the space which might not be usable, and this
+ * space is called "dark space". For example, if an LEB has only %512 free
+ * bytes, it is dark space, because it cannot fit a large data node.
*/
-static int calc_dark(struct ubifs_info *c, int spc)
+int ubifs_calc_dark(const struct ubifs_info *c, int spc)
{
ubifs_assert(!(spc & 7));
@@ -507,7 +503,7 @@ static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
pnode = (struct ubifs_pnode *)container_of(lprops - pos,
struct ubifs_pnode,
lprops[0]);
- return !test_bit(COW_ZNODE, &pnode->flags) &&
+ return !test_bit(COW_CNODE, &pnode->flags) &&
test_bit(DIRTY_CNODE, &pnode->flags);
}
@@ -518,7 +514,7 @@ static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
* @free: new free space amount
* @dirty: new dirty space amount
* @flags: new flags
- * @idx_gc_cnt: change to the count of idx_gc list
+ * @idx_gc_cnt: change to the count of @idx_gc list
*
* This function changes LEB properties (@free, @dirty or @flag). However, the
* property which has the %LPROPS_NC value is not changed. Returns a pointer to
@@ -535,7 +531,7 @@ const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
{
/*
* This is the only function that is allowed to change lprops, so we
- * discard the const qualifier.
+ * discard the "const" qualifier.
*/
struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
@@ -575,7 +571,7 @@ const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
if (old_spc < c->dead_wm)
c->lst.total_dead -= old_spc;
else
- c->lst.total_dark -= calc_dark(c, old_spc);
+ c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
c->lst.total_used -= c->leb_size - old_spc;
}
@@ -616,7 +612,7 @@ const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
if (new_spc < c->dead_wm)
c->lst.total_dead += new_spc;
else
- c->lst.total_dark += calc_dark(c, new_spc);
+ c->lst.total_dark += ubifs_calc_dark(c, new_spc);
c->lst.total_used += c->leb_size - new_spc;
}
@@ -678,6 +674,9 @@ int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
out:
ubifs_release_lprops(c);
+ if (err)
+ ubifs_err("cannot change properties of LEB %d, error %d",
+ lnum, err);
return err;
}
@@ -714,6 +713,9 @@ int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
out:
ubifs_release_lprops(c);
+ if (err)
+ ubifs_err("cannot update properties of LEB %d, error %d",
+ lnum, err);
return err;
}
@@ -737,6 +739,8 @@ int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
lpp = ubifs_lpt_lookup(c, lnum);
if (IS_ERR(lpp)) {
err = PTR_ERR(lpp);
+ ubifs_err("cannot read properties of LEB %d, error %d",
+ lnum, err);
goto out;
}
@@ -840,3 +844,471 @@ const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
return lprops;
}
+
+/*
+ * Everything below is related to debugging.
+ */
+
+/**
+ * dbg_check_cats - check category heaps and lists.
+ * @c: UBIFS file-system description object
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int dbg_check_cats(struct ubifs_info *c)
+{
+ struct ubifs_lprops *lprops;
+ struct list_head *pos;
+ int i, cat;
+
+ if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
+ return 0;
+
+ list_for_each_entry(lprops, &c->empty_list, list) {
+ if (lprops->free != c->leb_size) {
+ ubifs_err("non-empty LEB %d on empty list (free %d dirty %d flags %d)",
+ lprops->lnum, lprops->free, lprops->dirty,
+ lprops->flags);
+ return -EINVAL;
+ }
+ if (lprops->flags & LPROPS_TAKEN) {
+ ubifs_err("taken LEB %d on empty list (free %d dirty %d flags %d)",
+ lprops->lnum, lprops->free, lprops->dirty,
+ lprops->flags);
+ return -EINVAL;
+ }
+ }
+
+ i = 0;
+ list_for_each_entry(lprops, &c->freeable_list, list) {
+ if (lprops->free + lprops->dirty != c->leb_size) {
+ ubifs_err("non-freeable LEB %d on freeable list (free %d dirty %d flags %d)",
+ lprops->lnum, lprops->free, lprops->dirty,
+ lprops->flags);
+ return -EINVAL;
+ }
+ if (lprops->flags & LPROPS_TAKEN) {
+ ubifs_err("taken LEB %d on freeable list (free %d dirty %d flags %d)",
+ lprops->lnum, lprops->free, lprops->dirty,
+ lprops->flags);
+ return -EINVAL;
+ }
+ i += 1;
+ }
+ if (i != c->freeable_cnt) {
+ ubifs_err("freeable list count %d expected %d", i,
+ c->freeable_cnt);
+ return -EINVAL;
+ }
+
+ i = 0;
+ list_for_each(pos, &c->idx_gc)
+ i += 1;
+ if (i != c->idx_gc_cnt) {
+ ubifs_err("idx_gc list count %d expected %d", i,
+ c->idx_gc_cnt);
+ return -EINVAL;
+ }
+
+ list_for_each_entry(lprops, &c->frdi_idx_list, list) {
+ if (lprops->free + lprops->dirty != c->leb_size) {
+ ubifs_err("non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)",
+ lprops->lnum, lprops->free, lprops->dirty,
+ lprops->flags);
+ return -EINVAL;
+ }
+ if (lprops->flags & LPROPS_TAKEN) {
+ ubifs_err("taken LEB %d on frdi_idx list (free %d dirty %d flags %d)",
+ lprops->lnum, lprops->free, lprops->dirty,
+ lprops->flags);
+ return -EINVAL;
+ }
+ if (!(lprops->flags & LPROPS_INDEX)) {
+ ubifs_err("non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)",
+ lprops->lnum, lprops->free, lprops->dirty,
+ lprops->flags);
+ return -EINVAL;
+ }
+ }
+
+ for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
+ struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
+
+ for (i = 0; i < heap->cnt; i++) {
+ lprops = heap->arr[i];
+ if (!lprops) {
+ ubifs_err("null ptr in LPT heap cat %d", cat);
+ return -EINVAL;
+ }
+ if (lprops->hpos != i) {
+ ubifs_err("bad ptr in LPT heap cat %d", cat);
+ return -EINVAL;
+ }
+ if (lprops->flags & LPROPS_TAKEN) {
+ ubifs_err("taken LEB in LPT heap cat %d", cat);
+ return -EINVAL;
+ }
+ }
+ }
+
+ return 0;
+}
+
+void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
+ int add_pos)
+{
+ int i = 0, j, err = 0;
+
+ if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
+ return;
+
+ for (i = 0; i < heap->cnt; i++) {
+ struct ubifs_lprops *lprops = heap->arr[i];
+ struct ubifs_lprops *lp;
+
+ if (i != add_pos)
+ if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
+ err = 1;
+ goto out;
+ }
+ if (lprops->hpos != i) {
+ err = 2;
+ goto out;
+ }
+ lp = ubifs_lpt_lookup(c, lprops->lnum);
+ if (IS_ERR(lp)) {
+ err = 3;
+ goto out;
+ }
+ if (lprops != lp) {
+ ubifs_err("lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
+ (size_t)lprops, (size_t)lp, lprops->lnum,
+ lp->lnum);
+ err = 4;
+ goto out;
+ }
+ for (j = 0; j < i; j++) {
+ lp = heap->arr[j];
+ if (lp == lprops) {
+ err = 5;
+ goto out;
+ }
+ if (lp->lnum == lprops->lnum) {
+ err = 6;
+ goto out;
+ }
+ }
+ }
+out:
+ if (err) {
+ ubifs_err("failed cat %d hpos %d err %d", cat, i, err);
+ dump_stack();
+ ubifs_dump_heap(c, heap, cat);
+ }
+}
+
+/**
+ * scan_check_cb - scan callback.
+ * @c: the UBIFS file-system description object
+ * @lp: LEB properties to scan
+ * @in_tree: whether the LEB properties are in main memory
+ * @lst: lprops statistics to update
+ *
+ * This function returns a code that indicates whether the scan should continue
+ * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
+ * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
+ * (%LPT_SCAN_STOP).
+ */
+static int scan_check_cb(struct ubifs_info *c,
+ const struct ubifs_lprops *lp, int in_tree,
+ struct ubifs_lp_stats *lst)
+{
+ struct ubifs_scan_leb *sleb;
+ struct ubifs_scan_node *snod;
+ int cat, lnum = lp->lnum, is_idx = 0, used = 0, freef, dirty, ret;
+ void *buf = NULL;
+
+ cat = lp->flags & LPROPS_CAT_MASK;
+ if (cat != LPROPS_UNCAT) {
+ cat = ubifs_categorize_lprops(c, lp);
+ if (cat != (lp->flags & LPROPS_CAT_MASK)) {
+ ubifs_err("bad LEB category %d expected %d",
+ (lp->flags & LPROPS_CAT_MASK), cat);
+ return -EINVAL;
+ }
+ }
+
+ /* Check lp is on its category list (if it has one) */
+ if (in_tree) {
+ struct list_head *list = NULL;
+
+ switch (cat) {
+ case LPROPS_EMPTY:
+ list = &c->empty_list;
+ break;
+ case LPROPS_FREEABLE:
+ list = &c->freeable_list;
+ break;
+ case LPROPS_FRDI_IDX:
+ list = &c->frdi_idx_list;
+ break;
+ case LPROPS_UNCAT:
+ list = &c->uncat_list;
+ break;
+ }
+ if (list) {
+ struct ubifs_lprops *lprops;
+ int found = 0;
+
+ list_for_each_entry(lprops, list, list) {
+ if (lprops == lp) {
+ found = 1;
+ break;
+ }
+ }
+ if (!found) {
+ ubifs_err("bad LPT list (category %d)", cat);
+ return -EINVAL;
+ }
+ }
+ }
+
+ /* Check lp is on its category heap (if it has one) */
+ if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
+ struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
+
+ if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
+ lp != heap->arr[lp->hpos]) {
+ ubifs_err("bad LPT heap (category %d)", cat);
+ return -EINVAL;
+ }
+ }
+
+ buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
+ if (!buf)
+ return -ENOMEM;
+
+ /*
+ * After an unclean unmount, empty and freeable LEBs
+ * may contain garbage - do not scan them.
+ */
+ if (lp->free == c->leb_size) {
+ lst->empty_lebs += 1;
+ lst->total_free += c->leb_size;
+ lst->total_dark += ubifs_calc_dark(c, c->leb_size);
+ return LPT_SCAN_CONTINUE;
+ }
+ if (lp->free + lp->dirty == c->leb_size &&
+ !(lp->flags & LPROPS_INDEX)) {
+ lst->total_free += lp->free;
+ lst->total_dirty += lp->dirty;
+ lst->total_dark += ubifs_calc_dark(c, c->leb_size);
+ return LPT_SCAN_CONTINUE;
+ }
+
+ sleb = ubifs_scan(c, lnum, 0, buf, 0);
+ if (IS_ERR(sleb)) {
+ ret = PTR_ERR(sleb);
+ if (ret == -EUCLEAN) {
+ ubifs_dump_lprops(c);
+ ubifs_dump_budg(c, &c->bi);
+ }
+ goto out;
+ }
+
+ is_idx = -1;
+ list_for_each_entry(snod, &sleb->nodes, list) {
+ int found, level = 0;
+
+ cond_resched();
+
+ if (is_idx == -1)
+ is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
+
+ if (is_idx && snod->type != UBIFS_IDX_NODE) {
+ ubifs_err("indexing node in data LEB %d:%d",
+ lnum, snod->offs);
+ goto out_destroy;
+ }
+
+ if (snod->type == UBIFS_IDX_NODE) {
+ struct ubifs_idx_node *idx = snod->node;
+
+ key_read(c, ubifs_idx_key(c, idx), &snod->key);
+ level = le16_to_cpu(idx->level);
+ }
+
+ found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
+ snod->offs, is_idx);
+ if (found) {
+ if (found < 0)
+ goto out_destroy;
+ used += ALIGN(snod->len, 8);
+ }
+ }
+
+ freef = c->leb_size - sleb->endpt;
+ dirty = sleb->endpt - used;
+
+ if (freef > c->leb_size || freef < 0 || dirty > c->leb_size ||
+ dirty < 0) {
+ ubifs_err("bad calculated accounting for LEB %d: free %d, dirty %d",
+ lnum, freef, dirty);
+ goto out_destroy;
+ }
+
+ if (lp->free + lp->dirty == c->leb_size &&
+ freef + dirty == c->leb_size)
+ if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
+ (!is_idx && freef == c->leb_size) ||
+ lp->free == c->leb_size) {
+ /*
+ * Empty or freeable LEBs could contain index
+ * nodes from an uncompleted commit due to an
+ * unclean unmount. Or they could be empty for
+ * the same reason. Or it may simply not have been
+ * unmapped.
+ */
+ freef = lp->free;
+ dirty = lp->dirty;
+ is_idx = 0;
+ }
+
+ if (is_idx && lp->free + lp->dirty == freef + dirty &&
+ lnum != c->ihead_lnum) {
+ /*
+ * After an unclean unmount, an index LEB could have a different
+ * amount of free space than the value recorded by lprops. That
+ * is because the in-the-gaps method may use free space or
+ * create free space (as a side-effect of using ubi_leb_change
+ * and not writing the whole LEB). The incorrect free space
+ * value is not a problem because the index is only ever
+ * allocated empty LEBs, so there will never be an attempt to
+ * write to the free space at the end of an index LEB - except
+ * by the in-the-gaps method for which it is not a problem.
+ */
+ freef = lp->free;
+ dirty = lp->dirty;
+ }
+
+ if (lp->free != freef || lp->dirty != dirty)
+ goto out_print;
+
+ if (is_idx && !(lp->flags & LPROPS_INDEX)) {
+ if (freef == c->leb_size)
+ /* Free but not unmapped LEB, it's fine */
+ is_idx = 0;
+ else {
+ ubifs_err("indexing node without indexing flag");
+ goto out_print;
+ }
+ }
+
+ if (!is_idx && (lp->flags & LPROPS_INDEX)) {
+ ubifs_err("data node with indexing flag");
+ goto out_print;
+ }
+
+ if (freef == c->leb_size)
+ lst->empty_lebs += 1;
+
+ if (is_idx)
+ lst->idx_lebs += 1;
+
+ if (!(lp->flags & LPROPS_INDEX))
+ lst->total_used += c->leb_size - freef - dirty;
+ lst->total_free += freef;
+ lst->total_dirty += dirty;
+
+ if (!(lp->flags & LPROPS_INDEX)) {
+ int spc = freef + dirty;
+
+ if (spc < c->dead_wm)
+ lst->total_dead += spc;
+ else
+ lst->total_dark += ubifs_calc_dark(c, spc);
+ }
+
+ ubifs_scan_destroy(sleb);
+ vfree(buf);
+ return LPT_SCAN_CONTINUE;
+
+out_print:
+ ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d",
+ lnum, lp->free, lp->dirty, lp->flags, freef, dirty);
+ ubifs_dump_leb(c, lnum);
+out_destroy:
+ ubifs_scan_destroy(sleb);
+ ret = -EINVAL;
+out:
+ vfree(buf);
+ return ret;
+}
+
+/**
+ * dbg_check_lprops - check all LEB properties.
+ * @c: UBIFS file-system description object
+ *
+ * This function checks all LEB properties and makes sure they are all correct.
+ * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
+ * and other negative error codes in case of other errors. This function is
+ * called while the file system is locked (because of commit start), so no
+ * additional locking is required. Note that locking the LPT mutex would cause
+ * a circular lock dependency with the TNC mutex.
+ */
+int dbg_check_lprops(struct ubifs_info *c)
+{
+ int i, err;
+ struct ubifs_lp_stats lst;
+
+ if (!dbg_is_chk_lprops(c))
+ return 0;
+
+ /*
+ * As we are going to scan the media, the write buffers have to be
+ * synchronized.
+ */
+ for (i = 0; i < c->jhead_cnt; i++) {
+ err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
+ if (err)
+ return err;
+ }
+
+ memset(&lst, 0, sizeof(struct ubifs_lp_stats));
+ err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
+ (ubifs_lpt_scan_callback)scan_check_cb,
+ &lst);
+ if (err && err != -ENOSPC)
+ goto out;
+
+ if (lst.empty_lebs != c->lst.empty_lebs ||
+ lst.idx_lebs != c->lst.idx_lebs ||
+ lst.total_free != c->lst.total_free ||
+ lst.total_dirty != c->lst.total_dirty ||
+ lst.total_used != c->lst.total_used) {
+ ubifs_err("bad overall accounting");
+ ubifs_err("calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
+ lst.empty_lebs, lst.idx_lebs, lst.total_free,
+ lst.total_dirty, lst.total_used);
+ ubifs_err("read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
+ c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
+ c->lst.total_dirty, c->lst.total_used);
+ err = -EINVAL;
+ goto out;
+ }
+
+ if (lst.total_dead != c->lst.total_dead ||
+ lst.total_dark != c->lst.total_dark) {
+ ubifs_err("bad dead/dark space accounting");
+ ubifs_err("calculated: total_dead %lld, total_dark %lld",
+ lst.total_dead, lst.total_dark);
+ ubifs_err("read from lprops: total_dead %lld, total_dark %lld",
+ c->lst.total_dead, c->lst.total_dark);
+ err = -EINVAL;
+ goto out;
+ }
+
+ err = dbg_check_cats(c);
+out:
+ return err;
+}
diff --git a/fs/ubifs/lpt.c b/fs/ubifs/lpt.c
index 1a50d4c..c49d3b0 100644
--- a/fs/ubifs/lpt.c
+++ b/fs/ubifs/lpt.c
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Adrian Hunter
* Artem Bityutskiy (Битюцкий Артём)
@@ -44,8 +33,17 @@
*/
#include "ubifs.h"
-#include "crc16.h"
+#define __UBOOT__
+#ifndef __UBOOT__
+#include <linux/crc16.h>
#include <linux/math64.h>
+#include <linux/slab.h>
+#else
+#include <linux/compat.h>
+#include <linux/err.h>
+#include <ubi_uboot.h>
+#include "crc16.h"
+#endif
/**
* do_calc_lpt_geom - calculate sizes for the LPT area.
@@ -159,6 +157,119 @@ int ubifs_calc_lpt_geom(struct ubifs_info *c)
}
/**
+ * calc_dflt_lpt_geom - calculate default LPT geometry.
+ * @c: the UBIFS file-system description object
+ * @main_lebs: number of main area LEBs is passed and returned here
+ * @big_lpt: whether the LPT area is "big" is returned here
+ *
+ * The size of the LPT area depends on parameters that themselves are dependent
+ * on the size of the LPT area. This function, successively recalculates the LPT
+ * area geometry until the parameters and resultant geometry are consistent.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
+ int *big_lpt)
+{
+ int i, lebs_needed;
+ long long sz;
+
+ /* Start by assuming the minimum number of LPT LEBs */
+ c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
+ c->main_lebs = *main_lebs - c->lpt_lebs;
+ if (c->main_lebs <= 0)
+ return -EINVAL;
+
+ /* And assume we will use the small LPT model */
+ c->big_lpt = 0;
+
+ /*
+ * Calculate the geometry based on assumptions above and then see if it
+ * makes sense
+ */
+ do_calc_lpt_geom(c);
+
+ /* Small LPT model must have lpt_sz < leb_size */
+ if (c->lpt_sz > c->leb_size) {
+ /* Nope, so try again using big LPT model */
+ c->big_lpt = 1;
+ do_calc_lpt_geom(c);
+ }
+
+ /* Now check there are enough LPT LEBs */
+ for (i = 0; i < 64 ; i++) {
+ sz = c->lpt_sz * 4; /* Allow 4 times the size */
+ lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
+ if (lebs_needed > c->lpt_lebs) {
+ /* Not enough LPT LEBs so try again with more */
+ c->lpt_lebs = lebs_needed;
+ c->main_lebs = *main_lebs - c->lpt_lebs;
+ if (c->main_lebs <= 0)
+ return -EINVAL;
+ do_calc_lpt_geom(c);
+ continue;
+ }
+ if (c->ltab_sz > c->leb_size) {
+ ubifs_err("LPT ltab too big");
+ return -EINVAL;
+ }
+ *main_lebs = c->main_lebs;
+ *big_lpt = c->big_lpt;
+ return 0;
+ }
+ return -EINVAL;
+}
+
+/**
+ * pack_bits - pack bit fields end-to-end.
+ * @addr: address at which to pack (passed and next address returned)
+ * @pos: bit position at which to pack (passed and next position returned)
+ * @val: value to pack
+ * @nrbits: number of bits of value to pack (1-32)
+ */
+static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
+{
+ uint8_t *p = *addr;
+ int b = *pos;
+
+ ubifs_assert(nrbits > 0);
+ ubifs_assert(nrbits <= 32);
+ ubifs_assert(*pos >= 0);
+ ubifs_assert(*pos < 8);
+ ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
+ if (b) {
+ *p |= ((uint8_t)val) << b;
+ nrbits += b;
+ if (nrbits > 8) {
+ *++p = (uint8_t)(val >>= (8 - b));
+ if (nrbits > 16) {
+ *++p = (uint8_t)(val >>= 8);
+ if (nrbits > 24) {
+ *++p = (uint8_t)(val >>= 8);
+ if (nrbits > 32)
+ *++p = (uint8_t)(val >>= 8);
+ }
+ }
+ }
+ } else {
+ *p = (uint8_t)val;
+ if (nrbits > 8) {
+ *++p = (uint8_t)(val >>= 8);
+ if (nrbits > 16) {
+ *++p = (uint8_t)(val >>= 8);
+ if (nrbits > 24)
+ *++p = (uint8_t)(val >>= 8);
+ }
+ }
+ }
+ b = nrbits & 7;
+ if (b == 0)
+ p++;
+ *addr = p;
+ *pos = b;
+}
+
+/**
* ubifs_unpack_bits - unpack bit fields.
* @addr: address at which to unpack (passed and next address returned)
* @pos: bit position at which to unpack (passed and next position returned)
@@ -228,6 +339,118 @@ uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
}
/**
+ * ubifs_pack_pnode - pack all the bit fields of a pnode.
+ * @c: UBIFS file-system description object
+ * @buf: buffer into which to pack
+ * @pnode: pnode to pack
+ */
+void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
+ struct ubifs_pnode *pnode)
+{
+ uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
+ int i, pos = 0;
+ uint16_t crc;
+
+ pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
+ if (c->big_lpt)
+ pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
+ for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
+ pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
+ c->space_bits);
+ pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
+ c->space_bits);
+ if (pnode->lprops[i].flags & LPROPS_INDEX)
+ pack_bits(&addr, &pos, 1, 1);
+ else
+ pack_bits(&addr, &pos, 0, 1);
+ }
+ crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
+ c->pnode_sz - UBIFS_LPT_CRC_BYTES);
+ addr = buf;
+ pos = 0;
+ pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
+}
+
+/**
+ * ubifs_pack_nnode - pack all the bit fields of a nnode.
+ * @c: UBIFS file-system description object
+ * @buf: buffer into which to pack
+ * @nnode: nnode to pack
+ */
+void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
+ struct ubifs_nnode *nnode)
+{
+ uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
+ int i, pos = 0;
+ uint16_t crc;
+
+ pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
+ if (c->big_lpt)
+ pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
+ for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
+ int lnum = nnode->nbranch[i].lnum;
+
+ if (lnum == 0)
+ lnum = c->lpt_last + 1;
+ pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
+ pack_bits(&addr, &pos, nnode->nbranch[i].offs,
+ c->lpt_offs_bits);
+ }
+ crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
+ c->nnode_sz - UBIFS_LPT_CRC_BYTES);
+ addr = buf;
+ pos = 0;
+ pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
+}
+
+/**
+ * ubifs_pack_ltab - pack the LPT's own lprops table.
+ * @c: UBIFS file-system description object
+ * @buf: buffer into which to pack
+ * @ltab: LPT's own lprops table to pack
+ */
+void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
+ struct ubifs_lpt_lprops *ltab)
+{
+ uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
+ int i, pos = 0;
+ uint16_t crc;
+
+ pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
+ for (i = 0; i < c->lpt_lebs; i++) {
+ pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
+ pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
+ }
+ crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
+ c->ltab_sz - UBIFS_LPT_CRC_BYTES);
+ addr = buf;
+ pos = 0;
+ pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
+}
+
+/**
+ * ubifs_pack_lsave - pack the LPT's save table.
+ * @c: UBIFS file-system description object
+ * @buf: buffer into which to pack
+ * @lsave: LPT's save table to pack
+ */
+void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
+{
+ uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
+ int i, pos = 0;
+ uint16_t crc;
+
+ pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
+ for (i = 0; i < c->lsave_cnt; i++)
+ pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
+ crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
+ c->lsave_sz - UBIFS_LPT_CRC_BYTES);
+ addr = buf;
+ pos = 0;
+ pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
+}
+
+/**
* ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
* @c: UBIFS file-system description object
* @lnum: LEB number to which to add dirty space
@@ -244,6 +467,23 @@ void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
}
/**
+ * set_ltab - set LPT LEB properties.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number
+ * @free: amount of free space
+ * @dirty: amount of dirty space
+ */
+static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
+{
+ dbg_lp("LEB %d free %d dirty %d to %d %d",
+ lnum, c->ltab[lnum - c->lpt_first].free,
+ c->ltab[lnum - c->lpt_first].dirty, free, dirty);
+ ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
+ c->ltab[lnum - c->lpt_first].free = free;
+ c->ltab[lnum - c->lpt_first].dirty = dirty;
+}
+
+/**
* ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
* @c: UBIFS file-system description object
* @nnode: nnode for which to add dirt
@@ -276,6 +516,31 @@ static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
}
/**
+ * calc_nnode_num - calculate nnode number.
+ * @row: the row in the tree (root is zero)
+ * @col: the column in the row (leftmost is zero)
+ *
+ * The nnode number is a number that uniquely identifies a nnode and can be used
+ * easily to traverse the tree from the root to that nnode.
+ *
+ * This function calculates and returns the nnode number for the nnode at @row
+ * and @col.
+ */
+static int calc_nnode_num(int row, int col)
+{
+ int num, bits;
+
+ num = 1;
+ while (row--) {
+ bits = (col & (UBIFS_LPT_FANOUT - 1));
+ col >>= UBIFS_LPT_FANOUT_SHIFT;
+ num <<= UBIFS_LPT_FANOUT_SHIFT;
+ num |= bits;
+ }
+ return num;
+}
+
+/**
* calc_nnode_num_from_parent - calculate nnode number.
* @c: UBIFS file-system description object
* @parent: parent nnode
@@ -328,6 +593,269 @@ static int calc_pnode_num_from_parent(const struct ubifs_info *c,
}
/**
+ * ubifs_create_dflt_lpt - create default LPT.
+ * @c: UBIFS file-system description object
+ * @main_lebs: number of main area LEBs is passed and returned here
+ * @lpt_first: LEB number of first LPT LEB
+ * @lpt_lebs: number of LEBs for LPT is passed and returned here
+ * @big_lpt: use big LPT model is passed and returned here
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
+ int *lpt_lebs, int *big_lpt)
+{
+ int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
+ int blnum, boffs, bsz, bcnt;
+ struct ubifs_pnode *pnode = NULL;
+ struct ubifs_nnode *nnode = NULL;
+ void *buf = NULL, *p;
+ struct ubifs_lpt_lprops *ltab = NULL;
+ int *lsave = NULL;
+
+ err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
+ if (err)
+ return err;
+ *lpt_lebs = c->lpt_lebs;
+
+ /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
+ c->lpt_first = lpt_first;
+ /* Needed by 'set_ltab()' */
+ c->lpt_last = lpt_first + c->lpt_lebs - 1;
+ /* Needed by 'ubifs_pack_lsave()' */
+ c->main_first = c->leb_cnt - *main_lebs;
+
+ lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
+ pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
+ nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
+ buf = vmalloc(c->leb_size);
+ ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
+ if (!pnode || !nnode || !buf || !ltab || !lsave) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ ubifs_assert(!c->ltab);
+ c->ltab = ltab; /* Needed by set_ltab */
+
+ /* Initialize LPT's own lprops */
+ for (i = 0; i < c->lpt_lebs; i++) {
+ ltab[i].free = c->leb_size;
+ ltab[i].dirty = 0;
+ ltab[i].tgc = 0;
+ ltab[i].cmt = 0;
+ }
+
+ lnum = lpt_first;
+ p = buf;
+ /* Number of leaf nodes (pnodes) */
+ cnt = c->pnode_cnt;
+
+ /*
+ * The first pnode contains the LEB properties for the LEBs that contain
+ * the root inode node and the root index node of the index tree.
+ */
+ node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
+ iopos = ALIGN(node_sz, c->min_io_size);
+ pnode->lprops[0].free = c->leb_size - iopos;
+ pnode->lprops[0].dirty = iopos - node_sz;
+ pnode->lprops[0].flags = LPROPS_INDEX;
+
+ node_sz = UBIFS_INO_NODE_SZ;
+ iopos = ALIGN(node_sz, c->min_io_size);
+ pnode->lprops[1].free = c->leb_size - iopos;
+ pnode->lprops[1].dirty = iopos - node_sz;
+
+ for (i = 2; i < UBIFS_LPT_FANOUT; i++)
+ pnode->lprops[i].free = c->leb_size;
+
+ /* Add first pnode */
+ ubifs_pack_pnode(c, p, pnode);
+ p += c->pnode_sz;
+ len = c->pnode_sz;
+ pnode->num += 1;
+
+ /* Reset pnode values for remaining pnodes */
+ pnode->lprops[0].free = c->leb_size;
+ pnode->lprops[0].dirty = 0;
+ pnode->lprops[0].flags = 0;
+
+ pnode->lprops[1].free = c->leb_size;
+ pnode->lprops[1].dirty = 0;
+
+ /*
+ * To calculate the internal node branches, we keep information about
+ * the level below.
+ */
+ blnum = lnum; /* LEB number of level below */
+ boffs = 0; /* Offset of level below */
+ bcnt = cnt; /* Number of nodes in level below */
+ bsz = c->pnode_sz; /* Size of nodes in level below */
+
+ /* Add all remaining pnodes */
+ for (i = 1; i < cnt; i++) {
+ if (len + c->pnode_sz > c->leb_size) {
+ alen = ALIGN(len, c->min_io_size);
+ set_ltab(c, lnum, c->leb_size - alen, alen - len);
+ memset(p, 0xff, alen - len);
+ err = ubifs_leb_change(c, lnum++, buf, alen);
+ if (err)
+ goto out;
+ p = buf;
+ len = 0;
+ }
+ ubifs_pack_pnode(c, p, pnode);
+ p += c->pnode_sz;
+ len += c->pnode_sz;
+ /*
+ * pnodes are simply numbered left to right starting at zero,
+ * which means the pnode number can be used easily to traverse
+ * down the tree to the corresponding pnode.
+ */
+ pnode->num += 1;
+ }
+
+ row = 0;
+ for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
+ row += 1;
+ /* Add all nnodes, one level at a time */
+ while (1) {
+ /* Number of internal nodes (nnodes) at next level */
+ cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
+ for (i = 0; i < cnt; i++) {
+ if (len + c->nnode_sz > c->leb_size) {
+ alen = ALIGN(len, c->min_io_size);
+ set_ltab(c, lnum, c->leb_size - alen,
+ alen - len);
+ memset(p, 0xff, alen - len);
+ err = ubifs_leb_change(c, lnum++, buf, alen);
+ if (err)
+ goto out;
+ p = buf;
+ len = 0;
+ }
+ /* Only 1 nnode at this level, so it is the root */
+ if (cnt == 1) {
+ c->lpt_lnum = lnum;
+ c->lpt_offs = len;
+ }
+ /* Set branches to the level below */
+ for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
+ if (bcnt) {
+ if (boffs + bsz > c->leb_size) {
+ blnum += 1;
+ boffs = 0;
+ }
+ nnode->nbranch[j].lnum = blnum;
+ nnode->nbranch[j].offs = boffs;
+ boffs += bsz;
+ bcnt--;
+ } else {
+ nnode->nbranch[j].lnum = 0;
+ nnode->nbranch[j].offs = 0;
+ }
+ }
+ nnode->num = calc_nnode_num(row, i);
+ ubifs_pack_nnode(c, p, nnode);
+ p += c->nnode_sz;
+ len += c->nnode_sz;
+ }
+ /* Only 1 nnode at this level, so it is the root */
+ if (cnt == 1)
+ break;
+ /* Update the information about the level below */
+ bcnt = cnt;
+ bsz = c->nnode_sz;
+ row -= 1;
+ }
+
+ if (*big_lpt) {
+ /* Need to add LPT's save table */
+ if (len + c->lsave_sz > c->leb_size) {
+ alen = ALIGN(len, c->min_io_size);
+ set_ltab(c, lnum, c->leb_size - alen, alen - len);
+ memset(p, 0xff, alen - len);
+ err = ubifs_leb_change(c, lnum++, buf, alen);
+ if (err)
+ goto out;
+ p = buf;
+ len = 0;
+ }
+
+ c->lsave_lnum = lnum;
+ c->lsave_offs = len;
+
+ for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
+ lsave[i] = c->main_first + i;
+ for (; i < c->lsave_cnt; i++)
+ lsave[i] = c->main_first;
+
+ ubifs_pack_lsave(c, p, lsave);
+ p += c->lsave_sz;
+ len += c->lsave_sz;
+ }
+
+ /* Need to add LPT's own LEB properties table */
+ if (len + c->ltab_sz > c->leb_size) {
+ alen = ALIGN(len, c->min_io_size);
+ set_ltab(c, lnum, c->leb_size - alen, alen - len);
+ memset(p, 0xff, alen - len);
+ err = ubifs_leb_change(c, lnum++, buf, alen);
+ if (err)
+ goto out;
+ p = buf;
+ len = 0;
+ }
+
+ c->ltab_lnum = lnum;
+ c->ltab_offs = len;
+
+ /* Update ltab before packing it */
+ len += c->ltab_sz;
+ alen = ALIGN(len, c->min_io_size);
+ set_ltab(c, lnum, c->leb_size - alen, alen - len);
+
+ ubifs_pack_ltab(c, p, ltab);
+ p += c->ltab_sz;
+
+ /* Write remaining buffer */
+ memset(p, 0xff, alen - len);
+ err = ubifs_leb_change(c, lnum, buf, alen);
+ if (err)
+ goto out;
+
+ c->nhead_lnum = lnum;
+ c->nhead_offs = ALIGN(len, c->min_io_size);
+
+ dbg_lp("space_bits %d", c->space_bits);
+ dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
+ dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
+ dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
+ dbg_lp("pcnt_bits %d", c->pcnt_bits);
+ dbg_lp("lnum_bits %d", c->lnum_bits);
+ dbg_lp("pnode_sz %d", c->pnode_sz);
+ dbg_lp("nnode_sz %d", c->nnode_sz);
+ dbg_lp("ltab_sz %d", c->ltab_sz);
+ dbg_lp("lsave_sz %d", c->lsave_sz);
+ dbg_lp("lsave_cnt %d", c->lsave_cnt);
+ dbg_lp("lpt_hght %d", c->lpt_hght);
+ dbg_lp("big_lpt %d", c->big_lpt);
+ dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
+ dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
+ dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
+ if (c->big_lpt)
+ dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
+out:
+ c->ltab = NULL;
+ kfree(lsave);
+ vfree(ltab);
+ vfree(buf);
+ kfree(nnode);
+ kfree(pnode);
+ return err;
+}
+
+/**
* update_cats - add LEB properties of a pnode to LEB category lists and heaps.
* @c: UBIFS file-system description object
* @pnode: pnode
@@ -392,7 +920,7 @@ static int check_lpt_crc(void *buf, int len)
if (crc != calc_crc) {
ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc,
calc_crc);
- dbg_dump_stack();
+ dump_stack();
return -EINVAL;
}
return 0;
@@ -415,7 +943,7 @@ static int check_lpt_type(uint8_t **addr, int *pos, int type)
if (node_type != type) {
ubifs_err("invalid type (%d) in LPT node type %d", node_type,
type);
- dbg_dump_stack();
+ dump_stack();
return -EINVAL;
}
return 0;
@@ -524,6 +1052,34 @@ static int unpack_ltab(const struct ubifs_info *c, void *buf)
return err;
}
+#ifndef __UBOOT__
+/**
+ * unpack_lsave - unpack the LPT's save table.
+ * @c: UBIFS file-system description object
+ * @buf: buffer from which to unpack
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int unpack_lsave(const struct ubifs_info *c, void *buf)
+{
+ uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
+ int i, pos = 0, err;
+
+ err = check_lpt_type(&addr, &pos, UBIFS_LPT_LSAVE);
+ if (err)
+ return err;
+ for (i = 0; i < c->lsave_cnt; i++) {
+ int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
+
+ if (lnum < c->main_first || lnum >= c->leb_cnt)
+ return -EINVAL;
+ c->lsave[i] = lnum;
+ }
+ err = check_lpt_crc(buf, c->lsave_sz);
+ return err;
+}
+#endif
+
/**
* validate_nnode - validate a nnode.
* @c: UBIFS file-system description object
@@ -662,7 +1218,7 @@ int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
if (c->big_lpt)
nnode->num = calc_nnode_num_from_parent(c, parent, iip);
} else {
- err = ubi_read(c->ubi, lnum, buf, offs, c->nnode_sz);
+ err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
if (err)
goto out;
err = ubifs_unpack_nnode(c, buf, nnode);
@@ -687,6 +1243,7 @@ int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
out:
ubifs_err("error %d reading nnode at %d:%d", err, lnum, offs);
+ dump_stack();
kfree(nnode);
return err;
}
@@ -710,10 +1267,9 @@ static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
lnum = branch->lnum;
offs = branch->offs;
pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
- if (!pnode) {
- err = -ENOMEM;
- goto out;
- }
+ if (!pnode)
+ return -ENOMEM;
+
if (lnum == 0) {
/*
* This pnode was not written which just means that the LEB
@@ -731,7 +1287,7 @@ static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
lprops->flags = ubifs_categorize_lprops(c, lprops);
}
} else {
- err = ubi_read(c->ubi, lnum, buf, offs, c->pnode_sz);
+ err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
if (err)
goto out;
err = unpack_pnode(c, buf, pnode);
@@ -752,8 +1308,9 @@ static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
out:
ubifs_err("error %d reading pnode at %d:%d", err, lnum, offs);
- dbg_dump_pnode(c, pnode, parent, iip);
- dbg_msg("calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
+ ubifs_dump_pnode(c, pnode, parent, iip);
+ dump_stack();
+ ubifs_err("calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
kfree(pnode);
return err;
}
@@ -772,7 +1329,7 @@ static int read_ltab(struct ubifs_info *c)
buf = vmalloc(c->ltab_sz);
if (!buf)
return -ENOMEM;
- err = ubi_read(c->ubi, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz);
+ err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
if (err)
goto out;
err = unpack_ltab(c, buf);
@@ -781,6 +1338,50 @@ out:
return err;
}
+#ifndef __UBOOT__
+/**
+ * read_lsave - read LPT's save table.
+ * @c: UBIFS file-system description object
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int read_lsave(struct ubifs_info *c)
+{
+ int err, i;
+ void *buf;
+
+ buf = vmalloc(c->lsave_sz);
+ if (!buf)
+ return -ENOMEM;
+ err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
+ c->lsave_sz, 1);
+ if (err)
+ goto out;
+ err = unpack_lsave(c, buf);
+ if (err)
+ goto out;
+ for (i = 0; i < c->lsave_cnt; i++) {
+ int lnum = c->lsave[i];
+ struct ubifs_lprops *lprops;
+
+ /*
+ * Due to automatic resizing, the values in the lsave table
+ * could be beyond the volume size - just ignore them.
+ */
+ if (lnum >= c->leb_cnt)
+ continue;
+ lprops = ubifs_lpt_lookup(c, lnum);
+ if (IS_ERR(lprops)) {
+ err = PTR_ERR(lprops);
+ goto out;
+ }
+ }
+out:
+ vfree(buf);
+ return err;
+}
+#endif
+
/**
* ubifs_get_nnode - get a nnode.
* @c: UBIFS file-system description object
@@ -861,13 +1462,13 @@ struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
shft -= UBIFS_LPT_FANOUT_SHIFT;
nnode = ubifs_get_nnode(c, nnode, iip);
if (IS_ERR(nnode))
- return ERR_PTR(PTR_ERR(nnode));
+ return ERR_CAST(nnode);
}
iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
shft -= UBIFS_LPT_FANOUT_SHIFT;
pnode = ubifs_get_pnode(c, nnode, iip);
if (IS_ERR(pnode))
- return ERR_PTR(PTR_ERR(pnode));
+ return ERR_CAST(pnode);
iip = (i & (UBIFS_LPT_FANOUT - 1));
dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
pnode->lprops[iip].free, pnode->lprops[iip].dirty,
@@ -990,7 +1591,7 @@ struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
nnode = c->nroot;
nnode = dirty_cow_nnode(c, nnode);
if (IS_ERR(nnode))
- return ERR_PTR(PTR_ERR(nnode));
+ return ERR_CAST(nnode);
i = lnum - c->main_first;
shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
for (h = 1; h < c->lpt_hght; h++) {
@@ -998,19 +1599,19 @@ struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
shft -= UBIFS_LPT_FANOUT_SHIFT;
nnode = ubifs_get_nnode(c, nnode, iip);
if (IS_ERR(nnode))
- return ERR_PTR(PTR_ERR(nnode));
+ return ERR_CAST(nnode);
nnode = dirty_cow_nnode(c, nnode);
if (IS_ERR(nnode))
- return ERR_PTR(PTR_ERR(nnode));
+ return ERR_CAST(nnode);
}
iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
shft -= UBIFS_LPT_FANOUT_SHIFT;
pnode = ubifs_get_pnode(c, nnode, iip);
if (IS_ERR(pnode))
- return ERR_PTR(PTR_ERR(pnode));
+ return ERR_CAST(pnode);
pnode = dirty_cow_pnode(c, pnode);
if (IS_ERR(pnode))
- return ERR_PTR(PTR_ERR(pnode));
+ return ERR_CAST(pnode);
iip = (i & (UBIFS_LPT_FANOUT - 1));
dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
pnode->lprops[iip].free, pnode->lprops[iip].dirty,
@@ -1079,6 +1680,47 @@ static int lpt_init_rd(struct ubifs_info *c)
return 0;
}
+#ifndef __UBOOT__
+/**
+ * lpt_init_wr - initialize the LPT for writing.
+ * @c: UBIFS file-system description object
+ *
+ * 'lpt_init_rd()' must have been called already.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int lpt_init_wr(struct ubifs_info *c)
+{
+ int err, i;
+
+ c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
+ if (!c->ltab_cmt)
+ return -ENOMEM;
+
+ c->lpt_buf = vmalloc(c->leb_size);
+ if (!c->lpt_buf)
+ return -ENOMEM;
+
+ if (c->big_lpt) {
+ c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
+ if (!c->lsave)
+ return -ENOMEM;
+ err = read_lsave(c);
+ if (err)
+ return err;
+ }
+
+ for (i = 0; i < c->lpt_lebs; i++)
+ if (c->ltab[i].free == c->leb_size) {
+ err = ubifs_leb_unmap(c, i + c->lpt_first);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+#endif
+
/**
* ubifs_lpt_init - initialize the LPT.
* @c: UBIFS file-system description object
@@ -1098,8 +1740,546 @@ int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
if (rd) {
err = lpt_init_rd(c);
if (err)
+ goto out_err;
+ }
+
+#ifndef __UBOOT__
+ if (wr) {
+ err = lpt_init_wr(c);
+ if (err)
+ goto out_err;
+ }
+#endif
+
+ return 0;
+
+out_err:
+#ifndef __UBOOT__
+ if (wr)
+ ubifs_lpt_free(c, 1);
+#endif
+ if (rd)
+ ubifs_lpt_free(c, 0);
+ return err;
+}
+
+/**
+ * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
+ * @nnode: where to keep a nnode
+ * @pnode: where to keep a pnode
+ * @cnode: where to keep a cnode
+ * @in_tree: is the node in the tree in memory
+ * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
+ * the tree
+ * @ptr.pnode: ditto for pnode
+ * @ptr.cnode: ditto for cnode
+ */
+struct lpt_scan_node {
+ union {
+ struct ubifs_nnode nnode;
+ struct ubifs_pnode pnode;
+ struct ubifs_cnode cnode;
+ };
+ int in_tree;
+ union {
+ struct ubifs_nnode *nnode;
+ struct ubifs_pnode *pnode;
+ struct ubifs_cnode *cnode;
+ } ptr;
+};
+
+/**
+ * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
+ * @c: the UBIFS file-system description object
+ * @path: where to put the nnode
+ * @parent: parent of the nnode
+ * @iip: index in parent of the nnode
+ *
+ * This function returns a pointer to the nnode on success or a negative error
+ * code on failure.
+ */
+static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
+ struct lpt_scan_node *path,
+ struct ubifs_nnode *parent, int iip)
+{
+ struct ubifs_nbranch *branch;
+ struct ubifs_nnode *nnode;
+ void *buf = c->lpt_nod_buf;
+ int err;
+
+ branch = &parent->nbranch[iip];
+ nnode = branch->nnode;
+ if (nnode) {
+ path->in_tree = 1;
+ path->ptr.nnode = nnode;
+ return nnode;
+ }
+ nnode = &path->nnode;
+ path->in_tree = 0;
+ path->ptr.nnode = nnode;
+ memset(nnode, 0, sizeof(struct ubifs_nnode));
+ if (branch->lnum == 0) {
+ /*
+ * This nnode was not written which just means that the LEB
+ * properties in the subtree below it describe empty LEBs. We
+ * make the nnode as though we had read it, which in fact means
+ * doing almost nothing.
+ */
+ if (c->big_lpt)
+ nnode->num = calc_nnode_num_from_parent(c, parent, iip);
+ } else {
+ err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
+ c->nnode_sz, 1);
+ if (err)
+ return ERR_PTR(err);
+ err = ubifs_unpack_nnode(c, buf, nnode);
+ if (err)
+ return ERR_PTR(err);
+ }
+ err = validate_nnode(c, nnode, parent, iip);
+ if (err)
+ return ERR_PTR(err);
+ if (!c->big_lpt)
+ nnode->num = calc_nnode_num_from_parent(c, parent, iip);
+ nnode->level = parent->level - 1;
+ nnode->parent = parent;
+ nnode->iip = iip;
+ return nnode;
+}
+
+/**
+ * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
+ * @c: the UBIFS file-system description object
+ * @path: where to put the pnode
+ * @parent: parent of the pnode
+ * @iip: index in parent of the pnode
+ *
+ * This function returns a pointer to the pnode on success or a negative error
+ * code on failure.
+ */
+static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
+ struct lpt_scan_node *path,
+ struct ubifs_nnode *parent, int iip)
+{
+ struct ubifs_nbranch *branch;
+ struct ubifs_pnode *pnode;
+ void *buf = c->lpt_nod_buf;
+ int err;
+
+ branch = &parent->nbranch[iip];
+ pnode = branch->pnode;
+ if (pnode) {
+ path->in_tree = 1;
+ path->ptr.pnode = pnode;
+ return pnode;
+ }
+ pnode = &path->pnode;
+ path->in_tree = 0;
+ path->ptr.pnode = pnode;
+ memset(pnode, 0, sizeof(struct ubifs_pnode));
+ if (branch->lnum == 0) {
+ /*
+ * This pnode was not written which just means that the LEB
+ * properties in it describe empty LEBs. We make the pnode as
+ * though we had read it.
+ */
+ int i;
+
+ if (c->big_lpt)
+ pnode->num = calc_pnode_num_from_parent(c, parent, iip);
+ for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
+ struct ubifs_lprops * const lprops = &pnode->lprops[i];
+
+ lprops->free = c->leb_size;
+ lprops->flags = ubifs_categorize_lprops(c, lprops);
+ }
+ } else {
+ ubifs_assert(branch->lnum >= c->lpt_first &&
+ branch->lnum <= c->lpt_last);
+ ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
+ err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
+ c->pnode_sz, 1);
+ if (err)
+ return ERR_PTR(err);
+ err = unpack_pnode(c, buf, pnode);
+ if (err)
+ return ERR_PTR(err);
+ }
+ err = validate_pnode(c, pnode, parent, iip);
+ if (err)
+ return ERR_PTR(err);
+ if (!c->big_lpt)
+ pnode->num = calc_pnode_num_from_parent(c, parent, iip);
+ pnode->parent = parent;
+ pnode->iip = iip;
+ set_pnode_lnum(c, pnode);
+ return pnode;
+}
+
+/**
+ * ubifs_lpt_scan_nolock - scan the LPT.
+ * @c: the UBIFS file-system description object
+ * @start_lnum: LEB number from which to start scanning
+ * @end_lnum: LEB number at which to stop scanning
+ * @scan_cb: callback function called for each lprops
+ * @data: data to be passed to the callback function
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
+ ubifs_lpt_scan_callback scan_cb, void *data)
+{
+ int err = 0, i, h, iip, shft;
+ struct ubifs_nnode *nnode;
+ struct ubifs_pnode *pnode;
+ struct lpt_scan_node *path;
+
+ if (start_lnum == -1) {
+ start_lnum = end_lnum + 1;
+ if (start_lnum >= c->leb_cnt)
+ start_lnum = c->main_first;
+ }
+
+ ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
+ ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
+
+ if (!c->nroot) {
+ err = ubifs_read_nnode(c, NULL, 0);
+ if (err)
return err;
}
+ path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
+ GFP_NOFS);
+ if (!path)
+ return -ENOMEM;
+
+ path[0].ptr.nnode = c->nroot;
+ path[0].in_tree = 1;
+again:
+ /* Descend to the pnode containing start_lnum */
+ nnode = c->nroot;
+ i = start_lnum - c->main_first;
+ shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
+ for (h = 1; h < c->lpt_hght; h++) {
+ iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
+ shft -= UBIFS_LPT_FANOUT_SHIFT;
+ nnode = scan_get_nnode(c, path + h, nnode, iip);
+ if (IS_ERR(nnode)) {
+ err = PTR_ERR(nnode);
+ goto out;
+ }
+ }
+ iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
+ shft -= UBIFS_LPT_FANOUT_SHIFT;
+ pnode = scan_get_pnode(c, path + h, nnode, iip);
+ if (IS_ERR(pnode)) {
+ err = PTR_ERR(pnode);
+ goto out;
+ }
+ iip = (i & (UBIFS_LPT_FANOUT - 1));
+
+ /* Loop for each lprops */
+ while (1) {
+ struct ubifs_lprops *lprops = &pnode->lprops[iip];
+ int ret, lnum = lprops->lnum;
+
+ ret = scan_cb(c, lprops, path[h].in_tree, data);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ if (ret & LPT_SCAN_ADD) {
+ /* Add all the nodes in path to the tree in memory */
+ for (h = 1; h < c->lpt_hght; h++) {
+ const size_t sz = sizeof(struct ubifs_nnode);
+ struct ubifs_nnode *parent;
+
+ if (path[h].in_tree)
+ continue;
+ nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
+ if (!nnode) {
+ err = -ENOMEM;
+ goto out;
+ }
+ parent = nnode->parent;
+ parent->nbranch[nnode->iip].nnode = nnode;
+ path[h].ptr.nnode = nnode;
+ path[h].in_tree = 1;
+ path[h + 1].cnode.parent = nnode;
+ }
+ if (path[h].in_tree)
+ ubifs_ensure_cat(c, lprops);
+ else {
+ const size_t sz = sizeof(struct ubifs_pnode);
+ struct ubifs_nnode *parent;
+
+ pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
+ if (!pnode) {
+ err = -ENOMEM;
+ goto out;
+ }
+ parent = pnode->parent;
+ parent->nbranch[pnode->iip].pnode = pnode;
+ path[h].ptr.pnode = pnode;
+ path[h].in_tree = 1;
+ update_cats(c, pnode);
+ c->pnodes_have += 1;
+ }
+ err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
+ c->nroot, 0, 0);
+ if (err)
+ goto out;
+ err = dbg_check_cats(c);
+ if (err)
+ goto out;
+ }
+ if (ret & LPT_SCAN_STOP) {
+ err = 0;
+ break;
+ }
+ /* Get the next lprops */
+ if (lnum == end_lnum) {
+ /*
+ * We got to the end without finding what we were
+ * looking for
+ */
+ err = -ENOSPC;
+ goto out;
+ }
+ if (lnum + 1 >= c->leb_cnt) {
+ /* Wrap-around to the beginning */
+ start_lnum = c->main_first;
+ goto again;
+ }
+ if (iip + 1 < UBIFS_LPT_FANOUT) {
+ /* Next lprops is in the same pnode */
+ iip += 1;
+ continue;
+ }
+ /* We need to get the next pnode. Go up until we can go right */
+ iip = pnode->iip;
+ while (1) {
+ h -= 1;
+ ubifs_assert(h >= 0);
+ nnode = path[h].ptr.nnode;
+ if (iip + 1 < UBIFS_LPT_FANOUT)
+ break;
+ iip = nnode->iip;
+ }
+ /* Go right */
+ iip += 1;
+ /* Descend to the pnode */
+ h += 1;
+ for (; h < c->lpt_hght; h++) {
+ nnode = scan_get_nnode(c, path + h, nnode, iip);
+ if (IS_ERR(nnode)) {
+ err = PTR_ERR(nnode);
+ goto out;
+ }
+ iip = 0;
+ }
+ pnode = scan_get_pnode(c, path + h, nnode, iip);
+ if (IS_ERR(pnode)) {
+ err = PTR_ERR(pnode);
+ goto out;
+ }
+ iip = 0;
+ }
+out:
+ kfree(path);
+ return err;
+}
+
+/**
+ * dbg_chk_pnode - check a pnode.
+ * @c: the UBIFS file-system description object
+ * @pnode: pnode to check
+ * @col: pnode column
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
+ int col)
+{
+ int i;
+
+ if (pnode->num != col) {
+ ubifs_err("pnode num %d expected %d parent num %d iip %d",
+ pnode->num, col, pnode->parent->num, pnode->iip);
+ return -EINVAL;
+ }
+ for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
+ struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
+ int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
+ c->main_first;
+ int found, cat = lprops->flags & LPROPS_CAT_MASK;
+ struct ubifs_lpt_heap *heap;
+ struct list_head *list = NULL;
+
+ if (lnum >= c->leb_cnt)
+ continue;
+ if (lprops->lnum != lnum) {
+ ubifs_err("bad LEB number %d expected %d",
+ lprops->lnum, lnum);
+ return -EINVAL;
+ }
+ if (lprops->flags & LPROPS_TAKEN) {
+ if (cat != LPROPS_UNCAT) {
+ ubifs_err("LEB %d taken but not uncat %d",
+ lprops->lnum, cat);
+ return -EINVAL;
+ }
+ continue;
+ }
+ if (lprops->flags & LPROPS_INDEX) {
+ switch (cat) {
+ case LPROPS_UNCAT:
+ case LPROPS_DIRTY_IDX:
+ case LPROPS_FRDI_IDX:
+ break;
+ default:
+ ubifs_err("LEB %d index but cat %d",
+ lprops->lnum, cat);
+ return -EINVAL;
+ }
+ } else {
+ switch (cat) {
+ case LPROPS_UNCAT:
+ case LPROPS_DIRTY:
+ case LPROPS_FREE:
+ case LPROPS_EMPTY:
+ case LPROPS_FREEABLE:
+ break;
+ default:
+ ubifs_err("LEB %d not index but cat %d",
+ lprops->lnum, cat);
+ return -EINVAL;
+ }
+ }
+ switch (cat) {
+ case LPROPS_UNCAT:
+ list = &c->uncat_list;
+ break;
+ case LPROPS_EMPTY:
+ list = &c->empty_list;
+ break;
+ case LPROPS_FREEABLE:
+ list = &c->freeable_list;
+ break;
+ case LPROPS_FRDI_IDX:
+ list = &c->frdi_idx_list;
+ break;
+ }
+ found = 0;
+ switch (cat) {
+ case LPROPS_DIRTY:
+ case LPROPS_DIRTY_IDX:
+ case LPROPS_FREE:
+ heap = &c->lpt_heap[cat - 1];
+ if (lprops->hpos < heap->cnt &&
+ heap->arr[lprops->hpos] == lprops)
+ found = 1;
+ break;
+ case LPROPS_UNCAT:
+ case LPROPS_EMPTY:
+ case LPROPS_FREEABLE:
+ case LPROPS_FRDI_IDX:
+ list_for_each_entry(lp, list, list)
+ if (lprops == lp) {
+ found = 1;
+ break;
+ }
+ break;
+ }
+ if (!found) {
+ ubifs_err("LEB %d cat %d not found in cat heap/list",
+ lprops->lnum, cat);
+ return -EINVAL;
+ }
+ switch (cat) {
+ case LPROPS_EMPTY:
+ if (lprops->free != c->leb_size) {
+ ubifs_err("LEB %d cat %d free %d dirty %d",
+ lprops->lnum, cat, lprops->free,
+ lprops->dirty);
+ return -EINVAL;
+ }
+ case LPROPS_FREEABLE:
+ case LPROPS_FRDI_IDX:
+ if (lprops->free + lprops->dirty != c->leb_size) {
+ ubifs_err("LEB %d cat %d free %d dirty %d",
+ lprops->lnum, cat, lprops->free,
+ lprops->dirty);
+ return -EINVAL;
+ }
+ }
+ }
+ return 0;
+}
+
+/**
+ * dbg_check_lpt_nodes - check nnodes and pnodes.
+ * @c: the UBIFS file-system description object
+ * @cnode: next cnode (nnode or pnode) to check
+ * @row: row of cnode (root is zero)
+ * @col: column of cnode (leftmost is zero)
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
+ int row, int col)
+{
+ struct ubifs_nnode *nnode, *nn;
+ struct ubifs_cnode *cn;
+ int num, iip = 0, err;
+
+ if (!dbg_is_chk_lprops(c))
+ return 0;
+
+ while (cnode) {
+ ubifs_assert(row >= 0);
+ nnode = cnode->parent;
+ if (cnode->level) {
+ /* cnode is a nnode */
+ num = calc_nnode_num(row, col);
+ if (cnode->num != num) {
+ ubifs_err("nnode num %d expected %d parent num %d iip %d",
+ cnode->num, num,
+ (nnode ? nnode->num : 0), cnode->iip);
+ return -EINVAL;
+ }
+ nn = (struct ubifs_nnode *)cnode;
+ while (iip < UBIFS_LPT_FANOUT) {
+ cn = nn->nbranch[iip].cnode;
+ if (cn) {
+ /* Go down */
+ row += 1;
+ col <<= UBIFS_LPT_FANOUT_SHIFT;
+ col += iip;
+ iip = 0;
+ cnode = cn;
+ break;
+ }
+ /* Go right */
+ iip += 1;
+ }
+ if (iip < UBIFS_LPT_FANOUT)
+ continue;
+ } else {
+ struct ubifs_pnode *pnode;
+
+ /* cnode is a pnode */
+ pnode = (struct ubifs_pnode *)cnode;
+ err = dbg_chk_pnode(c, pnode, col);
+ if (err)
+ return err;
+ }
+ /* Go up and to the right */
+ row -= 1;
+ col >>= UBIFS_LPT_FANOUT_SHIFT;
+ iip = cnode->iip + 1;
+ cnode = (struct ubifs_cnode *)nnode;
+ }
return 0;
}
diff --git a/fs/ubifs/lpt_commit.c b/fs/ubifs/lpt_commit.c
index c0af818..cad422e 100644
--- a/fs/ubifs/lpt_commit.c
+++ b/fs/ubifs/lpt_commit.c
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Adrian Hunter
* Artem Bityutskiy (Битюцкий Артём)
@@ -25,9 +14,1284 @@
* subsystem.
*/
+#define __UBOOT__
+#ifndef __UBOOT__
+#include <linux/crc16.h>
+#include <linux/slab.h>
+#include <linux/random.h>
+#else
+#include <linux/compat.h>
+#include <linux/err.h>
#include "crc16.h"
+#endif
#include "ubifs.h"
+#ifndef __UBOOT__
+static int dbg_populate_lsave(struct ubifs_info *c);
+#endif
+
+/**
+ * first_dirty_cnode - find first dirty cnode.
+ * @c: UBIFS file-system description object
+ * @nnode: nnode at which to start
+ *
+ * This function returns the first dirty cnode or %NULL if there is not one.
+ */
+static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
+{
+ ubifs_assert(nnode);
+ while (1) {
+ int i, cont = 0;
+
+ for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
+ struct ubifs_cnode *cnode;
+
+ cnode = nnode->nbranch[i].cnode;
+ if (cnode &&
+ test_bit(DIRTY_CNODE, &cnode->flags)) {
+ if (cnode->level == 0)
+ return cnode;
+ nnode = (struct ubifs_nnode *)cnode;
+ cont = 1;
+ break;
+ }
+ }
+ if (!cont)
+ return (struct ubifs_cnode *)nnode;
+ }
+}
+
+/**
+ * next_dirty_cnode - find next dirty cnode.
+ * @cnode: cnode from which to begin searching
+ *
+ * This function returns the next dirty cnode or %NULL if there is not one.
+ */
+static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
+{
+ struct ubifs_nnode *nnode;
+ int i;
+
+ ubifs_assert(cnode);
+ nnode = cnode->parent;
+ if (!nnode)
+ return NULL;
+ for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
+ cnode = nnode->nbranch[i].cnode;
+ if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
+ if (cnode->level == 0)
+ return cnode; /* cnode is a pnode */
+ /* cnode is a nnode */
+ return first_dirty_cnode((struct ubifs_nnode *)cnode);
+ }
+ }
+ return (struct ubifs_cnode *)nnode;
+}
+
+/**
+ * get_cnodes_to_commit - create list of dirty cnodes to commit.
+ * @c: UBIFS file-system description object
+ *
+ * This function returns the number of cnodes to commit.
+ */
+static int get_cnodes_to_commit(struct ubifs_info *c)
+{
+ struct ubifs_cnode *cnode, *cnext;
+ int cnt = 0;
+
+ if (!c->nroot)
+ return 0;
+
+ if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
+ return 0;
+
+ c->lpt_cnext = first_dirty_cnode(c->nroot);
+ cnode = c->lpt_cnext;
+ if (!cnode)
+ return 0;
+ cnt += 1;
+ while (1) {
+ ubifs_assert(!test_bit(COW_CNODE, &cnode->flags));
+ __set_bit(COW_CNODE, &cnode->flags);
+ cnext = next_dirty_cnode(cnode);
+ if (!cnext) {
+ cnode->cnext = c->lpt_cnext;
+ break;
+ }
+ cnode->cnext = cnext;
+ cnode = cnext;
+ cnt += 1;
+ }
+ dbg_cmt("committing %d cnodes", cnt);
+ dbg_lp("committing %d cnodes", cnt);
+ ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
+ return cnt;
+}
+
+/**
+ * upd_ltab - update LPT LEB properties.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number
+ * @free: amount of free space
+ * @dirty: amount of dirty space to add
+ */
+static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
+{
+ dbg_lp("LEB %d free %d dirty %d to %d +%d",
+ lnum, c->ltab[lnum - c->lpt_first].free,
+ c->ltab[lnum - c->lpt_first].dirty, free, dirty);
+ ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
+ c->ltab[lnum - c->lpt_first].free = free;
+ c->ltab[lnum - c->lpt_first].dirty += dirty;
+}
+
+/**
+ * alloc_lpt_leb - allocate an LPT LEB that is empty.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number is passed and returned here
+ *
+ * This function finds the next empty LEB in the ltab starting from @lnum. If a
+ * an empty LEB is found it is returned in @lnum and the function returns %0.
+ * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
+ * never to run out of space.
+ */
+static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
+{
+ int i, n;
+
+ n = *lnum - c->lpt_first + 1;
+ for (i = n; i < c->lpt_lebs; i++) {
+ if (c->ltab[i].tgc || c->ltab[i].cmt)
+ continue;
+ if (c->ltab[i].free == c->leb_size) {
+ c->ltab[i].cmt = 1;
+ *lnum = i + c->lpt_first;
+ return 0;
+ }
+ }
+
+ for (i = 0; i < n; i++) {
+ if (c->ltab[i].tgc || c->ltab[i].cmt)
+ continue;
+ if (c->ltab[i].free == c->leb_size) {
+ c->ltab[i].cmt = 1;
+ *lnum = i + c->lpt_first;
+ return 0;
+ }
+ }
+ return -ENOSPC;
+}
+
+/**
+ * layout_cnodes - layout cnodes for commit.
+ * @c: UBIFS file-system description object
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int layout_cnodes(struct ubifs_info *c)
+{
+ int lnum, offs, len, alen, done_lsave, done_ltab, err;
+ struct ubifs_cnode *cnode;
+
+ err = dbg_chk_lpt_sz(c, 0, 0);
+ if (err)
+ return err;
+ cnode = c->lpt_cnext;
+ if (!cnode)
+ return 0;
+ lnum = c->nhead_lnum;
+ offs = c->nhead_offs;
+ /* Try to place lsave and ltab nicely */
+ done_lsave = !c->big_lpt;
+ done_ltab = 0;
+ if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
+ done_lsave = 1;
+ c->lsave_lnum = lnum;
+ c->lsave_offs = offs;
+ offs += c->lsave_sz;
+ dbg_chk_lpt_sz(c, 1, c->lsave_sz);
+ }
+
+ if (offs + c->ltab_sz <= c->leb_size) {
+ done_ltab = 1;
+ c->ltab_lnum = lnum;
+ c->ltab_offs = offs;
+ offs += c->ltab_sz;
+ dbg_chk_lpt_sz(c, 1, c->ltab_sz);
+ }
+
+ do {
+ if (cnode->level) {
+ len = c->nnode_sz;
+ c->dirty_nn_cnt -= 1;
+ } else {
+ len = c->pnode_sz;
+ c->dirty_pn_cnt -= 1;
+ }
+ while (offs + len > c->leb_size) {
+ alen = ALIGN(offs, c->min_io_size);
+ upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
+ dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
+ err = alloc_lpt_leb(c, &lnum);
+ if (err)
+ goto no_space;
+ offs = 0;
+ ubifs_assert(lnum >= c->lpt_first &&
+ lnum <= c->lpt_last);
+ /* Try to place lsave and ltab nicely */
+ if (!done_lsave) {
+ done_lsave = 1;
+ c->lsave_lnum = lnum;
+ c->lsave_offs = offs;
+ offs += c->lsave_sz;
+ dbg_chk_lpt_sz(c, 1, c->lsave_sz);
+ continue;
+ }
+ if (!done_ltab) {
+ done_ltab = 1;
+ c->ltab_lnum = lnum;
+ c->ltab_offs = offs;
+ offs += c->ltab_sz;
+ dbg_chk_lpt_sz(c, 1, c->ltab_sz);
+ continue;
+ }
+ break;
+ }
+ if (cnode->parent) {
+ cnode->parent->nbranch[cnode->iip].lnum = lnum;
+ cnode->parent->nbranch[cnode->iip].offs = offs;
+ } else {
+ c->lpt_lnum = lnum;
+ c->lpt_offs = offs;
+ }
+ offs += len;
+ dbg_chk_lpt_sz(c, 1, len);
+ cnode = cnode->cnext;
+ } while (cnode && cnode != c->lpt_cnext);
+
+ /* Make sure to place LPT's save table */
+ if (!done_lsave) {
+ if (offs + c->lsave_sz > c->leb_size) {
+ alen = ALIGN(offs, c->min_io_size);
+ upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
+ dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
+ err = alloc_lpt_leb(c, &lnum);
+ if (err)
+ goto no_space;
+ offs = 0;
+ ubifs_assert(lnum >= c->lpt_first &&
+ lnum <= c->lpt_last);
+ }
+ done_lsave = 1;
+ c->lsave_lnum = lnum;
+ c->lsave_offs = offs;
+ offs += c->lsave_sz;
+ dbg_chk_lpt_sz(c, 1, c->lsave_sz);
+ }
+
+ /* Make sure to place LPT's own lprops table */
+ if (!done_ltab) {
+ if (offs + c->ltab_sz > c->leb_size) {
+ alen = ALIGN(offs, c->min_io_size);
+ upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
+ dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
+ err = alloc_lpt_leb(c, &lnum);
+ if (err)
+ goto no_space;
+ offs = 0;
+ ubifs_assert(lnum >= c->lpt_first &&
+ lnum <= c->lpt_last);
+ }
+ done_ltab = 1;
+ c->ltab_lnum = lnum;
+ c->ltab_offs = offs;
+ offs += c->ltab_sz;
+ dbg_chk_lpt_sz(c, 1, c->ltab_sz);
+ }
+
+ alen = ALIGN(offs, c->min_io_size);
+ upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
+ dbg_chk_lpt_sz(c, 4, alen - offs);
+ err = dbg_chk_lpt_sz(c, 3, alen);
+ if (err)
+ return err;
+ return 0;
+
+no_space:
+ ubifs_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
+ lnum, offs, len, done_ltab, done_lsave);
+ ubifs_dump_lpt_info(c);
+ ubifs_dump_lpt_lebs(c);
+ dump_stack();
+ return err;
+}
+
+#ifndef __UBOOT__
+/**
+ * realloc_lpt_leb - allocate an LPT LEB that is empty.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number is passed and returned here
+ *
+ * This function duplicates exactly the results of the function alloc_lpt_leb.
+ * It is used during end commit to reallocate the same LEB numbers that were
+ * allocated by alloc_lpt_leb during start commit.
+ *
+ * This function finds the next LEB that was allocated by the alloc_lpt_leb
+ * function starting from @lnum. If a LEB is found it is returned in @lnum and
+ * the function returns %0. Otherwise the function returns -ENOSPC.
+ * Note however, that LPT is designed never to run out of space.
+ */
+static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
+{
+ int i, n;
+
+ n = *lnum - c->lpt_first + 1;
+ for (i = n; i < c->lpt_lebs; i++)
+ if (c->ltab[i].cmt) {
+ c->ltab[i].cmt = 0;
+ *lnum = i + c->lpt_first;
+ return 0;
+ }
+
+ for (i = 0; i < n; i++)
+ if (c->ltab[i].cmt) {
+ c->ltab[i].cmt = 0;
+ *lnum = i + c->lpt_first;
+ return 0;
+ }
+ return -ENOSPC;
+}
+
+/**
+ * write_cnodes - write cnodes for commit.
+ * @c: UBIFS file-system description object
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int write_cnodes(struct ubifs_info *c)
+{
+ int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
+ struct ubifs_cnode *cnode;
+ void *buf = c->lpt_buf;
+
+ cnode = c->lpt_cnext;
+ if (!cnode)
+ return 0;
+ lnum = c->nhead_lnum;
+ offs = c->nhead_offs;
+ from = offs;
+ /* Ensure empty LEB is unmapped */
+ if (offs == 0) {
+ err = ubifs_leb_unmap(c, lnum);
+ if (err)
+ return err;
+ }
+ /* Try to place lsave and ltab nicely */
+ done_lsave = !c->big_lpt;
+ done_ltab = 0;
+ if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
+ done_lsave = 1;
+ ubifs_pack_lsave(c, buf + offs, c->lsave);
+ offs += c->lsave_sz;
+ dbg_chk_lpt_sz(c, 1, c->lsave_sz);
+ }
+
+ if (offs + c->ltab_sz <= c->leb_size) {
+ done_ltab = 1;
+ ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
+ offs += c->ltab_sz;
+ dbg_chk_lpt_sz(c, 1, c->ltab_sz);
+ }
+
+ /* Loop for each cnode */
+ do {
+ if (cnode->level)
+ len = c->nnode_sz;
+ else
+ len = c->pnode_sz;
+ while (offs + len > c->leb_size) {
+ wlen = offs - from;
+ if (wlen) {
+ alen = ALIGN(wlen, c->min_io_size);
+ memset(buf + offs, 0xff, alen - wlen);
+ err = ubifs_leb_write(c, lnum, buf + from, from,
+ alen);
+ if (err)
+ return err;
+ }
+ dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
+ err = realloc_lpt_leb(c, &lnum);
+ if (err)
+ goto no_space;
+ offs = from = 0;
+ ubifs_assert(lnum >= c->lpt_first &&
+ lnum <= c->lpt_last);
+ err = ubifs_leb_unmap(c, lnum);
+ if (err)
+ return err;
+ /* Try to place lsave and ltab nicely */
+ if (!done_lsave) {
+ done_lsave = 1;
+ ubifs_pack_lsave(c, buf + offs, c->lsave);
+ offs += c->lsave_sz;
+ dbg_chk_lpt_sz(c, 1, c->lsave_sz);
+ continue;
+ }
+ if (!done_ltab) {
+ done_ltab = 1;
+ ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
+ offs += c->ltab_sz;
+ dbg_chk_lpt_sz(c, 1, c->ltab_sz);
+ continue;
+ }
+ break;
+ }
+ if (cnode->level)
+ ubifs_pack_nnode(c, buf + offs,
+ (struct ubifs_nnode *)cnode);
+ else
+ ubifs_pack_pnode(c, buf + offs,
+ (struct ubifs_pnode *)cnode);
+ /*
+ * The reason for the barriers is the same as in case of TNC.
+ * See comment in 'write_index()'. 'dirty_cow_nnode()' and
+ * 'dirty_cow_pnode()' are the functions for which this is
+ * important.
+ */
+ clear_bit(DIRTY_CNODE, &cnode->flags);
+ smp_mb__before_clear_bit();
+ clear_bit(COW_CNODE, &cnode->flags);
+ smp_mb__after_clear_bit();
+ offs += len;
+ dbg_chk_lpt_sz(c, 1, len);
+ cnode = cnode->cnext;
+ } while (cnode && cnode != c->lpt_cnext);
+
+ /* Make sure to place LPT's save table */
+ if (!done_lsave) {
+ if (offs + c->lsave_sz > c->leb_size) {
+ wlen = offs - from;
+ alen = ALIGN(wlen, c->min_io_size);
+ memset(buf + offs, 0xff, alen - wlen);
+ err = ubifs_leb_write(c, lnum, buf + from, from, alen);
+ if (err)
+ return err;
+ dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
+ err = realloc_lpt_leb(c, &lnum);
+ if (err)
+ goto no_space;
+ offs = from = 0;
+ ubifs_assert(lnum >= c->lpt_first &&
+ lnum <= c->lpt_last);
+ err = ubifs_leb_unmap(c, lnum);
+ if (err)
+ return err;
+ }
+ done_lsave = 1;
+ ubifs_pack_lsave(c, buf + offs, c->lsave);
+ offs += c->lsave_sz;
+ dbg_chk_lpt_sz(c, 1, c->lsave_sz);
+ }
+
+ /* Make sure to place LPT's own lprops table */
+ if (!done_ltab) {
+ if (offs + c->ltab_sz > c->leb_size) {
+ wlen = offs - from;
+ alen = ALIGN(wlen, c->min_io_size);
+ memset(buf + offs, 0xff, alen - wlen);
+ err = ubifs_leb_write(c, lnum, buf + from, from, alen);
+ if (err)
+ return err;
+ dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
+ err = realloc_lpt_leb(c, &lnum);
+ if (err)
+ goto no_space;
+ offs = from = 0;
+ ubifs_assert(lnum >= c->lpt_first &&
+ lnum <= c->lpt_last);
+ err = ubifs_leb_unmap(c, lnum);
+ if (err)
+ return err;
+ }
+ done_ltab = 1;
+ ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
+ offs += c->ltab_sz;
+ dbg_chk_lpt_sz(c, 1, c->ltab_sz);
+ }
+
+ /* Write remaining data in buffer */
+ wlen = offs - from;
+ alen = ALIGN(wlen, c->min_io_size);
+ memset(buf + offs, 0xff, alen - wlen);
+ err = ubifs_leb_write(c, lnum, buf + from, from, alen);
+ if (err)
+ return err;
+
+ dbg_chk_lpt_sz(c, 4, alen - wlen);
+ err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
+ if (err)
+ return err;
+
+ c->nhead_lnum = lnum;
+ c->nhead_offs = ALIGN(offs, c->min_io_size);
+
+ dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
+ dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
+ dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
+ if (c->big_lpt)
+ dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
+
+ return 0;
+
+no_space:
+ ubifs_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
+ lnum, offs, len, done_ltab, done_lsave);
+ ubifs_dump_lpt_info(c);
+ ubifs_dump_lpt_lebs(c);
+ dump_stack();
+ return err;
+}
+#endif
+
+/**
+ * next_pnode_to_dirty - find next pnode to dirty.
+ * @c: UBIFS file-system description object
+ * @pnode: pnode
+ *
+ * This function returns the next pnode to dirty or %NULL if there are no more
+ * pnodes. Note that pnodes that have never been written (lnum == 0) are
+ * skipped.
+ */
+static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
+ struct ubifs_pnode *pnode)
+{
+ struct ubifs_nnode *nnode;
+ int iip;
+
+ /* Try to go right */
+ nnode = pnode->parent;
+ for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
+ if (nnode->nbranch[iip].lnum)
+ return ubifs_get_pnode(c, nnode, iip);
+ }
+
+ /* Go up while can't go right */
+ do {
+ iip = nnode->iip + 1;
+ nnode = nnode->parent;
+ if (!nnode)
+ return NULL;
+ for (; iip < UBIFS_LPT_FANOUT; iip++) {
+ if (nnode->nbranch[iip].lnum)
+ break;
+ }
+ } while (iip >= UBIFS_LPT_FANOUT);
+
+ /* Go right */
+ nnode = ubifs_get_nnode(c, nnode, iip);
+ if (IS_ERR(nnode))
+ return (void *)nnode;
+
+ /* Go down to level 1 */
+ while (nnode->level > 1) {
+ for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
+ if (nnode->nbranch[iip].lnum)
+ break;
+ }
+ if (iip >= UBIFS_LPT_FANOUT) {
+ /*
+ * Should not happen, but we need to keep going
+ * if it does.
+ */
+ iip = 0;
+ }
+ nnode = ubifs_get_nnode(c, nnode, iip);
+ if (IS_ERR(nnode))
+ return (void *)nnode;
+ }
+
+ for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
+ if (nnode->nbranch[iip].lnum)
+ break;
+ if (iip >= UBIFS_LPT_FANOUT)
+ /* Should not happen, but we need to keep going if it does */
+ iip = 0;
+ return ubifs_get_pnode(c, nnode, iip);
+}
+
+/**
+ * pnode_lookup - lookup a pnode in the LPT.
+ * @c: UBIFS file-system description object
+ * @i: pnode number (0 to main_lebs - 1)
+ *
+ * This function returns a pointer to the pnode on success or a negative
+ * error code on failure.
+ */
+static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
+{
+ int err, h, iip, shft;
+ struct ubifs_nnode *nnode;
+
+ if (!c->nroot) {
+ err = ubifs_read_nnode(c, NULL, 0);
+ if (err)
+ return ERR_PTR(err);
+ }
+ i <<= UBIFS_LPT_FANOUT_SHIFT;
+ nnode = c->nroot;
+ shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
+ for (h = 1; h < c->lpt_hght; h++) {
+ iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
+ shft -= UBIFS_LPT_FANOUT_SHIFT;
+ nnode = ubifs_get_nnode(c, nnode, iip);
+ if (IS_ERR(nnode))
+ return ERR_CAST(nnode);
+ }
+ iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
+ return ubifs_get_pnode(c, nnode, iip);
+}
+
+/**
+ * add_pnode_dirt - add dirty space to LPT LEB properties.
+ * @c: UBIFS file-system description object
+ * @pnode: pnode for which to add dirt
+ */
+static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
+{
+ ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
+ c->pnode_sz);
+}
+
+/**
+ * do_make_pnode_dirty - mark a pnode dirty.
+ * @c: UBIFS file-system description object
+ * @pnode: pnode to mark dirty
+ */
+static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
+{
+ /* Assumes cnext list is empty i.e. not called during commit */
+ if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
+ struct ubifs_nnode *nnode;
+
+ c->dirty_pn_cnt += 1;
+ add_pnode_dirt(c, pnode);
+ /* Mark parent and ancestors dirty too */
+ nnode = pnode->parent;
+ while (nnode) {
+ if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
+ c->dirty_nn_cnt += 1;
+ ubifs_add_nnode_dirt(c, nnode);
+ nnode = nnode->parent;
+ } else
+ break;
+ }
+ }
+}
+
+/**
+ * make_tree_dirty - mark the entire LEB properties tree dirty.
+ * @c: UBIFS file-system description object
+ *
+ * This function is used by the "small" LPT model to cause the entire LEB
+ * properties tree to be written. The "small" LPT model does not use LPT
+ * garbage collection because it is more efficient to write the entire tree
+ * (because it is small).
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int make_tree_dirty(struct ubifs_info *c)
+{
+ struct ubifs_pnode *pnode;
+
+ pnode = pnode_lookup(c, 0);
+ if (IS_ERR(pnode))
+ return PTR_ERR(pnode);
+
+ while (pnode) {
+ do_make_pnode_dirty(c, pnode);
+ pnode = next_pnode_to_dirty(c, pnode);
+ if (IS_ERR(pnode))
+ return PTR_ERR(pnode);
+ }
+ return 0;
+}
+
+/**
+ * need_write_all - determine if the LPT area is running out of free space.
+ * @c: UBIFS file-system description object
+ *
+ * This function returns %1 if the LPT area is running out of free space and %0
+ * if it is not.
+ */
+static int need_write_all(struct ubifs_info *c)
+{
+ long long free = 0;
+ int i;
+
+ for (i = 0; i < c->lpt_lebs; i++) {
+ if (i + c->lpt_first == c->nhead_lnum)
+ free += c->leb_size - c->nhead_offs;
+ else if (c->ltab[i].free == c->leb_size)
+ free += c->leb_size;
+ else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
+ free += c->leb_size;
+ }
+ /* Less than twice the size left */
+ if (free <= c->lpt_sz * 2)
+ return 1;
+ return 0;
+}
+
+/**
+ * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
+ * @c: UBIFS file-system description object
+ *
+ * LPT trivial garbage collection is where a LPT LEB contains only dirty and
+ * free space and so may be reused as soon as the next commit is completed.
+ * This function is called during start commit to mark LPT LEBs for trivial GC.
+ */
+static void lpt_tgc_start(struct ubifs_info *c)
+{
+ int i;
+
+ for (i = 0; i < c->lpt_lebs; i++) {
+ if (i + c->lpt_first == c->nhead_lnum)
+ continue;
+ if (c->ltab[i].dirty > 0 &&
+ c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
+ c->ltab[i].tgc = 1;
+ c->ltab[i].free = c->leb_size;
+ c->ltab[i].dirty = 0;
+ dbg_lp("LEB %d", i + c->lpt_first);
+ }
+ }
+}
+
+/**
+ * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
+ * @c: UBIFS file-system description object
+ *
+ * LPT trivial garbage collection is where a LPT LEB contains only dirty and
+ * free space and so may be reused as soon as the next commit is completed.
+ * This function is called after the commit is completed (master node has been
+ * written) and un-maps LPT LEBs that were marked for trivial GC.
+ */
+static int lpt_tgc_end(struct ubifs_info *c)
+{
+ int i, err;
+
+ for (i = 0; i < c->lpt_lebs; i++)
+ if (c->ltab[i].tgc) {
+ err = ubifs_leb_unmap(c, i + c->lpt_first);
+ if (err)
+ return err;
+ c->ltab[i].tgc = 0;
+ dbg_lp("LEB %d", i + c->lpt_first);
+ }
+ return 0;
+}
+
+/**
+ * populate_lsave - fill the lsave array with important LEB numbers.
+ * @c: the UBIFS file-system description object
+ *
+ * This function is only called for the "big" model. It records a small number
+ * of LEB numbers of important LEBs. Important LEBs are ones that are (from
+ * most important to least important): empty, freeable, freeable index, dirty
+ * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
+ * their pnodes into memory. That will stop us from having to scan the LPT
+ * straight away. For the "small" model we assume that scanning the LPT is no
+ * big deal.
+ */
+static void populate_lsave(struct ubifs_info *c)
+{
+ struct ubifs_lprops *lprops;
+ struct ubifs_lpt_heap *heap;
+ int i, cnt = 0;
+
+ ubifs_assert(c->big_lpt);
+ if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
+ c->lpt_drty_flgs |= LSAVE_DIRTY;
+ ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
+ }
+
+#ifndef __UBOOT__
+ if (dbg_populate_lsave(c))
+ return;
+#endif
+
+ list_for_each_entry(lprops, &c->empty_list, list) {
+ c->lsave[cnt++] = lprops->lnum;
+ if (cnt >= c->lsave_cnt)
+ return;
+ }
+ list_for_each_entry(lprops, &c->freeable_list, list) {
+ c->lsave[cnt++] = lprops->lnum;
+ if (cnt >= c->lsave_cnt)
+ return;
+ }
+ list_for_each_entry(lprops, &c->frdi_idx_list, list) {
+ c->lsave[cnt++] = lprops->lnum;
+ if (cnt >= c->lsave_cnt)
+ return;
+ }
+ heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
+ for (i = 0; i < heap->cnt; i++) {
+ c->lsave[cnt++] = heap->arr[i]->lnum;
+ if (cnt >= c->lsave_cnt)
+ return;
+ }
+ heap = &c->lpt_heap[LPROPS_DIRTY - 1];
+ for (i = 0; i < heap->cnt; i++) {
+ c->lsave[cnt++] = heap->arr[i]->lnum;
+ if (cnt >= c->lsave_cnt)
+ return;
+ }
+ heap = &c->lpt_heap[LPROPS_FREE - 1];
+ for (i = 0; i < heap->cnt; i++) {
+ c->lsave[cnt++] = heap->arr[i]->lnum;
+ if (cnt >= c->lsave_cnt)
+ return;
+ }
+ /* Fill it up completely */
+ while (cnt < c->lsave_cnt)
+ c->lsave[cnt++] = c->main_first;
+}
+
+/**
+ * nnode_lookup - lookup a nnode in the LPT.
+ * @c: UBIFS file-system description object
+ * @i: nnode number
+ *
+ * This function returns a pointer to the nnode on success or a negative
+ * error code on failure.
+ */
+static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
+{
+ int err, iip;
+ struct ubifs_nnode *nnode;
+
+ if (!c->nroot) {
+ err = ubifs_read_nnode(c, NULL, 0);
+ if (err)
+ return ERR_PTR(err);
+ }
+ nnode = c->nroot;
+ while (1) {
+ iip = i & (UBIFS_LPT_FANOUT - 1);
+ i >>= UBIFS_LPT_FANOUT_SHIFT;
+ if (!i)
+ break;
+ nnode = ubifs_get_nnode(c, nnode, iip);
+ if (IS_ERR(nnode))
+ return nnode;
+ }
+ return nnode;
+}
+
+/**
+ * make_nnode_dirty - find a nnode and, if found, make it dirty.
+ * @c: UBIFS file-system description object
+ * @node_num: nnode number of nnode to make dirty
+ * @lnum: LEB number where nnode was written
+ * @offs: offset where nnode was written
+ *
+ * This function is used by LPT garbage collection. LPT garbage collection is
+ * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
+ * simply involves marking all the nodes in the LEB being garbage-collected as
+ * dirty. The dirty nodes are written next commit, after which the LEB is free
+ * to be reused.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
+ int offs)
+{
+ struct ubifs_nnode *nnode;
+
+ nnode = nnode_lookup(c, node_num);
+ if (IS_ERR(nnode))
+ return PTR_ERR(nnode);
+ if (nnode->parent) {
+ struct ubifs_nbranch *branch;
+
+ branch = &nnode->parent->nbranch[nnode->iip];
+ if (branch->lnum != lnum || branch->offs != offs)
+ return 0; /* nnode is obsolete */
+ } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
+ return 0; /* nnode is obsolete */
+ /* Assumes cnext list is empty i.e. not called during commit */
+ if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
+ c->dirty_nn_cnt += 1;
+ ubifs_add_nnode_dirt(c, nnode);
+ /* Mark parent and ancestors dirty too */
+ nnode = nnode->parent;
+ while (nnode) {
+ if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
+ c->dirty_nn_cnt += 1;
+ ubifs_add_nnode_dirt(c, nnode);
+ nnode = nnode->parent;
+ } else
+ break;
+ }
+ }
+ return 0;
+}
+
+/**
+ * make_pnode_dirty - find a pnode and, if found, make it dirty.
+ * @c: UBIFS file-system description object
+ * @node_num: pnode number of pnode to make dirty
+ * @lnum: LEB number where pnode was written
+ * @offs: offset where pnode was written
+ *
+ * This function is used by LPT garbage collection. LPT garbage collection is
+ * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
+ * simply involves marking all the nodes in the LEB being garbage-collected as
+ * dirty. The dirty nodes are written next commit, after which the LEB is free
+ * to be reused.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
+ int offs)
+{
+ struct ubifs_pnode *pnode;
+ struct ubifs_nbranch *branch;
+
+ pnode = pnode_lookup(c, node_num);
+ if (IS_ERR(pnode))
+ return PTR_ERR(pnode);
+ branch = &pnode->parent->nbranch[pnode->iip];
+ if (branch->lnum != lnum || branch->offs != offs)
+ return 0;
+ do_make_pnode_dirty(c, pnode);
+ return 0;
+}
+
+/**
+ * make_ltab_dirty - make ltab node dirty.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number where ltab was written
+ * @offs: offset where ltab was written
+ *
+ * This function is used by LPT garbage collection. LPT garbage collection is
+ * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
+ * simply involves marking all the nodes in the LEB being garbage-collected as
+ * dirty. The dirty nodes are written next commit, after which the LEB is free
+ * to be reused.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
+{
+ if (lnum != c->ltab_lnum || offs != c->ltab_offs)
+ return 0; /* This ltab node is obsolete */
+ if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
+ c->lpt_drty_flgs |= LTAB_DIRTY;
+ ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
+ }
+ return 0;
+}
+
+/**
+ * make_lsave_dirty - make lsave node dirty.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number where lsave was written
+ * @offs: offset where lsave was written
+ *
+ * This function is used by LPT garbage collection. LPT garbage collection is
+ * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
+ * simply involves marking all the nodes in the LEB being garbage-collected as
+ * dirty. The dirty nodes are written next commit, after which the LEB is free
+ * to be reused.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
+{
+ if (lnum != c->lsave_lnum || offs != c->lsave_offs)
+ return 0; /* This lsave node is obsolete */
+ if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
+ c->lpt_drty_flgs |= LSAVE_DIRTY;
+ ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
+ }
+ return 0;
+}
+
+/**
+ * make_node_dirty - make node dirty.
+ * @c: UBIFS file-system description object
+ * @node_type: LPT node type
+ * @node_num: node number
+ * @lnum: LEB number where node was written
+ * @offs: offset where node was written
+ *
+ * This function is used by LPT garbage collection. LPT garbage collection is
+ * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
+ * simply involves marking all the nodes in the LEB being garbage-collected as
+ * dirty. The dirty nodes are written next commit, after which the LEB is free
+ * to be reused.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
+ int lnum, int offs)
+{
+ switch (node_type) {
+ case UBIFS_LPT_NNODE:
+ return make_nnode_dirty(c, node_num, lnum, offs);
+ case UBIFS_LPT_PNODE:
+ return make_pnode_dirty(c, node_num, lnum, offs);
+ case UBIFS_LPT_LTAB:
+ return make_ltab_dirty(c, lnum, offs);
+ case UBIFS_LPT_LSAVE:
+ return make_lsave_dirty(c, lnum, offs);
+ }
+ return -EINVAL;
+}
+
+/**
+ * get_lpt_node_len - return the length of a node based on its type.
+ * @c: UBIFS file-system description object
+ * @node_type: LPT node type
+ */
+static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
+{
+ switch (node_type) {
+ case UBIFS_LPT_NNODE:
+ return c->nnode_sz;
+ case UBIFS_LPT_PNODE:
+ return c->pnode_sz;
+ case UBIFS_LPT_LTAB:
+ return c->ltab_sz;
+ case UBIFS_LPT_LSAVE:
+ return c->lsave_sz;
+ }
+ return 0;
+}
+
+/**
+ * get_pad_len - return the length of padding in a buffer.
+ * @c: UBIFS file-system description object
+ * @buf: buffer
+ * @len: length of buffer
+ */
+static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
+{
+ int offs, pad_len;
+
+ if (c->min_io_size == 1)
+ return 0;
+ offs = c->leb_size - len;
+ pad_len = ALIGN(offs, c->min_io_size) - offs;
+ return pad_len;
+}
+
+/**
+ * get_lpt_node_type - return type (and node number) of a node in a buffer.
+ * @c: UBIFS file-system description object
+ * @buf: buffer
+ * @node_num: node number is returned here
+ */
+static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
+ int *node_num)
+{
+ uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
+ int pos = 0, node_type;
+
+ node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
+ *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
+ return node_type;
+}
+
+/**
+ * is_a_node - determine if a buffer contains a node.
+ * @c: UBIFS file-system description object
+ * @buf: buffer
+ * @len: length of buffer
+ *
+ * This function returns %1 if the buffer contains a node or %0 if it does not.
+ */
+static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
+{
+ uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
+ int pos = 0, node_type, node_len;
+ uint16_t crc, calc_crc;
+
+ if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
+ return 0;
+ node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
+ if (node_type == UBIFS_LPT_NOT_A_NODE)
+ return 0;
+ node_len = get_lpt_node_len(c, node_type);
+ if (!node_len || node_len > len)
+ return 0;
+ pos = 0;
+ addr = buf;
+ crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
+ calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
+ node_len - UBIFS_LPT_CRC_BYTES);
+ if (crc != calc_crc)
+ return 0;
+ return 1;
+}
+
+/**
+ * lpt_gc_lnum - garbage collect a LPT LEB.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number to garbage collect
+ *
+ * LPT garbage collection is used only for the "big" LPT model
+ * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
+ * in the LEB being garbage-collected as dirty. The dirty nodes are written
+ * next commit, after which the LEB is free to be reused.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
+{
+ int err, len = c->leb_size, node_type, node_num, node_len, offs;
+ void *buf = c->lpt_buf;
+
+ dbg_lp("LEB %d", lnum);
+
+ err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
+ if (err)
+ return err;
+
+ while (1) {
+ if (!is_a_node(c, buf, len)) {
+ int pad_len;
+
+ pad_len = get_pad_len(c, buf, len);
+ if (pad_len) {
+ buf += pad_len;
+ len -= pad_len;
+ continue;
+ }
+ return 0;
+ }
+ node_type = get_lpt_node_type(c, buf, &node_num);
+ node_len = get_lpt_node_len(c, node_type);
+ offs = c->leb_size - len;
+ ubifs_assert(node_len != 0);
+ mutex_lock(&c->lp_mutex);
+ err = make_node_dirty(c, node_type, node_num, lnum, offs);
+ mutex_unlock(&c->lp_mutex);
+ if (err)
+ return err;
+ buf += node_len;
+ len -= node_len;
+ }
+ return 0;
+}
+
+/**
+ * lpt_gc - LPT garbage collection.
+ * @c: UBIFS file-system description object
+ *
+ * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
+ * Returns %0 on success and a negative error code on failure.
+ */
+static int lpt_gc(struct ubifs_info *c)
+{
+ int i, lnum = -1, dirty = 0;
+
+ mutex_lock(&c->lp_mutex);
+ for (i = 0; i < c->lpt_lebs; i++) {
+ ubifs_assert(!c->ltab[i].tgc);
+ if (i + c->lpt_first == c->nhead_lnum ||
+ c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
+ continue;
+ if (c->ltab[i].dirty > dirty) {
+ dirty = c->ltab[i].dirty;
+ lnum = i + c->lpt_first;
+ }
+ }
+ mutex_unlock(&c->lp_mutex);
+ if (lnum == -1)
+ return -ENOSPC;
+ return lpt_gc_lnum(c, lnum);
+}
+
+/**
+ * ubifs_lpt_start_commit - UBIFS commit starts.
+ * @c: the UBIFS file-system description object
+ *
+ * This function has to be called when UBIFS starts the commit operation.
+ * This function "freezes" all currently dirty LEB properties and does not
+ * change them anymore. Further changes are saved and tracked separately
+ * because they are not part of this commit. This function returns zero in case
+ * of success and a negative error code in case of failure.
+ */
+int ubifs_lpt_start_commit(struct ubifs_info *c)
+{
+ int err, cnt;
+
+ dbg_lp("");
+
+ mutex_lock(&c->lp_mutex);
+ err = dbg_chk_lpt_free_spc(c);
+ if (err)
+ goto out;
+ err = dbg_check_ltab(c);
+ if (err)
+ goto out;
+
+ if (c->check_lpt_free) {
+ /*
+ * We ensure there is enough free space in
+ * ubifs_lpt_post_commit() by marking nodes dirty. That
+ * information is lost when we unmount, so we also need
+ * to check free space once after mounting also.
+ */
+ c->check_lpt_free = 0;
+ while (need_write_all(c)) {
+ mutex_unlock(&c->lp_mutex);
+ err = lpt_gc(c);
+ if (err)
+ return err;
+ mutex_lock(&c->lp_mutex);
+ }
+ }
+
+ lpt_tgc_start(c);
+
+ if (!c->dirty_pn_cnt) {
+ dbg_cmt("no cnodes to commit");
+ err = 0;
+ goto out;
+ }
+
+ if (!c->big_lpt && need_write_all(c)) {
+ /* If needed, write everything */
+ err = make_tree_dirty(c);
+ if (err)
+ goto out;
+ lpt_tgc_start(c);
+ }
+
+ if (c->big_lpt)
+ populate_lsave(c);
+
+ cnt = get_cnodes_to_commit(c);
+ ubifs_assert(cnt != 0);
+
+ err = layout_cnodes(c);
+ if (err)
+ goto out;
+
+ /* Copy the LPT's own lprops for end commit to write */
+ memcpy(c->ltab_cmt, c->ltab,
+ sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
+ c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
+
+out:
+ mutex_unlock(&c->lp_mutex);
+ return err;
+}
+
/**
* free_obsolete_cnodes - free obsolete cnodes for commit end.
* @c: UBIFS file-system description object
@@ -50,6 +1314,65 @@ static void free_obsolete_cnodes(struct ubifs_info *c)
c->lpt_cnext = NULL;
}
+#ifndef __UBOOT__
+/**
+ * ubifs_lpt_end_commit - finish the commit operation.
+ * @c: the UBIFS file-system description object
+ *
+ * This function has to be called when the commit operation finishes. It
+ * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
+ * the media. Returns zero in case of success and a negative error code in case
+ * of failure.
+ */
+int ubifs_lpt_end_commit(struct ubifs_info *c)
+{
+ int err;
+
+ dbg_lp("");
+
+ if (!c->lpt_cnext)
+ return 0;
+
+ err = write_cnodes(c);
+ if (err)
+ return err;
+
+ mutex_lock(&c->lp_mutex);
+ free_obsolete_cnodes(c);
+ mutex_unlock(&c->lp_mutex);
+
+ return 0;
+}
+#endif
+
+/**
+ * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
+ * @c: UBIFS file-system description object
+ *
+ * LPT trivial GC is completed after a commit. Also LPT GC is done after a
+ * commit for the "big" LPT model.
+ */
+int ubifs_lpt_post_commit(struct ubifs_info *c)
+{
+ int err;
+
+ mutex_lock(&c->lp_mutex);
+ err = lpt_tgc_end(c);
+ if (err)
+ goto out;
+ if (c->big_lpt)
+ while (need_write_all(c)) {
+ mutex_unlock(&c->lp_mutex);
+ err = lpt_gc(c);
+ if (err)
+ return err;
+ mutex_lock(&c->lp_mutex);
+ }
+out:
+ mutex_unlock(&c->lp_mutex);
+ return err;
+}
+
/**
* first_nnode - find the first nnode in memory.
* @c: UBIFS file-system description object
@@ -169,3 +1492,549 @@ void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
vfree(c->ltab);
kfree(c->lpt_nod_buf);
}
+
+#ifndef __UBOOT__
+/*
+ * Everything below is related to debugging.
+ */
+
+/**
+ * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
+ * @buf: buffer
+ * @len: buffer length
+ */
+static int dbg_is_all_ff(uint8_t *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ if (buf[i] != 0xff)
+ return 0;
+ return 1;
+}
+
+/**
+ * dbg_is_nnode_dirty - determine if a nnode is dirty.
+ * @c: the UBIFS file-system description object
+ * @lnum: LEB number where nnode was written
+ * @offs: offset where nnode was written
+ */
+static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
+{
+ struct ubifs_nnode *nnode;
+ int hght;
+
+ /* Entire tree is in memory so first_nnode / next_nnode are OK */
+ nnode = first_nnode(c, &hght);
+ for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
+ struct ubifs_nbranch *branch;
+
+ cond_resched();
+ if (nnode->parent) {
+ branch = &nnode->parent->nbranch[nnode->iip];
+ if (branch->lnum != lnum || branch->offs != offs)
+ continue;
+ if (test_bit(DIRTY_CNODE, &nnode->flags))
+ return 1;
+ return 0;
+ } else {
+ if (c->lpt_lnum != lnum || c->lpt_offs != offs)
+ continue;
+ if (test_bit(DIRTY_CNODE, &nnode->flags))
+ return 1;
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/**
+ * dbg_is_pnode_dirty - determine if a pnode is dirty.
+ * @c: the UBIFS file-system description object
+ * @lnum: LEB number where pnode was written
+ * @offs: offset where pnode was written
+ */
+static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
+{
+ int i, cnt;
+
+ cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
+ for (i = 0; i < cnt; i++) {
+ struct ubifs_pnode *pnode;
+ struct ubifs_nbranch *branch;
+
+ cond_resched();
+ pnode = pnode_lookup(c, i);
+ if (IS_ERR(pnode))
+ return PTR_ERR(pnode);
+ branch = &pnode->parent->nbranch[pnode->iip];
+ if (branch->lnum != lnum || branch->offs != offs)
+ continue;
+ if (test_bit(DIRTY_CNODE, &pnode->flags))
+ return 1;
+ return 0;
+ }
+ return 1;
+}
+
+/**
+ * dbg_is_ltab_dirty - determine if a ltab node is dirty.
+ * @c: the UBIFS file-system description object
+ * @lnum: LEB number where ltab node was written
+ * @offs: offset where ltab node was written
+ */
+static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
+{
+ if (lnum != c->ltab_lnum || offs != c->ltab_offs)
+ return 1;
+ return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
+}
+
+/**
+ * dbg_is_lsave_dirty - determine if a lsave node is dirty.
+ * @c: the UBIFS file-system description object
+ * @lnum: LEB number where lsave node was written
+ * @offs: offset where lsave node was written
+ */
+static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
+{
+ if (lnum != c->lsave_lnum || offs != c->lsave_offs)
+ return 1;
+ return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
+}
+
+/**
+ * dbg_is_node_dirty - determine if a node is dirty.
+ * @c: the UBIFS file-system description object
+ * @node_type: node type
+ * @lnum: LEB number where node was written
+ * @offs: offset where node was written
+ */
+static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
+ int offs)
+{
+ switch (node_type) {
+ case UBIFS_LPT_NNODE:
+ return dbg_is_nnode_dirty(c, lnum, offs);
+ case UBIFS_LPT_PNODE:
+ return dbg_is_pnode_dirty(c, lnum, offs);
+ case UBIFS_LPT_LTAB:
+ return dbg_is_ltab_dirty(c, lnum, offs);
+ case UBIFS_LPT_LSAVE:
+ return dbg_is_lsave_dirty(c, lnum, offs);
+ }
+ return 1;
+}
+
+/**
+ * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
+ * @c: the UBIFS file-system description object
+ * @lnum: LEB number where node was written
+ * @offs: offset where node was written
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
+{
+ int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
+ int ret;
+ void *buf, *p;
+
+ if (!dbg_is_chk_lprops(c))
+ return 0;
+
+ buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
+ if (!buf) {
+ ubifs_err("cannot allocate memory for ltab checking");
+ return 0;
+ }
+
+ dbg_lp("LEB %d", lnum);
+
+ err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
+ if (err)
+ goto out;
+
+ while (1) {
+ if (!is_a_node(c, p, len)) {
+ int i, pad_len;
+
+ pad_len = get_pad_len(c, p, len);
+ if (pad_len) {
+ p += pad_len;
+ len -= pad_len;
+ dirty += pad_len;
+ continue;
+ }
+ if (!dbg_is_all_ff(p, len)) {
+ ubifs_err("invalid empty space in LEB %d at %d",
+ lnum, c->leb_size - len);
+ err = -EINVAL;
+ }
+ i = lnum - c->lpt_first;
+ if (len != c->ltab[i].free) {
+ ubifs_err("invalid free space in LEB %d (free %d, expected %d)",
+ lnum, len, c->ltab[i].free);
+ err = -EINVAL;
+ }
+ if (dirty != c->ltab[i].dirty) {
+ ubifs_err("invalid dirty space in LEB %d (dirty %d, expected %d)",
+ lnum, dirty, c->ltab[i].dirty);
+ err = -EINVAL;
+ }
+ goto out;
+ }
+ node_type = get_lpt_node_type(c, p, &node_num);
+ node_len = get_lpt_node_len(c, node_type);
+ ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
+ if (ret == 1)
+ dirty += node_len;
+ p += node_len;
+ len -= node_len;
+ }
+
+ err = 0;
+out:
+ vfree(buf);
+ return err;
+}
+
+/**
+ * dbg_check_ltab - check the free and dirty space in the ltab.
+ * @c: the UBIFS file-system description object
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int dbg_check_ltab(struct ubifs_info *c)
+{
+ int lnum, err, i, cnt;
+
+ if (!dbg_is_chk_lprops(c))
+ return 0;
+
+ /* Bring the entire tree into memory */
+ cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
+ for (i = 0; i < cnt; i++) {
+ struct ubifs_pnode *pnode;
+
+ pnode = pnode_lookup(c, i);
+ if (IS_ERR(pnode))
+ return PTR_ERR(pnode);
+ cond_resched();
+ }
+
+ /* Check nodes */
+ err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
+ if (err)
+ return err;
+
+ /* Check each LEB */
+ for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
+ err = dbg_check_ltab_lnum(c, lnum);
+ if (err) {
+ ubifs_err("failed at LEB %d", lnum);
+ return err;
+ }
+ }
+
+ dbg_lp("succeeded");
+ return 0;
+}
+
+/**
+ * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
+ * @c: the UBIFS file-system description object
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int dbg_chk_lpt_free_spc(struct ubifs_info *c)
+{
+ long long free = 0;
+ int i;
+
+ if (!dbg_is_chk_lprops(c))
+ return 0;
+
+ for (i = 0; i < c->lpt_lebs; i++) {
+ if (c->ltab[i].tgc || c->ltab[i].cmt)
+ continue;
+ if (i + c->lpt_first == c->nhead_lnum)
+ free += c->leb_size - c->nhead_offs;
+ else if (c->ltab[i].free == c->leb_size)
+ free += c->leb_size;
+ }
+ if (free < c->lpt_sz) {
+ ubifs_err("LPT space error: free %lld lpt_sz %lld",
+ free, c->lpt_sz);
+ ubifs_dump_lpt_info(c);
+ ubifs_dump_lpt_lebs(c);
+ dump_stack();
+ return -EINVAL;
+ }
+ return 0;
+}
+
+/**
+ * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
+ * @c: the UBIFS file-system description object
+ * @action: what to do
+ * @len: length written
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ * The @action argument may be one of:
+ * o %0 - LPT debugging checking starts, initialize debugging variables;
+ * o %1 - wrote an LPT node, increase LPT size by @len bytes;
+ * o %2 - switched to a different LEB and wasted @len bytes;
+ * o %3 - check that we've written the right number of bytes.
+ * o %4 - wasted @len bytes;
+ */
+int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
+{
+ struct ubifs_debug_info *d = c->dbg;
+ long long chk_lpt_sz, lpt_sz;
+ int err = 0;
+
+ if (!dbg_is_chk_lprops(c))
+ return 0;
+
+ switch (action) {
+ case 0:
+ d->chk_lpt_sz = 0;
+ d->chk_lpt_sz2 = 0;
+ d->chk_lpt_lebs = 0;
+ d->chk_lpt_wastage = 0;
+ if (c->dirty_pn_cnt > c->pnode_cnt) {
+ ubifs_err("dirty pnodes %d exceed max %d",
+ c->dirty_pn_cnt, c->pnode_cnt);
+ err = -EINVAL;
+ }
+ if (c->dirty_nn_cnt > c->nnode_cnt) {
+ ubifs_err("dirty nnodes %d exceed max %d",
+ c->dirty_nn_cnt, c->nnode_cnt);
+ err = -EINVAL;
+ }
+ return err;
+ case 1:
+ d->chk_lpt_sz += len;
+ return 0;
+ case 2:
+ d->chk_lpt_sz += len;
+ d->chk_lpt_wastage += len;
+ d->chk_lpt_lebs += 1;
+ return 0;
+ case 3:
+ chk_lpt_sz = c->leb_size;
+ chk_lpt_sz *= d->chk_lpt_lebs;
+ chk_lpt_sz += len - c->nhead_offs;
+ if (d->chk_lpt_sz != chk_lpt_sz) {
+ ubifs_err("LPT wrote %lld but space used was %lld",
+ d->chk_lpt_sz, chk_lpt_sz);
+ err = -EINVAL;
+ }
+ if (d->chk_lpt_sz > c->lpt_sz) {
+ ubifs_err("LPT wrote %lld but lpt_sz is %lld",
+ d->chk_lpt_sz, c->lpt_sz);
+ err = -EINVAL;
+ }
+ if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
+ ubifs_err("LPT layout size %lld but wrote %lld",
+ d->chk_lpt_sz, d->chk_lpt_sz2);
+ err = -EINVAL;
+ }
+ if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
+ ubifs_err("LPT new nhead offs: expected %d was %d",
+ d->new_nhead_offs, len);
+ err = -EINVAL;
+ }
+ lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
+ lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
+ lpt_sz += c->ltab_sz;
+ if (c->big_lpt)
+ lpt_sz += c->lsave_sz;
+ if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
+ ubifs_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
+ d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
+ err = -EINVAL;
+ }
+ if (err) {
+ ubifs_dump_lpt_info(c);
+ ubifs_dump_lpt_lebs(c);
+ dump_stack();
+ }
+ d->chk_lpt_sz2 = d->chk_lpt_sz;
+ d->chk_lpt_sz = 0;
+ d->chk_lpt_wastage = 0;
+ d->chk_lpt_lebs = 0;
+ d->new_nhead_offs = len;
+ return err;
+ case 4:
+ d->chk_lpt_sz += len;
+ d->chk_lpt_wastage += len;
+ return 0;
+ default:
+ return -EINVAL;
+ }
+}
+
+/**
+ * ubifs_dump_lpt_leb - dump an LPT LEB.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB number to dump
+ *
+ * This function dumps an LEB from LPT area. Nodes in this area are very
+ * different to nodes in the main area (e.g., they do not have common headers,
+ * they do not have 8-byte alignments, etc), so we have a separate function to
+ * dump LPT area LEBs. Note, LPT has to be locked by the caller.
+ */
+static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
+{
+ int err, len = c->leb_size, node_type, node_num, node_len, offs;
+ void *buf, *p;
+
+ pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
+ buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
+ if (!buf) {
+ ubifs_err("cannot allocate memory to dump LPT");
+ return;
+ }
+
+ err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
+ if (err)
+ goto out;
+
+ while (1) {
+ offs = c->leb_size - len;
+ if (!is_a_node(c, p, len)) {
+ int pad_len;
+
+ pad_len = get_pad_len(c, p, len);
+ if (pad_len) {
+ pr_err("LEB %d:%d, pad %d bytes\n",
+ lnum, offs, pad_len);
+ p += pad_len;
+ len -= pad_len;
+ continue;
+ }
+ if (len)
+ pr_err("LEB %d:%d, free %d bytes\n",
+ lnum, offs, len);
+ break;
+ }
+
+ node_type = get_lpt_node_type(c, p, &node_num);
+ switch (node_type) {
+ case UBIFS_LPT_PNODE:
+ {
+ node_len = c->pnode_sz;
+ if (c->big_lpt)
+ pr_err("LEB %d:%d, pnode num %d\n",
+ lnum, offs, node_num);
+ else
+ pr_err("LEB %d:%d, pnode\n", lnum, offs);
+ break;
+ }
+ case UBIFS_LPT_NNODE:
+ {
+ int i;
+ struct ubifs_nnode nnode;
+
+ node_len = c->nnode_sz;
+ if (c->big_lpt)
+ pr_err("LEB %d:%d, nnode num %d, ",
+ lnum, offs, node_num);
+ else
+ pr_err("LEB %d:%d, nnode, ",
+ lnum, offs);
+ err = ubifs_unpack_nnode(c, p, &nnode);
+ for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
+ pr_cont("%d:%d", nnode.nbranch[i].lnum,
+ nnode.nbranch[i].offs);
+ if (i != UBIFS_LPT_FANOUT - 1)
+ pr_cont(", ");
+ }
+ pr_cont("\n");
+ break;
+ }
+ case UBIFS_LPT_LTAB:
+ node_len = c->ltab_sz;
+ pr_err("LEB %d:%d, ltab\n", lnum, offs);
+ break;
+ case UBIFS_LPT_LSAVE:
+ node_len = c->lsave_sz;
+ pr_err("LEB %d:%d, lsave len\n", lnum, offs);
+ break;
+ default:
+ ubifs_err("LPT node type %d not recognized", node_type);
+ goto out;
+ }
+
+ p += node_len;
+ len -= node_len;
+ }
+
+ pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
+out:
+ vfree(buf);
+ return;
+}
+
+/**
+ * ubifs_dump_lpt_lebs - dump LPT lebs.
+ * @c: UBIFS file-system description object
+ *
+ * This function dumps all LPT LEBs. The caller has to make sure the LPT is
+ * locked.
+ */
+void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
+{
+ int i;
+
+ pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
+ for (i = 0; i < c->lpt_lebs; i++)
+ dump_lpt_leb(c, i + c->lpt_first);
+ pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
+}
+
+/**
+ * dbg_populate_lsave - debugging version of 'populate_lsave()'
+ * @c: UBIFS file-system description object
+ *
+ * This is a debugging version for 'populate_lsave()' which populates lsave
+ * with random LEBs instead of useful LEBs, which is good for test coverage.
+ * Returns zero if lsave has not been populated (this debugging feature is
+ * disabled) an non-zero if lsave has been populated.
+ */
+static int dbg_populate_lsave(struct ubifs_info *c)
+{
+ struct ubifs_lprops *lprops;
+ struct ubifs_lpt_heap *heap;
+ int i;
+
+ if (!dbg_is_chk_gen(c))
+ return 0;
+ if (prandom_u32() & 3)
+ return 0;
+
+ for (i = 0; i < c->lsave_cnt; i++)
+ c->lsave[i] = c->main_first;
+
+ list_for_each_entry(lprops, &c->empty_list, list)
+ c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
+ list_for_each_entry(lprops, &c->freeable_list, list)
+ c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
+ list_for_each_entry(lprops, &c->frdi_idx_list, list)
+ c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
+
+ heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
+ for (i = 0; i < heap->cnt; i++)
+ c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
+ heap = &c->lpt_heap[LPROPS_DIRTY - 1];
+ for (i = 0; i < heap->cnt; i++)
+ c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
+ heap = &c->lpt_heap[LPROPS_FREE - 1];
+ for (i = 0; i < heap->cnt; i++)
+ c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
+
+ return 1;
+}
+#endif
diff --git a/fs/ubifs/master.c b/fs/ubifs/master.c
index 3f2926e..00ca855 100644
--- a/fs/ubifs/master.c
+++ b/fs/ubifs/master.c
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
@@ -22,14 +11,21 @@
/* This file implements reading and writing the master node */
+#define __UBOOT__
#include "ubifs.h"
+#ifdef __UBOOT__
+#include <linux/compat.h>
+#include <linux/err.h>
+#include <ubi_uboot.h>
+#endif
/**
* scan_for_master - search the valid master node.
* @c: UBIFS file-system description object
*
* This function scans the master node LEBs and search for the latest master
- * node. Returns zero in case of success and a negative error code in case of
+ * node. Returns zero in case of success, %-EUCLEAN if there master area is
+ * corrupted and requires recovery, and a negative error code in case of
* failure.
*/
static int scan_for_master(struct ubifs_info *c)
@@ -40,7 +36,7 @@ static int scan_for_master(struct ubifs_info *c)
lnum = UBIFS_MST_LNUM;
- sleb = ubifs_scan(c, lnum, 0, c->sbuf);
+ sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
if (IS_ERR(sleb))
return PTR_ERR(sleb);
nodes_cnt = sleb->nodes_cnt;
@@ -48,7 +44,7 @@ static int scan_for_master(struct ubifs_info *c)
snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
list);
if (snod->type != UBIFS_MST_NODE)
- goto out;
+ goto out_dump;
memcpy(c->mst_node, snod->node, snod->len);
offs = snod->offs;
}
@@ -56,7 +52,7 @@ static int scan_for_master(struct ubifs_info *c)
lnum += 1;
- sleb = ubifs_scan(c, lnum, 0, c->sbuf);
+ sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
if (IS_ERR(sleb))
return PTR_ERR(sleb);
if (sleb->nodes_cnt != nodes_cnt)
@@ -65,7 +61,7 @@ static int scan_for_master(struct ubifs_info *c)
goto out;
snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, list);
if (snod->type != UBIFS_MST_NODE)
- goto out;
+ goto out_dump;
if (snod->offs != offs)
goto out;
if (memcmp((void *)c->mst_node + UBIFS_CH_SZ,
@@ -78,6 +74,12 @@ static int scan_for_master(struct ubifs_info *c)
out:
ubifs_scan_destroy(sleb);
+ return -EUCLEAN;
+
+out_dump:
+ ubifs_err("unexpected node type %d master LEB %d:%d",
+ snod->type, lnum, snod->offs);
+ ubifs_scan_destroy(sleb);
return -EINVAL;
}
@@ -141,7 +143,7 @@ static int validate_master(const struct ubifs_info *c)
}
main_sz = (long long)c->main_lebs * c->leb_size;
- if (c->old_idx_sz & 7 || c->old_idx_sz >= main_sz) {
+ if (c->bi.old_idx_sz & 7 || c->bi.old_idx_sz >= main_sz) {
err = 9;
goto out;
}
@@ -211,7 +213,7 @@ static int validate_master(const struct ubifs_info *c)
}
if (c->lst.total_dead + c->lst.total_dark +
- c->lst.total_used + c->old_idx_sz > main_sz) {
+ c->lst.total_used + c->bi.old_idx_sz > main_sz) {
err = 21;
goto out;
}
@@ -234,7 +236,7 @@ static int validate_master(const struct ubifs_info *c)
out:
ubifs_err("bad master node at offset %d error %d", c->mst_offs, err);
- dbg_dump_node(c, c->mst_node);
+ ubifs_dump_node(c, c->mst_node);
return -EINVAL;
}
@@ -256,7 +258,8 @@ int ubifs_read_master(struct ubifs_info *c)
err = scan_for_master(c);
if (err) {
- err = ubifs_recover_master_node(c);
+ if (err == -EUCLEAN)
+ err = ubifs_recover_master_node(c);
if (err)
/*
* Note, we do not free 'c->mst_node' here because the
@@ -278,7 +281,7 @@ int ubifs_read_master(struct ubifs_info *c)
c->gc_lnum = le32_to_cpu(c->mst_node->gc_lnum);
c->ihead_lnum = le32_to_cpu(c->mst_node->ihead_lnum);
c->ihead_offs = le32_to_cpu(c->mst_node->ihead_offs);
- c->old_idx_sz = le64_to_cpu(c->mst_node->index_size);
+ c->bi.old_idx_sz = le64_to_cpu(c->mst_node->index_size);
c->lpt_lnum = le32_to_cpu(c->mst_node->lpt_lnum);
c->lpt_offs = le32_to_cpu(c->mst_node->lpt_offs);
c->nhead_lnum = le32_to_cpu(c->mst_node->nhead_lnum);
@@ -297,7 +300,7 @@ int ubifs_read_master(struct ubifs_info *c)
c->lst.total_dead = le64_to_cpu(c->mst_node->total_dead);
c->lst.total_dark = le64_to_cpu(c->mst_node->total_dark);
- c->calc_idx_sz = c->old_idx_sz;
+ c->calc_idx_sz = c->bi.old_idx_sz;
if (c->mst_node->flags & cpu_to_le32(UBIFS_MST_NO_ORPHS))
c->no_orphs = 1;
@@ -309,7 +312,7 @@ int ubifs_read_master(struct ubifs_info *c)
if (c->leb_cnt < old_leb_cnt ||
c->leb_cnt < UBIFS_MIN_LEB_CNT) {
ubifs_err("bad leb_cnt on master node");
- dbg_dump_node(c, c->mst_node);
+ ubifs_dump_node(c, c->mst_node);
return -EINVAL;
}
@@ -335,7 +338,58 @@ int ubifs_read_master(struct ubifs_info *c)
if (err)
return err;
+#ifndef __UBOOT__
err = dbg_old_index_check_init(c, &c->zroot);
+#endif
+
+ return err;
+}
+
+#ifndef __UBOOT__
+/**
+ * ubifs_write_master - write master node.
+ * @c: UBIFS file-system description object
+ *
+ * This function writes the master node. The caller has to take the
+ * @c->mst_mutex lock before calling this function. Returns zero in case of
+ * success and a negative error code in case of failure. The master node is
+ * written twice to enable recovery.
+ */
+int ubifs_write_master(struct ubifs_info *c)
+{
+ int err, lnum, offs, len;
+
+ ubifs_assert(!c->ro_media && !c->ro_mount);
+ if (c->ro_error)
+ return -EROFS;
+
+ lnum = UBIFS_MST_LNUM;
+ offs = c->mst_offs + c->mst_node_alsz;
+ len = UBIFS_MST_NODE_SZ;
+
+ if (offs + UBIFS_MST_NODE_SZ > c->leb_size) {
+ err = ubifs_leb_unmap(c, lnum);
+ if (err)
+ return err;
+ offs = 0;
+ }
+
+ c->mst_offs = offs;
+ c->mst_node->highest_inum = cpu_to_le64(c->highest_inum);
+
+ err = ubifs_write_node(c, c->mst_node, len, lnum, offs);
+ if (err)
+ return err;
+
+ lnum += 1;
+
+ if (offs == 0) {
+ err = ubifs_leb_unmap(c, lnum);
+ if (err)
+ return err;
+ }
+ err = ubifs_write_node(c, c->mst_node, len, lnum, offs);
return err;
}
+#endif
diff --git a/fs/ubifs/misc.h b/fs/ubifs/misc.h
index 609232e..4316d3c 100644
--- a/fs/ubifs/misc.h
+++ b/fs/ubifs/misc.h
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
@@ -27,6 +16,7 @@
#ifndef __UBIFS_MISC_H__
#define __UBIFS_MISC_H__
+#define __UBOOT__
/**
* ubifs_zn_dirty - check if znode is dirty.
* @znode: znode to check
@@ -39,6 +29,29 @@ static inline int ubifs_zn_dirty(const struct ubifs_znode *znode)
}
/**
+ * ubifs_zn_obsolete - check if znode is obsolete.
+ * @znode: znode to check
+ *
+ * This helper function returns %1 if @znode is obsolete and %0 otherwise.
+ */
+static inline int ubifs_zn_obsolete(const struct ubifs_znode *znode)
+{
+ return !!test_bit(OBSOLETE_ZNODE, &znode->flags);
+}
+
+/**
+ * ubifs_zn_cow - check if znode has to be copied on write.
+ * @znode: znode to check
+ *
+ * This helper function returns %1 if @znode is has COW flag set and %0
+ * otherwise.
+ */
+static inline int ubifs_zn_cow(const struct ubifs_znode *znode)
+{
+ return !!test_bit(COW_ZNODE, &znode->flags);
+}
+
+/**
* ubifs_wake_up_bgt - wake up background thread.
* @c: UBIFS file-system description object
*/
@@ -121,82 +134,27 @@ static inline int ubifs_wbuf_sync(struct ubifs_wbuf *wbuf)
return err;
}
+#ifndef __UBOOT__
/**
- * ubifs_leb_unmap - unmap an LEB.
- * @c: UBIFS file-system description object
- * @lnum: LEB number to unmap
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static inline int ubifs_leb_unmap(const struct ubifs_info *c, int lnum)
-{
- int err;
-
- if (c->ro_media)
- return -EROFS;
- err = ubi_leb_unmap(c->ubi, lnum);
- if (err) {
- ubifs_err("unmap LEB %d failed, error %d", lnum, err);
- return err;
- }
-
- return 0;
-}
-
-/**
- * ubifs_leb_write - write to a LEB.
- * @c: UBIFS file-system description object
- * @lnum: LEB number to write
- * @buf: buffer to write from
- * @offs: offset within LEB to write to
- * @len: length to write
- * @dtype: data type
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static inline int ubifs_leb_write(const struct ubifs_info *c, int lnum,
- const void *buf, int offs, int len, int dtype)
-{
- int err;
-
- if (c->ro_media)
- return -EROFS;
- err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
- if (err) {
- ubifs_err("writing %d bytes at %d:%d, error %d",
- len, lnum, offs, err);
- return err;
- }
-
- return 0;
-}
-
-/**
- * ubifs_leb_change - atomic LEB change.
- * @c: UBIFS file-system description object
- * @lnum: LEB number to write
- * @buf: buffer to write from
- * @len: length to write
- * @dtype: data type
+ * ubifs_encode_dev - encode device node IDs.
+ * @dev: UBIFS device node information
+ * @rdev: device IDs to encode
*
- * This function returns %0 on success and a negative error code on failure.
+ * This is a helper function which encodes major/minor numbers of a device node
+ * into UBIFS device node description. We use standard Linux "new" and "huge"
+ * encodings.
*/
-static inline int ubifs_leb_change(const struct ubifs_info *c, int lnum,
- const void *buf, int len, int dtype)
+static inline int ubifs_encode_dev(union ubifs_dev_desc *dev, dev_t rdev)
{
- int err;
-
- if (c->ro_media)
- return -EROFS;
- err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
- if (err) {
- ubifs_err("changing %d bytes in LEB %d, error %d",
- len, lnum, err);
- return err;
+ if (new_valid_dev(rdev)) {
+ dev->new = cpu_to_le32(new_encode_dev(rdev));
+ return sizeof(dev->new);
+ } else {
+ dev->huge = cpu_to_le64(huge_encode_dev(rdev));
+ return sizeof(dev->huge);
}
-
- return 0;
}
+#endif
/**
* ubifs_add_dirt - add dirty space to LEB properties.
@@ -260,8 +218,24 @@ struct ubifs_branch *ubifs_idx_branch(const struct ubifs_info *c,
static inline void *ubifs_idx_key(const struct ubifs_info *c,
const struct ubifs_idx_node *idx)
{
- const __u8 *branch = idx->branches;
- return (void *)((struct ubifs_branch *)branch)->key;
+#ifndef __UBOOT__
+ return (void *)((struct ubifs_branch *)idx->branches)->key;
+#else
+ struct ubifs_branch *tmp;
+
+ tmp = (struct ubifs_branch *)idx->branches;
+ return (void *)tmp->key;
+#endif
+}
+
+/**
+ * ubifs_current_time - round current time to time granularity.
+ * @inode: inode
+ */
+static inline struct timespec ubifs_current_time(struct inode *inode)
+{
+ return (inode->i_sb->s_time_gran < NSEC_PER_SEC) ?
+ current_fs_time(inode->i_sb) : CURRENT_TIME_SEC;
}
/**
@@ -308,4 +282,21 @@ static inline void ubifs_release_lprops(struct ubifs_info *c)
mutex_unlock(&c->lp_mutex);
}
+/**
+ * ubifs_next_log_lnum - switch to the next log LEB.
+ * @c: UBIFS file-system description object
+ * @lnum: current log LEB
+ *
+ * This helper function returns the log LEB number which goes next after LEB
+ * 'lnum'.
+ */
+static inline int ubifs_next_log_lnum(const struct ubifs_info *c, int lnum)
+{
+ lnum += 1;
+ if (lnum > c->log_last)
+ lnum = UBIFS_LOG_LNUM;
+
+ return lnum;
+}
+
#endif /* __UBIFS_MISC_H__ */
diff --git a/fs/ubifs/orphan.c b/fs/ubifs/orphan.c
index d091031..4e42879 100644
--- a/fs/ubifs/orphan.c
+++ b/fs/ubifs/orphan.c
@@ -3,22 +3,12 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Author: Adrian Hunter
*/
+#include <linux/err.h>
#include "ubifs.h"
/*
@@ -52,6 +42,166 @@
* than the maximum number of orphans allowed.
*/
+static int dbg_check_orphans(struct ubifs_info *c);
+
+/**
+ * ubifs_add_orphan - add an orphan.
+ * @c: UBIFS file-system description object
+ * @inum: orphan inode number
+ *
+ * Add an orphan. This function is called when an inodes link count drops to
+ * zero.
+ */
+int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
+{
+ struct ubifs_orphan *orphan, *o;
+ struct rb_node **p, *parent = NULL;
+
+ orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
+ if (!orphan)
+ return -ENOMEM;
+ orphan->inum = inum;
+ orphan->new = 1;
+
+ spin_lock(&c->orphan_lock);
+ if (c->tot_orphans >= c->max_orphans) {
+ spin_unlock(&c->orphan_lock);
+ kfree(orphan);
+ return -ENFILE;
+ }
+ p = &c->orph_tree.rb_node;
+ while (*p) {
+ parent = *p;
+ o = rb_entry(parent, struct ubifs_orphan, rb);
+ if (inum < o->inum)
+ p = &(*p)->rb_left;
+ else if (inum > o->inum)
+ p = &(*p)->rb_right;
+ else {
+ ubifs_err("orphaned twice");
+ spin_unlock(&c->orphan_lock);
+ kfree(orphan);
+ return 0;
+ }
+ }
+ c->tot_orphans += 1;
+ c->new_orphans += 1;
+ rb_link_node(&orphan->rb, parent, p);
+ rb_insert_color(&orphan->rb, &c->orph_tree);
+ list_add_tail(&orphan->list, &c->orph_list);
+ list_add_tail(&orphan->new_list, &c->orph_new);
+ spin_unlock(&c->orphan_lock);
+ dbg_gen("ino %lu", (unsigned long)inum);
+ return 0;
+}
+
+/**
+ * ubifs_delete_orphan - delete an orphan.
+ * @c: UBIFS file-system description object
+ * @inum: orphan inode number
+ *
+ * Delete an orphan. This function is called when an inode is deleted.
+ */
+void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
+{
+ struct ubifs_orphan *o;
+ struct rb_node *p;
+
+ spin_lock(&c->orphan_lock);
+ p = c->orph_tree.rb_node;
+ while (p) {
+ o = rb_entry(p, struct ubifs_orphan, rb);
+ if (inum < o->inum)
+ p = p->rb_left;
+ else if (inum > o->inum)
+ p = p->rb_right;
+ else {
+ if (o->del) {
+ spin_unlock(&c->orphan_lock);
+ dbg_gen("deleted twice ino %lu",
+ (unsigned long)inum);
+ return;
+ }
+ if (o->cmt) {
+ o->del = 1;
+ o->dnext = c->orph_dnext;
+ c->orph_dnext = o;
+ spin_unlock(&c->orphan_lock);
+ dbg_gen("delete later ino %lu",
+ (unsigned long)inum);
+ return;
+ }
+ rb_erase(p, &c->orph_tree);
+ list_del(&o->list);
+ c->tot_orphans -= 1;
+ if (o->new) {
+ list_del(&o->new_list);
+ c->new_orphans -= 1;
+ }
+ spin_unlock(&c->orphan_lock);
+ kfree(o);
+ dbg_gen("inum %lu", (unsigned long)inum);
+ return;
+ }
+ }
+ spin_unlock(&c->orphan_lock);
+ ubifs_err("missing orphan ino %lu", (unsigned long)inum);
+ dump_stack();
+}
+
+/**
+ * ubifs_orphan_start_commit - start commit of orphans.
+ * @c: UBIFS file-system description object
+ *
+ * Start commit of orphans.
+ */
+int ubifs_orphan_start_commit(struct ubifs_info *c)
+{
+ struct ubifs_orphan *orphan, **last;
+
+ spin_lock(&c->orphan_lock);
+ last = &c->orph_cnext;
+ list_for_each_entry(orphan, &c->orph_new, new_list) {
+ ubifs_assert(orphan->new);
+ ubifs_assert(!orphan->cmt);
+ orphan->new = 0;
+ orphan->cmt = 1;
+ *last = orphan;
+ last = &orphan->cnext;
+ }
+ *last = NULL;
+ c->cmt_orphans = c->new_orphans;
+ c->new_orphans = 0;
+ dbg_cmt("%d orphans to commit", c->cmt_orphans);
+ INIT_LIST_HEAD(&c->orph_new);
+ if (c->tot_orphans == 0)
+ c->no_orphs = 1;
+ else
+ c->no_orphs = 0;
+ spin_unlock(&c->orphan_lock);
+ return 0;
+}
+
+/**
+ * avail_orphs - calculate available space.
+ * @c: UBIFS file-system description object
+ *
+ * This function returns the number of orphans that can be written in the
+ * available space.
+ */
+static int avail_orphs(struct ubifs_info *c)
+{
+ int avail_lebs, avail, gap;
+
+ avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
+ avail = avail_lebs *
+ ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
+ gap = c->leb_size - c->ohead_offs;
+ if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
+ avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
+ return avail;
+}
+
/**
* tot_avail_orphs - calculate total space.
* @c: UBIFS file-system description object
@@ -70,6 +220,256 @@ static int tot_avail_orphs(struct ubifs_info *c)
}
/**
+ * do_write_orph_node - write a node to the orphan head.
+ * @c: UBIFS file-system description object
+ * @len: length of node
+ * @atomic: write atomically
+ *
+ * This function writes a node to the orphan head from the orphan buffer. If
+ * %atomic is not zero, then the write is done atomically. On success, %0 is
+ * returned, otherwise a negative error code is returned.
+ */
+static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
+{
+ int err = 0;
+
+ if (atomic) {
+ ubifs_assert(c->ohead_offs == 0);
+ ubifs_prepare_node(c, c->orph_buf, len, 1);
+ len = ALIGN(len, c->min_io_size);
+ err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
+ } else {
+ if (c->ohead_offs == 0) {
+ /* Ensure LEB has been unmapped */
+ err = ubifs_leb_unmap(c, c->ohead_lnum);
+ if (err)
+ return err;
+ }
+ err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
+ c->ohead_offs);
+ }
+ return err;
+}
+
+/**
+ * write_orph_node - write an orphan node.
+ * @c: UBIFS file-system description object
+ * @atomic: write atomically
+ *
+ * This function builds an orphan node from the cnext list and writes it to the
+ * orphan head. On success, %0 is returned, otherwise a negative error code
+ * is returned.
+ */
+static int write_orph_node(struct ubifs_info *c, int atomic)
+{
+ struct ubifs_orphan *orphan, *cnext;
+ struct ubifs_orph_node *orph;
+ int gap, err, len, cnt, i;
+
+ ubifs_assert(c->cmt_orphans > 0);
+ gap = c->leb_size - c->ohead_offs;
+ if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
+ c->ohead_lnum += 1;
+ c->ohead_offs = 0;
+ gap = c->leb_size;
+ if (c->ohead_lnum > c->orph_last) {
+ /*
+ * We limit the number of orphans so that this should
+ * never happen.
+ */
+ ubifs_err("out of space in orphan area");
+ return -EINVAL;
+ }
+ }
+ cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
+ if (cnt > c->cmt_orphans)
+ cnt = c->cmt_orphans;
+ len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
+ ubifs_assert(c->orph_buf);
+ orph = c->orph_buf;
+ orph->ch.node_type = UBIFS_ORPH_NODE;
+ spin_lock(&c->orphan_lock);
+ cnext = c->orph_cnext;
+ for (i = 0; i < cnt; i++) {
+ orphan = cnext;
+ ubifs_assert(orphan->cmt);
+ orph->inos[i] = cpu_to_le64(orphan->inum);
+ orphan->cmt = 0;
+ cnext = orphan->cnext;
+ orphan->cnext = NULL;
+ }
+ c->orph_cnext = cnext;
+ c->cmt_orphans -= cnt;
+ spin_unlock(&c->orphan_lock);
+ if (c->cmt_orphans)
+ orph->cmt_no = cpu_to_le64(c->cmt_no);
+ else
+ /* Mark the last node of the commit */
+ orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
+ ubifs_assert(c->ohead_offs + len <= c->leb_size);
+ ubifs_assert(c->ohead_lnum >= c->orph_first);
+ ubifs_assert(c->ohead_lnum <= c->orph_last);
+ err = do_write_orph_node(c, len, atomic);
+ c->ohead_offs += ALIGN(len, c->min_io_size);
+ c->ohead_offs = ALIGN(c->ohead_offs, 8);
+ return err;
+}
+
+/**
+ * write_orph_nodes - write orphan nodes until there are no more to commit.
+ * @c: UBIFS file-system description object
+ * @atomic: write atomically
+ *
+ * This function writes orphan nodes for all the orphans to commit. On success,
+ * %0 is returned, otherwise a negative error code is returned.
+ */
+static int write_orph_nodes(struct ubifs_info *c, int atomic)
+{
+ int err;
+
+ while (c->cmt_orphans > 0) {
+ err = write_orph_node(c, atomic);
+ if (err)
+ return err;
+ }
+ if (atomic) {
+ int lnum;
+
+ /* Unmap any unused LEBs after consolidation */
+ lnum = c->ohead_lnum + 1;
+ for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
+ err = ubifs_leb_unmap(c, lnum);
+ if (err)
+ return err;
+ }
+ }
+ return 0;
+}
+
+/**
+ * consolidate - consolidate the orphan area.
+ * @c: UBIFS file-system description object
+ *
+ * This function enables consolidation by putting all the orphans into the list
+ * to commit. The list is in the order that the orphans were added, and the
+ * LEBs are written atomically in order, so at no time can orphans be lost by
+ * an unclean unmount.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+static int consolidate(struct ubifs_info *c)
+{
+ int tot_avail = tot_avail_orphs(c), err = 0;
+
+ spin_lock(&c->orphan_lock);
+ dbg_cmt("there is space for %d orphans and there are %d",
+ tot_avail, c->tot_orphans);
+ if (c->tot_orphans - c->new_orphans <= tot_avail) {
+ struct ubifs_orphan *orphan, **last;
+ int cnt = 0;
+
+ /* Change the cnext list to include all non-new orphans */
+ last = &c->orph_cnext;
+ list_for_each_entry(orphan, &c->orph_list, list) {
+ if (orphan->new)
+ continue;
+ orphan->cmt = 1;
+ *last = orphan;
+ last = &orphan->cnext;
+ cnt += 1;
+ }
+ *last = NULL;
+ ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
+ c->cmt_orphans = cnt;
+ c->ohead_lnum = c->orph_first;
+ c->ohead_offs = 0;
+ } else {
+ /*
+ * We limit the number of orphans so that this should
+ * never happen.
+ */
+ ubifs_err("out of space in orphan area");
+ err = -EINVAL;
+ }
+ spin_unlock(&c->orphan_lock);
+ return err;
+}
+
+/**
+ * commit_orphans - commit orphans.
+ * @c: UBIFS file-system description object
+ *
+ * This function commits orphans to flash. On success, %0 is returned,
+ * otherwise a negative error code is returned.
+ */
+static int commit_orphans(struct ubifs_info *c)
+{
+ int avail, atomic = 0, err;
+
+ ubifs_assert(c->cmt_orphans > 0);
+ avail = avail_orphs(c);
+ if (avail < c->cmt_orphans) {
+ /* Not enough space to write new orphans, so consolidate */
+ err = consolidate(c);
+ if (err)
+ return err;
+ atomic = 1;
+ }
+ err = write_orph_nodes(c, atomic);
+ return err;
+}
+
+/**
+ * erase_deleted - erase the orphans marked for deletion.
+ * @c: UBIFS file-system description object
+ *
+ * During commit, the orphans being committed cannot be deleted, so they are
+ * marked for deletion and deleted by this function. Also, the recovery
+ * adds killed orphans to the deletion list, and therefore they are deleted
+ * here too.
+ */
+static void erase_deleted(struct ubifs_info *c)
+{
+ struct ubifs_orphan *orphan, *dnext;
+
+ spin_lock(&c->orphan_lock);
+ dnext = c->orph_dnext;
+ while (dnext) {
+ orphan = dnext;
+ dnext = orphan->dnext;
+ ubifs_assert(!orphan->new);
+ ubifs_assert(orphan->del);
+ rb_erase(&orphan->rb, &c->orph_tree);
+ list_del(&orphan->list);
+ c->tot_orphans -= 1;
+ dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
+ kfree(orphan);
+ }
+ c->orph_dnext = NULL;
+ spin_unlock(&c->orphan_lock);
+}
+
+/**
+ * ubifs_orphan_end_commit - end commit of orphans.
+ * @c: UBIFS file-system description object
+ *
+ * End commit of orphans.
+ */
+int ubifs_orphan_end_commit(struct ubifs_info *c)
+{
+ int err;
+
+ if (c->cmt_orphans != 0) {
+ err = commit_orphans(c);
+ if (err)
+ return err;
+ }
+ erase_deleted(c);
+ err = dbg_check_orphans(c);
+ return err;
+}
+
+/**
* ubifs_clear_orphans - erase all LEBs used for orphans.
* @c: UBIFS file-system description object
*
@@ -128,6 +528,7 @@ static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
rb_link_node(&orphan->rb, parent, p);
rb_insert_color(&orphan->rb, &c->orph_tree);
list_add_tail(&orphan->list, &c->orph_list);
+ orphan->del = 1;
orphan->dnext = c->orph_dnext;
c->orph_dnext = orphan;
dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
@@ -159,9 +560,9 @@ static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
list_for_each_entry(snod, &sleb->nodes, list) {
if (snod->type != UBIFS_ORPH_NODE) {
- ubifs_err("invalid node type %d in orphan area at "
- "%d:%d", snod->type, sleb->lnum, snod->offs);
- dbg_dump_node(c, snod->node);
+ ubifs_err("invalid node type %d in orphan area at %d:%d",
+ snod->type, sleb->lnum, snod->offs);
+ ubifs_dump_node(c, snod->node);
return -EINVAL;
}
@@ -186,10 +587,9 @@ static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
* number. That makes this orphan node, out of date.
*/
if (!first) {
- ubifs_err("out of order commit number %llu in "
- "orphan node at %d:%d",
+ ubifs_err("out of order commit number %llu in orphan node at %d:%d",
cmt_no, sleb->lnum, snod->offs);
- dbg_dump_node(c, snod->node);
+ ubifs_dump_node(c, snod->node);
return -EINVAL;
}
dbg_rcvry("out of date LEB %d", sleb->lnum);
@@ -262,9 +662,11 @@ static int kill_orphans(struct ubifs_info *c)
struct ubifs_scan_leb *sleb;
dbg_rcvry("LEB %d", lnum);
- sleb = ubifs_scan(c, lnum, 0, c->sbuf);
+ sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
if (IS_ERR(sleb)) {
- sleb = ubifs_recover_leb(c, lnum, 0, c->sbuf, 0);
+ if (PTR_ERR(sleb) == -EUCLEAN)
+ sleb = ubifs_recover_leb(c, lnum, 0,
+ c->sbuf, -1);
if (IS_ERR(sleb)) {
err = PTR_ERR(sleb);
break;
@@ -314,3 +716,232 @@ int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
return err;
}
+
+/*
+ * Everything below is related to debugging.
+ */
+
+struct check_orphan {
+ struct rb_node rb;
+ ino_t inum;
+};
+
+struct check_info {
+ unsigned long last_ino;
+ unsigned long tot_inos;
+ unsigned long missing;
+ unsigned long long leaf_cnt;
+ struct ubifs_ino_node *node;
+ struct rb_root root;
+};
+
+static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
+{
+ struct ubifs_orphan *o;
+ struct rb_node *p;
+
+ spin_lock(&c->orphan_lock);
+ p = c->orph_tree.rb_node;
+ while (p) {
+ o = rb_entry(p, struct ubifs_orphan, rb);
+ if (inum < o->inum)
+ p = p->rb_left;
+ else if (inum > o->inum)
+ p = p->rb_right;
+ else {
+ spin_unlock(&c->orphan_lock);
+ return 1;
+ }
+ }
+ spin_unlock(&c->orphan_lock);
+ return 0;
+}
+
+static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
+{
+ struct check_orphan *orphan, *o;
+ struct rb_node **p, *parent = NULL;
+
+ orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
+ if (!orphan)
+ return -ENOMEM;
+ orphan->inum = inum;
+
+ p = &root->rb_node;
+ while (*p) {
+ parent = *p;
+ o = rb_entry(parent, struct check_orphan, rb);
+ if (inum < o->inum)
+ p = &(*p)->rb_left;
+ else if (inum > o->inum)
+ p = &(*p)->rb_right;
+ else {
+ kfree(orphan);
+ return 0;
+ }
+ }
+ rb_link_node(&orphan->rb, parent, p);
+ rb_insert_color(&orphan->rb, root);
+ return 0;
+}
+
+static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
+{
+ struct check_orphan *o;
+ struct rb_node *p;
+
+ p = root->rb_node;
+ while (p) {
+ o = rb_entry(p, struct check_orphan, rb);
+ if (inum < o->inum)
+ p = p->rb_left;
+ else if (inum > o->inum)
+ p = p->rb_right;
+ else
+ return 1;
+ }
+ return 0;
+}
+
+static void dbg_free_check_tree(struct rb_root *root)
+{
+ struct check_orphan *o, *n;
+
+ rbtree_postorder_for_each_entry_safe(o, n, root, rb)
+ kfree(o);
+}
+
+static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
+ void *priv)
+{
+ struct check_info *ci = priv;
+ ino_t inum;
+ int err;
+
+ inum = key_inum(c, &zbr->key);
+ if (inum != ci->last_ino) {
+ /* Lowest node type is the inode node, so it comes first */
+ if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
+ ubifs_err("found orphan node ino %lu, type %d",
+ (unsigned long)inum, key_type(c, &zbr->key));
+ ci->last_ino = inum;
+ ci->tot_inos += 1;
+ err = ubifs_tnc_read_node(c, zbr, ci->node);
+ if (err) {
+ ubifs_err("node read failed, error %d", err);
+ return err;
+ }
+ if (ci->node->nlink == 0)
+ /* Must be recorded as an orphan */
+ if (!dbg_find_check_orphan(&ci->root, inum) &&
+ !dbg_find_orphan(c, inum)) {
+ ubifs_err("missing orphan, ino %lu",
+ (unsigned long)inum);
+ ci->missing += 1;
+ }
+ }
+ ci->leaf_cnt += 1;
+ return 0;
+}
+
+static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
+{
+ struct ubifs_scan_node *snod;
+ struct ubifs_orph_node *orph;
+ ino_t inum;
+ int i, n, err;
+
+ list_for_each_entry(snod, &sleb->nodes, list) {
+ cond_resched();
+ if (snod->type != UBIFS_ORPH_NODE)
+ continue;
+ orph = snod->node;
+ n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
+ for (i = 0; i < n; i++) {
+ inum = le64_to_cpu(orph->inos[i]);
+ err = dbg_ins_check_orphan(&ci->root, inum);
+ if (err)
+ return err;
+ }
+ }
+ return 0;
+}
+
+static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
+{
+ int lnum, err = 0;
+ void *buf;
+
+ /* Check no-orphans flag and skip this if no orphans */
+ if (c->no_orphs)
+ return 0;
+
+ buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
+ if (!buf) {
+ ubifs_err("cannot allocate memory to check orphans");
+ return 0;
+ }
+
+ for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
+ struct ubifs_scan_leb *sleb;
+
+ sleb = ubifs_scan(c, lnum, 0, buf, 0);
+ if (IS_ERR(sleb)) {
+ err = PTR_ERR(sleb);
+ break;
+ }
+
+ err = dbg_read_orphans(ci, sleb);
+ ubifs_scan_destroy(sleb);
+ if (err)
+ break;
+ }
+
+ vfree(buf);
+ return err;
+}
+
+static int dbg_check_orphans(struct ubifs_info *c)
+{
+ struct check_info ci;
+ int err;
+
+ if (!dbg_is_chk_orph(c))
+ return 0;
+
+ ci.last_ino = 0;
+ ci.tot_inos = 0;
+ ci.missing = 0;
+ ci.leaf_cnt = 0;
+ ci.root = RB_ROOT;
+ ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
+ if (!ci.node) {
+ ubifs_err("out of memory");
+ return -ENOMEM;
+ }
+
+ err = dbg_scan_orphans(c, &ci);
+ if (err)
+ goto out;
+
+ err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
+ if (err) {
+ ubifs_err("cannot scan TNC, error %d", err);
+ goto out;
+ }
+
+ if (ci.missing) {
+ ubifs_err("%lu missing orphan(s)", ci.missing);
+ err = -EINVAL;
+ goto out;
+ }
+
+ dbg_cmt("last inode number is %lu", ci.last_ino);
+ dbg_cmt("total number of inodes is %lu", ci.tot_inos);
+ dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
+
+out:
+ dbg_free_check_tree(&ci.root);
+ kfree(ci.node);
+ return err;
+}
diff --git a/fs/ubifs/recovery.c b/fs/ubifs/recovery.c
index 7444650..f54a440 100644
--- a/fs/ubifs/recovery.c
+++ b/fs/ubifs/recovery.c
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Adrian Hunter
* Artem Bityutskiy (Битюцкий Артём)
@@ -23,13 +12,37 @@
/*
* This file implements functions needed to recover from unclean un-mounts.
* When UBIFS is mounted, it checks a flag on the master node to determine if
- * an un-mount was completed sucessfully. If not, the process of mounting
- * incorparates additional checking and fixing of on-flash data structures.
+ * an un-mount was completed successfully. If not, the process of mounting
+ * incorporates additional checking and fixing of on-flash data structures.
* UBIFS always cleans away all remnants of an unclean un-mount, so that
* errors do not accumulate. However UBIFS defers recovery if it is mounted
* read-only, and the flash is not modified in that case.
+ *
+ * The general UBIFS approach to the recovery is that it recovers from
+ * corruptions which could be caused by power cuts, but it refuses to recover
+ * from corruption caused by other reasons. And UBIFS tries to distinguish
+ * between these 2 reasons of corruptions and silently recover in the former
+ * case and loudly complain in the latter case.
+ *
+ * UBIFS writes only to erased LEBs, so it writes only to the flash space
+ * containing only 0xFFs. UBIFS also always writes strictly from the beginning
+ * of the LEB to the end. And UBIFS assumes that the underlying flash media
+ * writes in @c->max_write_size bytes at a time.
+ *
+ * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
+ * I/O unit corresponding to offset X to contain corrupted data, all the
+ * following min. I/O units have to contain empty space (all 0xFFs). If this is
+ * not true, the corruption cannot be the result of a power cut, and UBIFS
+ * refuses to mount.
*/
+#define __UBOOT__
+#ifndef __UBOOT__
+#include <linux/crc32.h>
+#include <linux/slab.h>
+#else
+#include <linux/err.h>
+#endif
#include "ubifs.h"
/**
@@ -52,6 +65,25 @@ static int is_empty(void *buf, int len)
}
/**
+ * first_non_ff - find offset of the first non-0xff byte.
+ * @buf: buffer to search in
+ * @len: length of buffer
+ *
+ * This function returns offset of the first non-0xff byte in @buf or %-1 if
+ * the buffer contains only 0xff bytes.
+ */
+static int first_non_ff(void *buf, int len)
+{
+ uint8_t *p = buf;
+ int i;
+
+ for (i = 0; i < len; i++)
+ if (*p++ != 0xff)
+ return i;
+ return -1;
+}
+
+/**
* get_master_node - get the last valid master node allowing for corruption.
* @c: UBIFS file-system description object
* @lnum: LEB number
@@ -79,7 +111,7 @@ static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
if (!sbuf)
return -ENOMEM;
- err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
+ err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
if (err && err != -EBADMSG)
goto out_free;
@@ -175,10 +207,10 @@ static int write_rcvrd_mst_node(struct ubifs_info *c,
mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
- err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
+ err = ubifs_leb_change(c, lnum, mst, sz);
if (err)
goto out;
- err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
+ err = ubifs_leb_change(c, lnum + 1, mst, sz);
if (err)
goto out;
out:
@@ -236,7 +268,8 @@ int ubifs_recover_master_node(struct ubifs_info *c)
if (cor1)
goto out_err;
mst = mst1;
- } else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
+ } else if (offs1 == 0 &&
+ c->leb_size - offs2 - sz < sz) {
/* 1st LEB was unmapped and written, 2nd not */
if (cor1)
goto out_err;
@@ -266,12 +299,12 @@ int ubifs_recover_master_node(struct ubifs_info *c)
mst = mst2;
}
- dbg_rcvry("recovered master node from LEB %d",
+ ubifs_msg("recovered master node from LEB %d",
(mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
- if ((c->vfs_sb->s_flags & MS_RDONLY)) {
+ if (c->ro_mount) {
/* Read-only mode. Keep a copy for switching to rw mode */
c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
if (!c->rcvrd_mst_node) {
@@ -279,6 +312,40 @@ int ubifs_recover_master_node(struct ubifs_info *c)
goto out_free;
}
memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
+
+ /*
+ * We had to recover the master node, which means there was an
+ * unclean reboot. However, it is possible that the master node
+ * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
+ * E.g., consider the following chain of events:
+ *
+ * 1. UBIFS was cleanly unmounted, so the master node is clean
+ * 2. UBIFS is being mounted R/W and starts changing the master
+ * node in the first (%UBIFS_MST_LNUM). A power cut happens,
+ * so this LEB ends up with some amount of garbage at the
+ * end.
+ * 3. UBIFS is being mounted R/O. We reach this place and
+ * recover the master node from the second LEB
+ * (%UBIFS_MST_LNUM + 1). But we cannot update the media
+ * because we are being mounted R/O. We have to defer the
+ * operation.
+ * 4. However, this master node (@c->mst_node) is marked as
+ * clean (since the step 1). And if we just return, the
+ * mount code will be confused and won't recover the master
+ * node when it is re-mounter R/W later.
+ *
+ * Thus, to force the recovery by marking the master node as
+ * dirty.
+ */
+ c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
+#ifndef __UBOOT__
+ } else {
+ /* Write the recovered master node */
+ c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
+ err = write_rcvrd_mst_node(c, c->mst_node);
+ if (err)
+ goto out_free;
+#endif
}
vfree(buf2);
@@ -291,12 +358,12 @@ out_err:
out_free:
ubifs_err("failed to recover master node");
if (mst1) {
- dbg_err("dumping first master node");
- dbg_dump_node(c, mst1);
+ ubifs_err("dumping first master node");
+ ubifs_dump_node(c, mst1);
}
if (mst2) {
- dbg_err("dumping second master node");
- dbg_dump_node(c, mst2);
+ ubifs_err("dumping second master node");
+ ubifs_dump_node(c, mst2);
}
vfree(buf2);
vfree(buf1);
@@ -335,44 +402,23 @@ int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
* @offs: offset to check
*
* This function returns %1 if @offs was in the last write to the LEB whose data
- * is in @buf, otherwise %0 is returned. The determination is made by checking
- * for subsequent empty space starting from the next min_io_size boundary (or a
- * bit less than the common header size if min_io_size is one).
+ * is in @buf, otherwise %0 is returned. The determination is made by checking
+ * for subsequent empty space starting from the next @c->max_write_size
+ * boundary.
*/
static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
{
- int empty_offs;
- int check_len;
+ int empty_offs, check_len;
uint8_t *p;
- if (c->min_io_size == 1) {
- check_len = c->leb_size - offs;
- p = buf + check_len;
- for (; check_len > 0; check_len--)
- if (*--p != 0xff)
- break;
- /*
- * 'check_len' is the size of the corruption which cannot be
- * more than the size of 1 node if it was caused by an unclean
- * unmount.
- */
- if (check_len > UBIFS_MAX_NODE_SZ)
- return 0;
- return 1;
- }
-
/*
- * Round up to the next c->min_io_size boundary i.e. 'offs' is in the
- * last wbuf written. After that should be empty space.
+ * Round up to the next @c->max_write_size boundary i.e. @offs is in
+ * the last wbuf written. After that should be empty space.
*/
- empty_offs = ALIGN(offs + 1, c->min_io_size);
+ empty_offs = ALIGN(offs + 1, c->max_write_size);
check_len = c->leb_size - empty_offs;
p = buf + empty_offs - offs;
-
- for (; check_len > 0; check_len--)
- if (*p++ != 0xff)
- return 0;
- return 1;
+ return is_empty(p, check_len);
}
/**
@@ -385,7 +431,7 @@ static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
*
* This function pads up to the next min_io_size boundary (if there is one) and
* sets empty space to all 0xff. @buf, @offs and @len are updated to the next
- * min_io_size boundary (if there is one).
+ * @c->min_io_size boundary.
*/
static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
int *offs, int *len)
@@ -395,11 +441,6 @@ static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
lnum = lnum;
dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
- if (c->min_io_size == 1) {
- memset(*buf, 0xff, c->leb_size - *offs);
- return;
- }
-
ubifs_assert(!(*offs & 7));
empty_offs = ALIGN(*offs, c->min_io_size);
pad_len = empty_offs - *offs;
@@ -429,7 +470,7 @@ static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
int skip, dlen = le32_to_cpu(ch->len);
/* Check for empty space after the corrupt node's common header */
- skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs;
+ skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
if (is_empty(buf + skip, len - skip))
return 1;
/*
@@ -441,7 +482,7 @@ static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
return 0;
}
/* Now we know the corrupt node's length we can skip over it */
- skip = ALIGN(offs + dlen, c->min_io_size) - offs;
+ skip = ALIGN(offs + dlen, c->max_write_size) - offs;
/* After which there should be empty space */
if (is_empty(buf + skip, len - skip))
return 1;
@@ -469,7 +510,7 @@ static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
endpt = snod->offs + snod->len;
}
- if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
+ if (c->ro_mount && !c->remounting_rw) {
/* Add to recovery list */
struct ubifs_unclean_leb *ucleb;
@@ -481,21 +522,55 @@ static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
ucleb->lnum = lnum;
ucleb->endpt = endpt;
list_add_tail(&ucleb->list, &c->unclean_leb_list);
+#ifndef __UBOOT__
+ } else {
+ /* Write the fixed LEB back to flash */
+ int err;
+
+ dbg_rcvry("fixing LEB %d start %d endpt %d",
+ lnum, start, sleb->endpt);
+ if (endpt == 0) {
+ err = ubifs_leb_unmap(c, lnum);
+ if (err)
+ return err;
+ } else {
+ int len = ALIGN(endpt, c->min_io_size);
+
+ if (start) {
+ err = ubifs_leb_read(c, lnum, sleb->buf, 0,
+ start, 1);
+ if (err)
+ return err;
+ }
+ /* Pad to min_io_size */
+ if (len > endpt) {
+ int pad_len = len - ALIGN(endpt, 8);
+
+ if (pad_len > 0) {
+ void *buf = sleb->buf + len - pad_len;
+
+ ubifs_pad(c, buf, pad_len);
+ }
+ }
+ err = ubifs_leb_change(c, lnum, sleb->buf, len);
+ if (err)
+ return err;
+ }
+#endif
}
return 0;
}
/**
- * drop_incomplete_group - drop nodes from an incomplete group.
+ * drop_last_group - drop the last group of nodes.
* @sleb: scanned LEB information
* @offs: offset of dropped nodes is returned here
*
- * This function returns %1 if nodes are dropped and %0 otherwise.
+ * This is a helper function for 'ubifs_recover_leb()' which drops the last
+ * group of nodes of the scanned LEB.
*/
-static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
+static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
{
- int dropped = 0;
-
while (!list_empty(&sleb->nodes)) {
struct ubifs_scan_node *snod;
struct ubifs_ch *ch;
@@ -504,15 +579,41 @@ static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
list);
ch = snod->node;
if (ch->group_type != UBIFS_IN_NODE_GROUP)
- return dropped;
- dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
+ break;
+
+ dbg_rcvry("dropping grouped node at %d:%d",
+ sleb->lnum, snod->offs);
+ *offs = snod->offs;
+ list_del(&snod->list);
+ kfree(snod);
+ sleb->nodes_cnt -= 1;
+ }
+}
+
+/**
+ * drop_last_node - drop the last node.
+ * @sleb: scanned LEB information
+ * @offs: offset of dropped nodes is returned here
+ * @grouped: non-zero if whole group of nodes have to be dropped
+ *
+ * This is a helper function for 'ubifs_recover_leb()' which drops the last
+ * node of the scanned LEB.
+ */
+static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
+{
+ struct ubifs_scan_node *snod;
+
+ if (!list_empty(&sleb->nodes)) {
+ snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
+ list);
+
+ dbg_rcvry("dropping last node at %d:%d",
+ sleb->lnum, snod->offs);
*offs = snod->offs;
list_del(&snod->list);
kfree(snod);
sleb->nodes_cnt -= 1;
- dropped = 1;
}
- return dropped;
}
/**
@@ -521,33 +622,30 @@ static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
* @lnum: LEB number
* @offs: offset
* @sbuf: LEB-sized buffer to use
- * @grouped: nodes may be grouped for recovery
+ * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
+ * belong to any journal head)
*
* This function does a scan of a LEB, but caters for errors that might have
* been caused by the unclean unmount from which we are attempting to recover.
- *
- * This function returns %0 on success and a negative error code on failure.
+ * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
+ * found, and a negative error code in case of failure.
*/
struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
- int offs, void *sbuf, int grouped)
+ int offs, void *sbuf, int jhead)
{
- int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
- int empty_chkd = 0, start = offs;
+ int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
+ int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
struct ubifs_scan_leb *sleb;
void *buf = sbuf + offs;
- dbg_rcvry("%d:%d", lnum, offs);
+ dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
sleb = ubifs_start_scan(c, lnum, offs, sbuf);
if (IS_ERR(sleb))
return sleb;
- if (sleb->ecc)
- need_clean = 1;
-
+ ubifs_assert(len >= 8);
while (len >= 8) {
- int ret;
-
dbg_scan("look at LEB %d:%d (%d bytes left)",
lnum, offs, len);
@@ -557,8 +655,7 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
* Scan quietly until there is an error from which we cannot
* recover
*/
- ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
-
+ ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
if (ret == SCANNED_A_NODE) {
/* A valid node, and not a padding node */
struct ubifs_ch *ch = buf;
@@ -571,98 +668,127 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
offs += node_len;
buf += node_len;
len -= node_len;
- continue;
- }
-
- if (ret > 0) {
+ } else if (ret > 0) {
/* Padding bytes or a valid padding node */
offs += ret;
buf += ret;
len -= ret;
- continue;
- }
-
- if (ret == SCANNED_EMPTY_SPACE) {
- if (!is_empty(buf, len)) {
- if (!is_last_write(c, buf, offs))
- break;
- clean_buf(c, &buf, lnum, &offs, &len);
- need_clean = 1;
- }
- empty_chkd = 1;
+ } else if (ret == SCANNED_EMPTY_SPACE ||
+ ret == SCANNED_GARBAGE ||
+ ret == SCANNED_A_BAD_PAD_NODE ||
+ ret == SCANNED_A_CORRUPT_NODE) {
+ dbg_rcvry("found corruption (%d) at %d:%d",
+ ret, lnum, offs);
break;
+ } else {
+ ubifs_err("unexpected return value %d", ret);
+ err = -EINVAL;
+ goto error;
}
+ }
- if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
- if (is_last_write(c, buf, offs)) {
- clean_buf(c, &buf, lnum, &offs, &len);
- need_clean = 1;
- empty_chkd = 1;
- break;
- }
-
- if (ret == SCANNED_A_CORRUPT_NODE)
- if (no_more_nodes(c, buf, len, lnum, offs)) {
- clean_buf(c, &buf, lnum, &offs, &len);
- need_clean = 1;
- empty_chkd = 1;
- break;
- }
-
- if (quiet) {
- /* Redo the last scan but noisily */
- quiet = 0;
- continue;
- }
+ if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
+ if (!is_last_write(c, buf, offs))
+ goto corrupted_rescan;
+ } else if (ret == SCANNED_A_CORRUPT_NODE) {
+ if (!no_more_nodes(c, buf, len, lnum, offs))
+ goto corrupted_rescan;
+ } else if (!is_empty(buf, len)) {
+ if (!is_last_write(c, buf, offs)) {
+ int corruption = first_non_ff(buf, len);
- switch (ret) {
- case SCANNED_GARBAGE:
- dbg_err("garbage");
- goto corrupted;
- case SCANNED_A_CORRUPT_NODE:
- case SCANNED_A_BAD_PAD_NODE:
- dbg_err("bad node");
- goto corrupted;
- default:
- dbg_err("unknown");
+ /*
+ * See header comment for this file for more
+ * explanations about the reasons we have this check.
+ */
+ ubifs_err("corrupt empty space LEB %d:%d, corruption starts at %d",
+ lnum, offs, corruption);
+ /* Make sure we dump interesting non-0xFF data */
+ offs += corruption;
+ buf += corruption;
goto corrupted;
}
}
- if (!empty_chkd && !is_empty(buf, len)) {
- if (is_last_write(c, buf, offs)) {
- clean_buf(c, &buf, lnum, &offs, &len);
- need_clean = 1;
- } else {
- ubifs_err("corrupt empty space at LEB %d:%d",
- lnum, offs);
- goto corrupted;
- }
- }
+ min_io_unit = round_down(offs, c->min_io_size);
+ if (grouped)
+ /*
+ * If nodes are grouped, always drop the incomplete group at
+ * the end.
+ */
+ drop_last_group(sleb, &offs);
- /* Drop nodes from incomplete group */
- if (grouped && drop_incomplete_group(sleb, &offs)) {
- buf = sbuf + offs;
- len = c->leb_size - offs;
- clean_buf(c, &buf, lnum, &offs, &len);
- need_clean = 1;
+ if (jhead == GCHD) {
+ /*
+ * If this LEB belongs to the GC head then while we are in the
+ * middle of the same min. I/O unit keep dropping nodes. So
+ * basically, what we want is to make sure that the last min.
+ * I/O unit where we saw the corruption is dropped completely
+ * with all the uncorrupted nodes which may possibly sit there.
+ *
+ * In other words, let's name the min. I/O unit where the
+ * corruption starts B, and the previous min. I/O unit A. The
+ * below code tries to deal with a situation when half of B
+ * contains valid nodes or the end of a valid node, and the
+ * second half of B contains corrupted data or garbage. This
+ * means that UBIFS had been writing to B just before the power
+ * cut happened. I do not know how realistic is this scenario
+ * that half of the min. I/O unit had been written successfully
+ * and the other half not, but this is possible in our 'failure
+ * mode emulation' infrastructure at least.
+ *
+ * So what is the problem, why we need to drop those nodes? Why
+ * can't we just clean-up the second half of B by putting a
+ * padding node there? We can, and this works fine with one
+ * exception which was reproduced with power cut emulation
+ * testing and happens extremely rarely.
+ *
+ * Imagine the file-system is full, we run GC which starts
+ * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
+ * the current GC head LEB). The @c->gc_lnum is -1, which means
+ * that GC will retain LEB X and will try to continue. Imagine
+ * that LEB X is currently the dirtiest LEB, and the amount of
+ * used space in LEB Y is exactly the same as amount of free
+ * space in LEB X.
+ *
+ * And a power cut happens when nodes are moved from LEB X to
+ * LEB Y. We are here trying to recover LEB Y which is the GC
+ * head LEB. We find the min. I/O unit B as described above.
+ * Then we clean-up LEB Y by padding min. I/O unit. And later
+ * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
+ * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
+ * does not match because the amount of valid nodes there does
+ * not fit the free space in LEB Y any more! And this is
+ * because of the padding node which we added to LEB Y. The
+ * user-visible effect of this which I once observed and
+ * analysed is that we cannot mount the file-system with
+ * -ENOSPC error.
+ *
+ * So obviously, to make sure that situation does not happen we
+ * should free min. I/O unit B in LEB Y completely and the last
+ * used min. I/O unit in LEB Y should be A. This is basically
+ * what the below code tries to do.
+ */
+ while (offs > min_io_unit)
+ drop_last_node(sleb, &offs);
}
- if (offs % c->min_io_size) {
- clean_buf(c, &buf, lnum, &offs, &len);
- need_clean = 1;
- }
+ buf = sbuf + offs;
+ len = c->leb_size - offs;
+ clean_buf(c, &buf, lnum, &offs, &len);
ubifs_end_scan(c, sleb, lnum, offs);
- if (need_clean) {
- err = fix_unclean_leb(c, sleb, start);
- if (err)
- goto error;
- }
+ err = fix_unclean_leb(c, sleb, start);
+ if (err)
+ goto error;
return sleb;
+corrupted_rescan:
+ /* Re-scan the corrupted data with verbose messages */
+ ubifs_err("corruption %d", ret);
+ ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
corrupted:
ubifs_scanned_corruption(c, lnum, offs, buf);
err = -EUCLEAN;
@@ -693,22 +819,23 @@ static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
return -ENOMEM;
if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
goto out_err;
- err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
+ err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
+ UBIFS_CS_NODE_SZ, 0);
if (err && err != -EBADMSG)
goto out_free;
ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
if (ret != SCANNED_A_NODE) {
- dbg_err("Not a valid node");
+ ubifs_err("Not a valid node");
goto out_err;
}
if (cs_node->ch.node_type != UBIFS_CS_NODE) {
- dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
+ ubifs_err("Node a CS node, type is %d", cs_node->ch.node_type);
goto out_err;
}
if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
- dbg_err("CS node cmt_no %llu != current cmt_no %llu",
- (unsigned long long)le64_to_cpu(cs_node->cmt_no),
- c->cmt_no);
+ ubifs_err("CS node cmt_no %llu != current cmt_no %llu",
+ (unsigned long long)le64_to_cpu(cs_node->cmt_no),
+ c->cmt_no);
goto out_err;
}
*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
@@ -732,7 +859,8 @@ out_free:
* @sbuf: LEB-sized buffer to use
*
* This function does a scan of a LEB, but caters for errors that might have
- * been caused by the unclean unmount from which we are attempting to recover.
+ * been caused by unclean reboots from which we are attempting to recover
+ * (assume that only the last log LEB can be corrupted by an unclean reboot).
*
* This function returns %0 on success and a negative error code on failure.
*/
@@ -751,7 +879,7 @@ struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
* We can only recover at the end of the log, so check that the
* next log LEB is empty or out of date.
*/
- sleb = ubifs_scan(c, next_lnum, 0, sbuf);
+ sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
if (IS_ERR(sleb))
return sleb;
if (sleb->nodes_cnt) {
@@ -770,15 +898,15 @@ struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
}
}
if (snod->sqnum > cs_sqnum) {
- ubifs_err("unrecoverable log corruption "
- "in LEB %d", lnum);
+ ubifs_err("unrecoverable log corruption in LEB %d",
+ lnum);
ubifs_scan_destroy(sleb);
return ERR_PTR(-EUCLEAN);
}
}
ubifs_scan_destroy(sleb);
}
- return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
+ return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
}
/**
@@ -792,15 +920,10 @@ struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
*
* This function returns %0 on success and a negative error code on failure.
*/
-static int recover_head(const struct ubifs_info *c, int lnum, int offs,
- void *sbuf)
+static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
{
- int len, err, need_clean = 0;
+ int len = c->max_write_size, err;
- if (c->min_io_size > 1)
- len = c->min_io_size;
- else
- len = 512;
if (offs + len > c->leb_size)
len = c->leb_size - offs;
@@ -808,27 +931,15 @@ static int recover_head(const struct ubifs_info *c, int lnum, int offs,
return 0;
/* Read at the head location and check it is empty flash */
- err = ubi_read(c->ubi, lnum, sbuf, offs, len);
- if (err)
- need_clean = 1;
- else {
- uint8_t *p = sbuf;
-
- while (len--)
- if (*p++ != 0xff) {
- need_clean = 1;
- break;
- }
- }
-
- if (need_clean) {
+ err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
+ if (err || !is_empty(sbuf, len)) {
dbg_rcvry("cleaning head at %d:%d", lnum, offs);
if (offs == 0)
return ubifs_leb_unmap(c, lnum);
- err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
+ err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
if (err)
return err;
- return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
+ return ubifs_leb_change(c, lnum, sbuf, offs);
}
return 0;
@@ -851,11 +962,11 @@ static int recover_head(const struct ubifs_info *c, int lnum, int offs,
*
* This function returns %0 on success and a negative error code on failure.
*/
-int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
+int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
{
int err;
- ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);
+ ubifs_assert(!c->ro_mount || c->remounting_rw);
dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
@@ -871,7 +982,7 @@ int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
}
/**
- * clean_an_unclean_leb - read and write a LEB to remove corruption.
+ * clean_an_unclean_leb - read and write a LEB to remove corruption.
* @c: UBIFS file-system description object
* @ucleb: unclean LEB information
* @sbuf: LEB-sized buffer to use
@@ -882,7 +993,7 @@ int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
*
* This function returns %0 on success and a negative error code on failure.
*/
-static int clean_an_unclean_leb(const struct ubifs_info *c,
+static int clean_an_unclean_leb(struct ubifs_info *c,
struct ubifs_unclean_leb *ucleb, void *sbuf)
{
int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
@@ -898,7 +1009,7 @@ static int clean_an_unclean_leb(const struct ubifs_info *c,
return 0;
}
- err = ubi_read(c->ubi, lnum, buf, offs, len);
+ err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
if (err && err != -EBADMSG)
return err;
@@ -958,7 +1069,7 @@ static int clean_an_unclean_leb(const struct ubifs_info *c,
}
/* Write back the LEB atomically */
- err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
+ err = ubifs_leb_change(c, lnum, sbuf, len);
if (err)
return err;
@@ -978,7 +1089,7 @@ static int clean_an_unclean_leb(const struct ubifs_info *c,
*
* This function returns %0 on success and a negative error code on failure.
*/
-int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
+int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
{
dbg_rcvry("recovery");
while (!list_empty(&c->unclean_leb_list)) {
@@ -996,6 +1107,140 @@ int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
return 0;
}
+#ifndef __UBOOT__
+/**
+ * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
+ * @c: UBIFS file-system description object
+ *
+ * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
+ * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
+ * zero in case of success and a negative error code in case of failure.
+ */
+static int grab_empty_leb(struct ubifs_info *c)
+{
+ int lnum, err;
+
+ /*
+ * Note, it is very important to first search for an empty LEB and then
+ * run the commit, not vice-versa. The reason is that there might be
+ * only one empty LEB at the moment, the one which has been the
+ * @c->gc_lnum just before the power cut happened. During the regular
+ * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
+ * one but GC can grab it. But at this moment this single empty LEB is
+ * not marked as taken, so if we run commit - what happens? Right, the
+ * commit will grab it and write the index there. Remember that the
+ * index always expands as long as there is free space, and it only
+ * starts consolidating when we run out of space.
+ *
+ * IOW, if we run commit now, we might not be able to find a free LEB
+ * after this.
+ */
+ lnum = ubifs_find_free_leb_for_idx(c);
+ if (lnum < 0) {
+ ubifs_err("could not find an empty LEB");
+ ubifs_dump_lprops(c);
+ ubifs_dump_budg(c, &c->bi);
+ return lnum;
+ }
+
+ /* Reset the index flag */
+ err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
+ LPROPS_INDEX, 0);
+ if (err)
+ return err;
+
+ c->gc_lnum = lnum;
+ dbg_rcvry("found empty LEB %d, run commit", lnum);
+
+ return ubifs_run_commit(c);
+}
+
+/**
+ * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
+ * @c: UBIFS file-system description object
+ *
+ * Out-of-place garbage collection requires always one empty LEB with which to
+ * start garbage collection. The LEB number is recorded in c->gc_lnum and is
+ * written to the master node on unmounting. In the case of an unclean unmount
+ * the value of gc_lnum recorded in the master node is out of date and cannot
+ * be used. Instead, recovery must allocate an empty LEB for this purpose.
+ * However, there may not be enough empty space, in which case it must be
+ * possible to GC the dirtiest LEB into the GC head LEB.
+ *
+ * This function also runs the commit which causes the TNC updates from
+ * size-recovery and orphans to be written to the flash. That is important to
+ * ensure correct replay order for subsequent mounts.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int ubifs_rcvry_gc_commit(struct ubifs_info *c)
+{
+ struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
+ struct ubifs_lprops lp;
+ int err;
+
+ dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
+
+ c->gc_lnum = -1;
+ if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
+ return grab_empty_leb(c);
+
+ err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
+ if (err) {
+ if (err != -ENOSPC)
+ return err;
+
+ dbg_rcvry("could not find a dirty LEB");
+ return grab_empty_leb(c);
+ }
+
+ ubifs_assert(!(lp.flags & LPROPS_INDEX));
+ ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
+
+ /*
+ * We run the commit before garbage collection otherwise subsequent
+ * mounts will see the GC and orphan deletion in a different order.
+ */
+ dbg_rcvry("committing");
+ err = ubifs_run_commit(c);
+ if (err)
+ return err;
+
+ dbg_rcvry("GC'ing LEB %d", lp.lnum);
+ mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
+ err = ubifs_garbage_collect_leb(c, &lp);
+ if (err >= 0) {
+ int err2 = ubifs_wbuf_sync_nolock(wbuf);
+
+ if (err2)
+ err = err2;
+ }
+ mutex_unlock(&wbuf->io_mutex);
+ if (err < 0) {
+ ubifs_err("GC failed, error %d", err);
+ if (err == -EAGAIN)
+ err = -EINVAL;
+ return err;
+ }
+
+ ubifs_assert(err == LEB_RETAINED);
+ if (err != LEB_RETAINED)
+ return -EINVAL;
+
+ err = ubifs_leb_unmap(c, c->gc_lnum);
+ if (err)
+ return err;
+
+ dbg_rcvry("allocated LEB %d for GC", lp.lnum);
+ return 0;
+}
+#else
+int ubifs_rcvry_gc_commit(struct ubifs_info *c)
+{
+ return 0;
+}
+#endif
+
/**
* struct size_entry - inode size information for recovery.
* @rb: link in the RB-tree of sizes
@@ -1090,6 +1335,23 @@ static void remove_ino(struct ubifs_info *c, ino_t inum)
}
/**
+ * ubifs_destroy_size_tree - free resources related to the size tree.
+ * @c: UBIFS file-system description object
+ */
+void ubifs_destroy_size_tree(struct ubifs_info *c)
+{
+ struct size_entry *e, *n;
+
+ rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
+ if (e->inode)
+ iput(e->inode);
+ kfree(e);
+ }
+
+ c->size_tree = RB_ROOT;
+}
+
+/**
* ubifs_recover_size_accum - accumulate inode sizes for recovery.
* @c: UBIFS file-system description object
* @key: node key
@@ -1157,6 +1419,64 @@ int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
return 0;
}
+#ifndef __UBOOT__
+/**
+ * fix_size_in_place - fix inode size in place on flash.
+ * @c: UBIFS file-system description object
+ * @e: inode size information for recovery
+ */
+static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
+{
+ struct ubifs_ino_node *ino = c->sbuf;
+ unsigned char *p;
+ union ubifs_key key;
+ int err, lnum, offs, len;
+ loff_t i_size;
+ uint32_t crc;
+
+ /* Locate the inode node LEB number and offset */
+ ino_key_init(c, &key, e->inum);
+ err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
+ if (err)
+ goto out;
+ /*
+ * If the size recorded on the inode node is greater than the size that
+ * was calculated from nodes in the journal then don't change the inode.
+ */
+ i_size = le64_to_cpu(ino->size);
+ if (i_size >= e->d_size)
+ return 0;
+ /* Read the LEB */
+ err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
+ if (err)
+ goto out;
+ /* Change the size field and recalculate the CRC */
+ ino = c->sbuf + offs;
+ ino->size = cpu_to_le64(e->d_size);
+ len = le32_to_cpu(ino->ch.len);
+ crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
+ ino->ch.crc = cpu_to_le32(crc);
+ /* Work out where data in the LEB ends and free space begins */
+ p = c->sbuf;
+ len = c->leb_size - 1;
+ while (p[len] == 0xff)
+ len -= 1;
+ len = ALIGN(len + 1, c->min_io_size);
+ /* Atomically write the fixed LEB back again */
+ err = ubifs_leb_change(c, lnum, c->sbuf, len);
+ if (err)
+ goto out;
+ dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
+ (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
+ return 0;
+
+out:
+ ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
+ (unsigned long)e->inum, e->i_size, e->d_size, err);
+ return err;
+}
+#endif
+
/**
* ubifs_recover_size - recover inode size.
* @c: UBIFS file-system description object
@@ -1196,30 +1516,48 @@ int ubifs_recover_size(struct ubifs_info *c)
e->i_size = le64_to_cpu(ino->size);
}
}
+
if (e->exists && e->i_size < e->d_size) {
- if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) {
+ if (c->ro_mount) {
/* Fix the inode size and pin it in memory */
struct inode *inode;
+ struct ubifs_inode *ui;
+
+ ubifs_assert(!e->inode);
inode = ubifs_iget(c->vfs_sb, e->inum);
if (IS_ERR(inode))
return PTR_ERR(inode);
+
+ ui = ubifs_inode(inode);
if (inode->i_size < e->d_size) {
dbg_rcvry("ino %lu size %lld -> %lld",
(unsigned long)e->inum,
- e->d_size, inode->i_size);
+ inode->i_size, e->d_size);
inode->i_size = e->d_size;
- ubifs_inode(inode)->ui_size = e->d_size;
+ ui->ui_size = e->d_size;
+ ui->synced_i_size = e->d_size;
e->inode = inode;
this = rb_next(this);
continue;
}
iput(inode);
+#ifndef __UBOOT__
+ } else {
+ /* Fix the size in place */
+ err = fix_size_in_place(c, e);
+ if (err)
+ return err;
+ if (e->inode)
+ iput(e->inode);
+#endif
}
}
+
this = rb_next(this);
rb_erase(&e->rb, &c->size_tree);
kfree(e);
}
+
return 0;
}
diff --git a/fs/ubifs/replay.c b/fs/ubifs/replay.c
index da33a14..6393b15 100644
--- a/fs/ubifs/replay.c
+++ b/fs/ubifs/replay.c
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Adrian Hunter
* Artem Bityutskiy (Битюцкий Артём)
@@ -32,44 +21,38 @@
* larger is the journal, the more memory its index may consume.
*/
+#define __UBOOT__
+#ifdef __UBOOT__
+#include <linux/compat.h>
+#include <linux/err.h>
+#endif
#include "ubifs.h"
-
-/*
- * Replay flags.
- *
- * REPLAY_DELETION: node was deleted
- * REPLAY_REF: node is a reference node
- */
-enum {
- REPLAY_DELETION = 1,
- REPLAY_REF = 2,
-};
+#include <linux/list_sort.h>
/**
- * struct replay_entry - replay tree entry.
+ * struct replay_entry - replay list entry.
* @lnum: logical eraseblock number of the node
* @offs: node offset
* @len: node length
+ * @deletion: non-zero if this entry corresponds to a node deletion
* @sqnum: node sequence number
- * @flags: replay flags
- * @rb: links the replay tree
+ * @list: links the replay list
* @key: node key
* @nm: directory entry name
* @old_size: truncation old size
* @new_size: truncation new size
- * @free: amount of free space in a bud
- * @dirty: amount of dirty space in a bud from padding and deletion nodes
*
- * UBIFS journal replay must compare node sequence numbers, which means it must
- * build a tree of node information to insert into the TNC.
+ * The replay process first scans all buds and builds the replay list, then
+ * sorts the replay list in nodes sequence number order, and then inserts all
+ * the replay entries to the TNC.
*/
struct replay_entry {
int lnum;
int offs;
int len;
+ unsigned int deletion:1;
unsigned long long sqnum;
- int flags;
- struct rb_node rb;
+ struct list_head list;
union ubifs_key key;
union {
struct qstr nm;
@@ -77,10 +60,6 @@ struct replay_entry {
loff_t old_size;
loff_t new_size;
};
- struct {
- int free;
- int dirty;
- };
};
};
@@ -88,83 +67,117 @@ struct replay_entry {
* struct bud_entry - entry in the list of buds to replay.
* @list: next bud in the list
* @bud: bud description object
- * @free: free bytes in the bud
* @sqnum: reference node sequence number
+ * @free: free bytes in the bud
+ * @dirty: dirty bytes in the bud
*/
struct bud_entry {
struct list_head list;
struct ubifs_bud *bud;
- int free;
unsigned long long sqnum;
+ int free;
+ int dirty;
};
+#ifndef __UBOOT__
/**
* set_bud_lprops - set free and dirty space used by a bud.
* @c: UBIFS file-system description object
- * @r: replay entry of bud
+ * @b: bud entry which describes the bud
+ *
+ * This function makes sure the LEB properties of bud @b are set correctly
+ * after the replay. Returns zero in case of success and a negative error code
+ * in case of failure.
*/
-static int set_bud_lprops(struct ubifs_info *c, struct replay_entry *r)
+static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
{
const struct ubifs_lprops *lp;
int err = 0, dirty;
ubifs_get_lprops(c);
- lp = ubifs_lpt_lookup_dirty(c, r->lnum);
+ lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
if (IS_ERR(lp)) {
err = PTR_ERR(lp);
goto out;
}
dirty = lp->dirty;
- if (r->offs == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
+ if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
/*
* The LEB was added to the journal with a starting offset of
* zero which means the LEB must have been empty. The LEB
- * property values should be lp->free == c->leb_size and
- * lp->dirty == 0, but that is not the case. The reason is that
- * the LEB was garbage collected. The garbage collector resets
- * the free and dirty space without recording it anywhere except
- * lprops, so if there is not a commit then lprops does not have
- * that information next time the file system is mounted.
+ * property values should be @lp->free == @c->leb_size and
+ * @lp->dirty == 0, but that is not the case. The reason is that
+ * the LEB had been garbage collected before it became the bud,
+ * and there was not commit inbetween. The garbage collector
+ * resets the free and dirty space without recording it
+ * anywhere except lprops, so if there was no commit then
+ * lprops does not have that information.
*
* We do not need to adjust free space because the scan has told
* us the exact value which is recorded in the replay entry as
- * r->free.
+ * @b->free.
*
* However we do need to subtract from the dirty space the
* amount of space that the garbage collector reclaimed, which
* is the whole LEB minus the amount of space that was free.
*/
- dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", r->lnum,
+ dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
lp->free, lp->dirty);
- dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", r->lnum,
+ dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
lp->free, lp->dirty);
dirty -= c->leb_size - lp->free;
/*
* If the replay order was perfect the dirty space would now be
- * zero. The order is not perfect because the the journal heads
+ * zero. The order is not perfect because the journal heads
* race with each other. This is not a problem but is does mean
* that the dirty space may temporarily exceed c->leb_size
* during the replay.
*/
if (dirty != 0)
- dbg_msg("LEB %d lp: %d free %d dirty "
- "replay: %d free %d dirty", r->lnum, lp->free,
- lp->dirty, r->free, r->dirty);
+ dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
+ b->bud->lnum, lp->free, lp->dirty, b->free,
+ b->dirty);
}
- lp = ubifs_change_lp(c, lp, r->free, dirty + r->dirty,
+ lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
lp->flags | LPROPS_TAKEN, 0);
if (IS_ERR(lp)) {
err = PTR_ERR(lp);
goto out;
}
+
+ /* Make sure the journal head points to the latest bud */
+ err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
+ b->bud->lnum, c->leb_size - b->free);
+
out:
ubifs_release_lprops(c);
return err;
}
/**
+ * set_buds_lprops - set free and dirty space for all replayed buds.
+ * @c: UBIFS file-system description object
+ *
+ * This function sets LEB properties for all replayed buds. Returns zero in
+ * case of success and a negative error code in case of failure.
+ */
+static int set_buds_lprops(struct ubifs_info *c)
+{
+ struct bud_entry *b;
+ int err;
+
+ list_for_each_entry(b, &c->replay_buds, list) {
+ err = set_bud_lprops(c, b);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+/**
* trun_remove_range - apply a replay entry for a truncation to the TNC.
* @c: UBIFS file-system description object
* @r: replay entry of truncation
@@ -200,24 +213,22 @@ static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
*/
static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
{
- int err, deletion = ((r->flags & REPLAY_DELETION) != 0);
+ int err;
- dbg_mnt("LEB %d:%d len %d flgs %d sqnum %llu %s", r->lnum,
- r->offs, r->len, r->flags, r->sqnum, DBGKEY(&r->key));
+ dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
+ r->lnum, r->offs, r->len, r->deletion, r->sqnum);
/* Set c->replay_sqnum to help deal with dangling branches. */
c->replay_sqnum = r->sqnum;
- if (r->flags & REPLAY_REF)
- err = set_bud_lprops(c, r);
- else if (is_hash_key(c, &r->key)) {
- if (deletion)
+ if (is_hash_key(c, &r->key)) {
+ if (r->deletion)
err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
else
err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
r->len, &r->nm);
} else {
- if (deletion)
+ if (r->deletion)
switch (key_type(c, &r->key)) {
case UBIFS_INO_KEY:
{
@@ -240,7 +251,7 @@ static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
return err;
if (c->need_recovery)
- err = ubifs_recover_size_accum(c, &r->key, deletion,
+ err = ubifs_recover_size_accum(c, &r->key, r->deletion,
r->new_size);
}
@@ -248,68 +259,77 @@ static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
}
/**
- * destroy_replay_tree - destroy the replay.
- * @c: UBIFS file-system description object
+ * replay_entries_cmp - compare 2 replay entries.
+ * @priv: UBIFS file-system description object
+ * @a: first replay entry
+ * @a: second replay entry
*
- * Destroy the replay tree.
+ * This is a comparios function for 'list_sort()' which compares 2 replay
+ * entries @a and @b by comparing their sequence numer. Returns %1 if @a has
+ * greater sequence number and %-1 otherwise.
*/
-static void destroy_replay_tree(struct ubifs_info *c)
+static int replay_entries_cmp(void *priv, struct list_head *a,
+ struct list_head *b)
{
- struct rb_node *this = c->replay_tree.rb_node;
- struct replay_entry *r;
-
- while (this) {
- if (this->rb_left) {
- this = this->rb_left;
- continue;
- } else if (this->rb_right) {
- this = this->rb_right;
- continue;
- }
- r = rb_entry(this, struct replay_entry, rb);
- this = rb_parent(this);
- if (this) {
- if (this->rb_left == &r->rb)
- this->rb_left = NULL;
- else
- this->rb_right = NULL;
- }
- if (is_hash_key(c, &r->key))
- kfree((void *)r->nm.name);
- kfree(r);
- }
- c->replay_tree = RB_ROOT;
+ struct replay_entry *ra, *rb;
+
+ cond_resched();
+ if (a == b)
+ return 0;
+
+ ra = list_entry(a, struct replay_entry, list);
+ rb = list_entry(b, struct replay_entry, list);
+ ubifs_assert(ra->sqnum != rb->sqnum);
+ if (ra->sqnum > rb->sqnum)
+ return 1;
+ return -1;
}
/**
- * apply_replay_tree - apply the replay tree to the TNC.
+ * apply_replay_list - apply the replay list to the TNC.
* @c: UBIFS file-system description object
*
- * Apply the replay tree.
- * Returns zero in case of success and a negative error code in case of
- * failure.
+ * Apply all entries in the replay list to the TNC. Returns zero in case of
+ * success and a negative error code in case of failure.
*/
-static int apply_replay_tree(struct ubifs_info *c)
+static int apply_replay_list(struct ubifs_info *c)
{
- struct rb_node *this = rb_first(&c->replay_tree);
+ struct replay_entry *r;
+ int err;
- while (this) {
- struct replay_entry *r;
- int err;
+ list_sort(c, &c->replay_list, &replay_entries_cmp);
+ list_for_each_entry(r, &c->replay_list, list) {
cond_resched();
- r = rb_entry(this, struct replay_entry, rb);
err = apply_replay_entry(c, r);
if (err)
return err;
- this = rb_next(this);
}
+
return 0;
}
/**
- * insert_node - insert a node to the replay tree.
+ * destroy_replay_list - destroy the replay.
+ * @c: UBIFS file-system description object
+ *
+ * Destroy the replay list.
+ */
+static void destroy_replay_list(struct ubifs_info *c)
+{
+ struct replay_entry *r, *tmp;
+
+ list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
+ if (is_hash_key(c, &r->key))
+ kfree(r->nm.name);
+ list_del(&r->list);
+ kfree(r);
+ }
+}
+
+/**
+ * insert_node - insert a node to the replay list
* @c: UBIFS file-system description object
* @lnum: node logical eraseblock number
* @offs: node offset
@@ -321,39 +341,25 @@ static int apply_replay_tree(struct ubifs_info *c)
* @old_size: truncation old size
* @new_size: truncation new size
*
- * This function inserts a scanned non-direntry node to the replay tree. The
- * replay tree is an RB-tree containing @struct replay_entry elements which are
- * indexed by the sequence number. The replay tree is applied at the very end
- * of the replay process. Since the tree is sorted in sequence number order,
- * the older modifications are applied first. This function returns zero in
- * case of success and a negative error code in case of failure.
+ * This function inserts a scanned non-direntry node to the replay list. The
+ * replay list contains @struct replay_entry elements, and we sort this list in
+ * sequence number order before applying it. The replay list is applied at the
+ * very end of the replay process. Since the list is sorted in sequence number
+ * order, the older modifications are applied first. This function returns zero
+ * in case of success and a negative error code in case of failure.
*/
static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
union ubifs_key *key, unsigned long long sqnum,
int deletion, int *used, loff_t old_size,
loff_t new_size)
{
- struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL;
struct replay_entry *r;
+ dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
+
if (key_inum(c, key) >= c->highest_inum)
c->highest_inum = key_inum(c, key);
- dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key));
- while (*p) {
- parent = *p;
- r = rb_entry(parent, struct replay_entry, rb);
- if (sqnum < r->sqnum) {
- p = &(*p)->rb_left;
- continue;
- } else if (sqnum > r->sqnum) {
- p = &(*p)->rb_right;
- continue;
- }
- ubifs_err("duplicate sqnum in replay");
- return -EINVAL;
- }
-
r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
if (!r)
return -ENOMEM;
@@ -363,19 +369,18 @@ static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
r->lnum = lnum;
r->offs = offs;
r->len = len;
+ r->deletion = !!deletion;
r->sqnum = sqnum;
- r->flags = (deletion ? REPLAY_DELETION : 0);
+ key_copy(c, key, &r->key);
r->old_size = old_size;
r->new_size = new_size;
- key_copy(c, key, &r->key);
- rb_link_node(&r->rb, parent, p);
- rb_insert_color(&r->rb, &c->replay_tree);
+ list_add_tail(&r->list, &c->replay_list);
return 0;
}
/**
- * insert_dent - insert a directory entry node into the replay tree.
+ * insert_dent - insert a directory entry node into the replay list.
* @c: UBIFS file-system description object
* @lnum: node logical eraseblock number
* @offs: node offset
@@ -387,43 +392,25 @@ static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
* @deletion: non-zero if this is a deletion
* @used: number of bytes in use in a LEB
*
- * This function inserts a scanned directory entry node to the replay tree.
- * Returns zero in case of success and a negative error code in case of
- * failure.
- *
- * This function is also used for extended attribute entries because they are
- * implemented as directory entry nodes.
+ * This function inserts a scanned directory entry node or an extended
+ * attribute entry to the replay list. Returns zero in case of success and a
+ * negative error code in case of failure.
*/
static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
union ubifs_key *key, const char *name, int nlen,
unsigned long long sqnum, int deletion, int *used)
{
- struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL;
struct replay_entry *r;
char *nbuf;
+ dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
if (key_inum(c, key) >= c->highest_inum)
c->highest_inum = key_inum(c, key);
- dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key));
- while (*p) {
- parent = *p;
- r = rb_entry(parent, struct replay_entry, rb);
- if (sqnum < r->sqnum) {
- p = &(*p)->rb_left;
- continue;
- }
- if (sqnum > r->sqnum) {
- p = &(*p)->rb_right;
- continue;
- }
- ubifs_err("duplicate sqnum in replay");
- return -EINVAL;
- }
-
r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
if (!r)
return -ENOMEM;
+
nbuf = kmalloc(nlen + 1, GFP_KERNEL);
if (!nbuf) {
kfree(r);
@@ -435,19 +422,18 @@ static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
r->lnum = lnum;
r->offs = offs;
r->len = len;
+ r->deletion = !!deletion;
r->sqnum = sqnum;
+ key_copy(c, key, &r->key);
r->nm.len = nlen;
memcpy(nbuf, name, nlen);
nbuf[nlen] = '\0';
r->nm.name = nbuf;
- r->flags = (deletion ? REPLAY_DELETION : 0);
- key_copy(c, key, &r->key);
- ubifs_assert(!*p);
- rb_link_node(&r->rb, parent, p);
- rb_insert_color(&r->rb, &c->replay_tree);
+ list_add_tail(&r->list, &c->replay_list);
return 0;
}
+#endif
/**
* ubifs_validate_entry - validate directory or extended attribute entry node.
@@ -466,7 +452,7 @@ int ubifs_validate_entry(struct ubifs_info *c,
if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
dent->type >= UBIFS_ITYPES_CNT ||
nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
- strnlen((char *)dent->name, nlen) != nlen ||
+ strnlen(dent->name, nlen) != nlen ||
le64_to_cpu(dent->inum) > MAX_INUM) {
ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ?
"directory entry" : "extended attribute entry");
@@ -481,32 +467,94 @@ int ubifs_validate_entry(struct ubifs_info *c,
return 0;
}
+#ifndef __UBOOT__
+/**
+ * is_last_bud - check if the bud is the last in the journal head.
+ * @c: UBIFS file-system description object
+ * @bud: bud description object
+ *
+ * This function checks if bud @bud is the last bud in its journal head. This
+ * information is then used by 'replay_bud()' to decide whether the bud can
+ * have corruptions or not. Indeed, only last buds can be corrupted by power
+ * cuts. Returns %1 if this is the last bud, and %0 if not.
+ */
+static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
+{
+ struct ubifs_jhead *jh = &c->jheads[bud->jhead];
+ struct ubifs_bud *next;
+ uint32_t data;
+ int err;
+
+ if (list_is_last(&bud->list, &jh->buds_list))
+ return 1;
+
+ /*
+ * The following is a quirk to make sure we work correctly with UBIFS
+ * images used with older UBIFS.
+ *
+ * Normally, the last bud will be the last in the journal head's list
+ * of bud. However, there is one exception if the UBIFS image belongs
+ * to older UBIFS. This is fairly unlikely: one would need to use old
+ * UBIFS, then have a power cut exactly at the right point, and then
+ * try to mount this image with new UBIFS.
+ *
+ * The exception is: it is possible to have 2 buds A and B, A goes
+ * before B, and B is the last, bud B is contains no data, and bud A is
+ * corrupted at the end. The reason is that in older versions when the
+ * journal code switched the next bud (from A to B), it first added a
+ * log reference node for the new bud (B), and only after this it
+ * synchronized the write-buffer of current bud (A). But later this was
+ * changed and UBIFS started to always synchronize the write-buffer of
+ * the bud (A) before writing the log reference for the new bud (B).
+ *
+ * But because older UBIFS always synchronized A's write-buffer before
+ * writing to B, we can recognize this exceptional situation but
+ * checking the contents of bud B - if it is empty, then A can be
+ * treated as the last and we can recover it.
+ *
+ * TODO: remove this piece of code in a couple of years (today it is
+ * 16.05.2011).
+ */
+ next = list_entry(bud->list.next, struct ubifs_bud, list);
+ if (!list_is_last(&next->list, &jh->buds_list))
+ return 0;
+
+ err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
+ if (err)
+ return 0;
+
+ return data == 0xFFFFFFFF;
+}
+
/**
* replay_bud - replay a bud logical eraseblock.
* @c: UBIFS file-system description object
- * @lnum: bud logical eraseblock number to replay
- * @offs: bud start offset
- * @jhead: journal head to which this bud belongs
- * @free: amount of free space in the bud is returned here
- * @dirty: amount of dirty space from padding and deletion nodes is returned
- * here
+ * @b: bud entry which describes the bud
*
- * This function returns zero in case of success and a negative error code in
- * case of failure.
+ * This function replays bud @bud, recovers it if needed, and adds all nodes
+ * from this bud to the replay list. Returns zero in case of success and a
+ * negative error code in case of failure.
*/
-static int replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
- int *free, int *dirty)
+static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
{
- int err = 0, used = 0;
+ int is_last = is_last_bud(c, b->bud);
+ int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
struct ubifs_scan_leb *sleb;
struct ubifs_scan_node *snod;
- struct ubifs_bud *bud;
- dbg_mnt("replay bud LEB %d, head %d", lnum, jhead);
- if (c->need_recovery)
- sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, jhead != GCHD);
+ dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
+ lnum, b->bud->jhead, offs, is_last);
+
+ if (c->need_recovery && is_last)
+ /*
+ * Recover only last LEBs in the journal heads, because power
+ * cuts may cause corruptions only in these LEBs, because only
+ * these LEBs could possibly be written to at the power cut
+ * time.
+ */
+ sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
else
- sleb = ubifs_scan(c, lnum, offs, c->sbuf);
+ sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
if (IS_ERR(sleb))
return PTR_ERR(sleb);
@@ -580,7 +628,7 @@ static int replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
goto out_dump;
err = insert_dent(c, lnum, snod->offs, snod->len,
- &snod->key, (char *)dent->name,
+ &snod->key, dent->name,
le16_to_cpu(dent->nlen), snod->sqnum,
!le64_to_cpu(dent->inum), &used);
break;
@@ -620,15 +668,14 @@ static int replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
goto out;
}
- bud = ubifs_search_bud(c, lnum);
- if (!bud)
- BUG();
-
+ ubifs_assert(ubifs_search_bud(c, lnum));
ubifs_assert(sleb->endpt - offs >= used);
ubifs_assert(sleb->endpt % c->min_io_size == 0);
- *dirty = sleb->endpt - offs - used;
- *free = c->leb_size - sleb->endpt;
+ b->dirty = sleb->endpt - offs - used;
+ b->free = c->leb_size - sleb->endpt;
+ dbg_mnt("bud LEB %d replied: dirty %d, free %d",
+ lnum, b->dirty, b->free);
out:
ubifs_scan_destroy(sleb);
@@ -636,61 +683,12 @@ out:
out_dump:
ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs);
- dbg_dump_node(c, snod->node);
+ ubifs_dump_node(c, snod->node);
ubifs_scan_destroy(sleb);
return -EINVAL;
}
/**
- * insert_ref_node - insert a reference node to the replay tree.
- * @c: UBIFS file-system description object
- * @lnum: node logical eraseblock number
- * @offs: node offset
- * @sqnum: sequence number
- * @free: amount of free space in bud
- * @dirty: amount of dirty space from padding and deletion nodes
- *
- * This function inserts a reference node to the replay tree and returns zero
- * in case of success or a negative error code in case of failure.
- */
-static int insert_ref_node(struct ubifs_info *c, int lnum, int offs,
- unsigned long long sqnum, int free, int dirty)
-{
- struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL;
- struct replay_entry *r;
-
- dbg_mnt("add ref LEB %d:%d", lnum, offs);
- while (*p) {
- parent = *p;
- r = rb_entry(parent, struct replay_entry, rb);
- if (sqnum < r->sqnum) {
- p = &(*p)->rb_left;
- continue;
- } else if (sqnum > r->sqnum) {
- p = &(*p)->rb_right;
- continue;
- }
- ubifs_err("duplicate sqnum in replay tree");
- return -EINVAL;
- }
-
- r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
- if (!r)
- return -ENOMEM;
-
- r->lnum = lnum;
- r->offs = offs;
- r->sqnum = sqnum;
- r->flags = REPLAY_REF;
- r->free = free;
- r->dirty = dirty;
-
- rb_link_node(&r->rb, parent, p);
- rb_insert_color(&r->rb, &c->replay_tree);
- return 0;
-}
-
-/**
* replay_buds - replay all buds.
* @c: UBIFS file-system description object
*
@@ -700,17 +698,16 @@ static int insert_ref_node(struct ubifs_info *c, int lnum, int offs,
static int replay_buds(struct ubifs_info *c)
{
struct bud_entry *b;
- int err, uninitialized_var(free), uninitialized_var(dirty);
+ int err;
+ unsigned long long prev_sqnum = 0;
list_for_each_entry(b, &c->replay_buds, list) {
- err = replay_bud(c, b->bud->lnum, b->bud->start, b->bud->jhead,
- &free, &dirty);
- if (err)
- return err;
- err = insert_ref_node(c, b->bud->lnum, b->bud->start, b->sqnum,
- free, dirty);
+ err = replay_bud(c, b);
if (err)
return err;
+
+ ubifs_assert(b->sqnum > prev_sqnum);
+ prev_sqnum = b->sqnum;
}
return 0;
@@ -831,10 +828,16 @@ static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
const struct ubifs_cs_node *node;
dbg_mnt("replay log LEB %d:%d", lnum, offs);
- sleb = ubifs_scan(c, lnum, offs, sbuf);
+ sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
if (IS_ERR(sleb)) {
- if (c->need_recovery)
- sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
+ if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
+ return PTR_ERR(sleb);
+ /*
+ * Note, the below function will recover this log LEB only if
+ * it is the last, because unclean reboots can possibly corrupt
+ * only the tail of the log.
+ */
+ sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
if (IS_ERR(sleb))
return PTR_ERR(sleb);
}
@@ -845,7 +848,6 @@ static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
}
node = sleb->buf;
-
snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
if (c->cs_sqnum == 0) {
/*
@@ -856,16 +858,15 @@ static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
* numbers.
*/
if (snod->type != UBIFS_CS_NODE) {
- dbg_err("first log node at LEB %d:%d is not CS node",
- lnum, offs);
+ ubifs_err("first log node at LEB %d:%d is not CS node",
+ lnum, offs);
goto out_dump;
}
if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
- dbg_err("first CS node at LEB %d:%d has wrong "
- "commit number %llu expected %llu",
- lnum, offs,
- (unsigned long long)le64_to_cpu(node->cmt_no),
- c->cmt_no);
+ ubifs_err("first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
+ lnum, offs,
+ (unsigned long long)le64_to_cpu(node->cmt_no),
+ c->cmt_no);
goto out_dump;
}
@@ -887,12 +888,11 @@ static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
/* Make sure the first node sits at offset zero of the LEB */
if (snod->offs != 0) {
- dbg_err("first node is not at zero offset");
+ ubifs_err("first node is not at zero offset");
goto out_dump;
}
list_for_each_entry(snod, &sleb->nodes, list) {
-
cond_resched();
if (snod->sqnum >= SQNUM_WATERMARK) {
@@ -901,8 +901,8 @@ static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
}
if (snod->sqnum < c->cs_sqnum) {
- dbg_err("bad sqnum %llu, commit sqnum %llu",
- snod->sqnum, c->cs_sqnum);
+ ubifs_err("bad sqnum %llu, commit sqnum %llu",
+ snod->sqnum, c->cs_sqnum);
goto out_dump;
}
@@ -952,9 +952,9 @@ out:
return err;
out_dump:
- ubifs_err("log error detected while replying the log at LEB %d:%d",
+ ubifs_err("log error detected while replaying the log at LEB %d:%d",
lnum, offs + snod->offs);
- dbg_dump_node(c, snod->node);
+ ubifs_dump_node(c, snod->node);
ubifs_scan_destroy(sleb);
return -EINVAL;
}
@@ -1004,67 +1004,64 @@ out:
*/
int ubifs_replay_journal(struct ubifs_info *c)
{
- int err, i, lnum, offs, _free;
- void *sbuf = NULL;
+ int err, lnum, free;
BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
/* Update the status of the index head in lprops to 'taken' */
- _free = take_ihead(c);
- if (_free < 0)
- return _free; /* Error code */
+ free = take_ihead(c);
+ if (free < 0)
+ return free; /* Error code */
- if (c->ihead_offs != c->leb_size - _free) {
+ if (c->ihead_offs != c->leb_size - free) {
ubifs_err("bad index head LEB %d:%d", c->ihead_lnum,
c->ihead_offs);
return -EINVAL;
}
- sbuf = vmalloc(c->leb_size);
- if (!sbuf)
- return -ENOMEM;
-
dbg_mnt("start replaying the journal");
-
c->replaying = 1;
-
lnum = c->ltail_lnum = c->lhead_lnum;
- offs = c->lhead_offs;
- for (i = 0; i < c->log_lebs; i++, lnum++) {
- if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) {
- /*
- * The log is logically circular, we reached the last
- * LEB, switch to the first one.
- */
- lnum = UBIFS_LOG_LNUM;
- offs = 0;
- }
- err = replay_log_leb(c, lnum, offs, sbuf);
+ do {
+ err = replay_log_leb(c, lnum, 0, c->sbuf);
if (err == 1)
/* We hit the end of the log */
break;
if (err)
goto out;
- offs = 0;
- }
+ lnum = ubifs_next_log_lnum(c, lnum);
+ } while (lnum != c->ltail_lnum);
err = replay_buds(c);
if (err)
goto out;
- err = apply_replay_tree(c);
+ err = apply_replay_list(c);
if (err)
goto out;
+ err = set_buds_lprops(c);
+ if (err)
+ goto out;
+
+ /*
+ * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
+ * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
+ * depend on it. This means we have to initialize it to make sure
+ * budgeting works properly.
+ */
+ c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
+ c->bi.uncommitted_idx *= c->max_idx_node_sz;
+
ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
- dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, "
- "highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum,
+ dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
+ c->lhead_lnum, c->lhead_offs, c->max_sqnum,
(unsigned long)c->highest_inum);
out:
- destroy_replay_tree(c);
+ destroy_replay_list(c);
destroy_bud_list(c);
- vfree(sbuf);
c->replaying = 0;
return err;
}
+#endif
diff --git a/fs/ubifs/sb.c b/fs/ubifs/sb.c
index 00c9cd3..fc0194a 100644
--- a/fs/ubifs/sb.c
+++ b/fs/ubifs/sb.c
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
@@ -27,6 +16,18 @@
*/
#include "ubifs.h"
+#define __UBOOT__
+#ifndef __UBOOT__
+#include <linux/slab.h>
+#include <linux/random.h>
+#include <linux/math64.h>
+#else
+
+#include <linux/compat.h>
+#include <linux/err.h>
+#include <ubi_uboot.h>
+#include <linux/stat.h>
+#endif
/*
* Default journal size in logical eraseblocks as a percent of total
@@ -60,6 +61,282 @@
/* Default time granularity in nanoseconds */
#define DEFAULT_TIME_GRAN 1000000000
+#ifndef __UBOOT__
+/**
+ * create_default_filesystem - format empty UBI volume.
+ * @c: UBIFS file-system description object
+ *
+ * This function creates default empty file-system. Returns zero in case of
+ * success and a negative error code in case of failure.
+ */
+static int create_default_filesystem(struct ubifs_info *c)
+{
+ struct ubifs_sb_node *sup;
+ struct ubifs_mst_node *mst;
+ struct ubifs_idx_node *idx;
+ struct ubifs_branch *br;
+ struct ubifs_ino_node *ino;
+ struct ubifs_cs_node *cs;
+ union ubifs_key key;
+ int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
+ int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
+ int min_leb_cnt = UBIFS_MIN_LEB_CNT;
+ long long tmp64, main_bytes;
+ __le64 tmp_le64;
+
+ /* Some functions called from here depend on the @c->key_len filed */
+ c->key_len = UBIFS_SK_LEN;
+
+ /*
+ * First of all, we have to calculate default file-system geometry -
+ * log size, journal size, etc.
+ */
+ if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
+ /* We can first multiply then divide and have no overflow */
+ jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
+ else
+ jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
+
+ if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
+ jnl_lebs = UBIFS_MIN_JNL_LEBS;
+ if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
+ jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
+
+ /*
+ * The log should be large enough to fit reference nodes for all bud
+ * LEBs. Because buds do not have to start from the beginning of LEBs
+ * (half of the LEB may contain committed data), the log should
+ * generally be larger, make it twice as large.
+ */
+ tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
+ log_lebs = tmp / c->leb_size;
+ /* Plus one LEB reserved for commit */
+ log_lebs += 1;
+ if (c->leb_cnt - min_leb_cnt > 8) {
+ /* And some extra space to allow writes while committing */
+ log_lebs += 1;
+ min_leb_cnt += 1;
+ }
+
+ max_buds = jnl_lebs - log_lebs;
+ if (max_buds < UBIFS_MIN_BUD_LEBS)
+ max_buds = UBIFS_MIN_BUD_LEBS;
+
+ /*
+ * Orphan nodes are stored in a separate area. One node can store a lot
+ * of orphan inode numbers, but when new orphan comes we just add a new
+ * orphan node. At some point the nodes are consolidated into one
+ * orphan node.
+ */
+ orph_lebs = UBIFS_MIN_ORPH_LEBS;
+ if (c->leb_cnt - min_leb_cnt > 1)
+ /*
+ * For debugging purposes it is better to have at least 2
+ * orphan LEBs, because the orphan subsystem would need to do
+ * consolidations and would be stressed more.
+ */
+ orph_lebs += 1;
+
+ main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
+ main_lebs -= orph_lebs;
+
+ lpt_first = UBIFS_LOG_LNUM + log_lebs;
+ c->lsave_cnt = DEFAULT_LSAVE_CNT;
+ c->max_leb_cnt = c->leb_cnt;
+ err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
+ &big_lpt);
+ if (err)
+ return err;
+
+ dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
+ lpt_first + lpt_lebs - 1);
+
+ main_first = c->leb_cnt - main_lebs;
+
+ /* Create default superblock */
+ tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
+ sup = kzalloc(tmp, GFP_KERNEL);
+ if (!sup)
+ return -ENOMEM;
+
+ tmp64 = (long long)max_buds * c->leb_size;
+ if (big_lpt)
+ sup_flags |= UBIFS_FLG_BIGLPT;
+
+ sup->ch.node_type = UBIFS_SB_NODE;
+ sup->key_hash = UBIFS_KEY_HASH_R5;
+ sup->flags = cpu_to_le32(sup_flags);
+ sup->min_io_size = cpu_to_le32(c->min_io_size);
+ sup->leb_size = cpu_to_le32(c->leb_size);
+ sup->leb_cnt = cpu_to_le32(c->leb_cnt);
+ sup->max_leb_cnt = cpu_to_le32(c->max_leb_cnt);
+ sup->max_bud_bytes = cpu_to_le64(tmp64);
+ sup->log_lebs = cpu_to_le32(log_lebs);
+ sup->lpt_lebs = cpu_to_le32(lpt_lebs);
+ sup->orph_lebs = cpu_to_le32(orph_lebs);
+ sup->jhead_cnt = cpu_to_le32(DEFAULT_JHEADS_CNT);
+ sup->fanout = cpu_to_le32(DEFAULT_FANOUT);
+ sup->lsave_cnt = cpu_to_le32(c->lsave_cnt);
+ sup->fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION);
+ sup->time_gran = cpu_to_le32(DEFAULT_TIME_GRAN);
+ if (c->mount_opts.override_compr)
+ sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
+ else
+ sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
+
+ generate_random_uuid(sup->uuid);
+
+ main_bytes = (long long)main_lebs * c->leb_size;
+ tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
+ if (tmp64 > DEFAULT_MAX_RP_SIZE)
+ tmp64 = DEFAULT_MAX_RP_SIZE;
+ sup->rp_size = cpu_to_le64(tmp64);
+ sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
+
+ err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0);
+ kfree(sup);
+ if (err)
+ return err;
+
+ dbg_gen("default superblock created at LEB 0:0");
+
+ /* Create default master node */
+ mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
+ if (!mst)
+ return -ENOMEM;
+
+ mst->ch.node_type = UBIFS_MST_NODE;
+ mst->log_lnum = cpu_to_le32(UBIFS_LOG_LNUM);
+ mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
+ mst->cmt_no = 0;
+ mst->root_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
+ mst->root_offs = 0;
+ tmp = ubifs_idx_node_sz(c, 1);
+ mst->root_len = cpu_to_le32(tmp);
+ mst->gc_lnum = cpu_to_le32(main_first + DEFAULT_GC_LEB);
+ mst->ihead_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
+ mst->ihead_offs = cpu_to_le32(ALIGN(tmp, c->min_io_size));
+ mst->index_size = cpu_to_le64(ALIGN(tmp, 8));
+ mst->lpt_lnum = cpu_to_le32(c->lpt_lnum);
+ mst->lpt_offs = cpu_to_le32(c->lpt_offs);
+ mst->nhead_lnum = cpu_to_le32(c->nhead_lnum);
+ mst->nhead_offs = cpu_to_le32(c->nhead_offs);
+ mst->ltab_lnum = cpu_to_le32(c->ltab_lnum);
+ mst->ltab_offs = cpu_to_le32(c->ltab_offs);
+ mst->lsave_lnum = cpu_to_le32(c->lsave_lnum);
+ mst->lsave_offs = cpu_to_le32(c->lsave_offs);
+ mst->lscan_lnum = cpu_to_le32(main_first);
+ mst->empty_lebs = cpu_to_le32(main_lebs - 2);
+ mst->idx_lebs = cpu_to_le32(1);
+ mst->leb_cnt = cpu_to_le32(c->leb_cnt);
+
+ /* Calculate lprops statistics */
+ tmp64 = main_bytes;
+ tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
+ tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
+ mst->total_free = cpu_to_le64(tmp64);
+
+ tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
+ ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
+ UBIFS_INO_NODE_SZ;
+ tmp64 += ino_waste;
+ tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
+ mst->total_dirty = cpu_to_le64(tmp64);
+
+ /* The indexing LEB does not contribute to dark space */
+ tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
+ mst->total_dark = cpu_to_le64(tmp64);
+
+ mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
+
+ err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0);
+ if (err) {
+ kfree(mst);
+ return err;
+ }
+ err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
+ 0);
+ kfree(mst);
+ if (err)
+ return err;
+
+ dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
+
+ /* Create the root indexing node */
+ tmp = ubifs_idx_node_sz(c, 1);
+ idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
+ if (!idx)
+ return -ENOMEM;
+
+ c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
+ c->key_hash = key_r5_hash;
+
+ idx->ch.node_type = UBIFS_IDX_NODE;
+ idx->child_cnt = cpu_to_le16(1);
+ ino_key_init(c, &key, UBIFS_ROOT_INO);
+ br = ubifs_idx_branch(c, idx, 0);
+ key_write_idx(c, &key, &br->key);
+ br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
+ br->len = cpu_to_le32(UBIFS_INO_NODE_SZ);
+ err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0);
+ kfree(idx);
+ if (err)
+ return err;
+
+ dbg_gen("default root indexing node created LEB %d:0",
+ main_first + DEFAULT_IDX_LEB);
+
+ /* Create default root inode */
+ tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
+ ino = kzalloc(tmp, GFP_KERNEL);
+ if (!ino)
+ return -ENOMEM;
+
+ ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
+ ino->ch.node_type = UBIFS_INO_NODE;
+ ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
+ ino->nlink = cpu_to_le32(2);
+ tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
+ ino->atime_sec = tmp_le64;
+ ino->ctime_sec = tmp_le64;
+ ino->mtime_sec = tmp_le64;
+ ino->atime_nsec = 0;
+ ino->ctime_nsec = 0;
+ ino->mtime_nsec = 0;
+ ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
+ ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
+
+ /* Set compression enabled by default */
+ ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
+
+ err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
+ main_first + DEFAULT_DATA_LEB, 0);
+ kfree(ino);
+ if (err)
+ return err;
+
+ dbg_gen("root inode created at LEB %d:0",
+ main_first + DEFAULT_DATA_LEB);
+
+ /*
+ * The first node in the log has to be the commit start node. This is
+ * always the case during normal file-system operation. Write a fake
+ * commit start node to the log.
+ */
+ tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
+ cs = kzalloc(tmp, GFP_KERNEL);
+ if (!cs)
+ return -ENOMEM;
+
+ cs->ch.node_type = UBIFS_CS_NODE;
+ err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
+ kfree(cs);
+
+ ubifs_msg("default file-system created");
+ return 0;
+}
+#endif
+
/**
* validate_sb - validate superblock node.
* @c: UBIFS file-system description object
@@ -114,9 +391,8 @@ static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
- ubifs_err("bad LEB count: %d in superblock, %d on UBI volume, "
- "%d minimum required", c->leb_cnt, c->vi.size,
- min_leb_cnt);
+ ubifs_err("bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
+ c->leb_cnt, c->vi.size, min_leb_cnt);
goto failed;
}
@@ -127,13 +403,22 @@ static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
}
if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
- err = 7;
+ ubifs_err("too few main LEBs count %d, must be at least %d",
+ c->main_lebs, UBIFS_MIN_MAIN_LEBS);
+ goto failed;
+ }
+
+ max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
+ if (c->max_bud_bytes < max_bytes) {
+ ubifs_err("too small journal (%lld bytes), must be at least %lld bytes",
+ c->max_bud_bytes, max_bytes);
goto failed;
}
- if (c->max_bud_bytes < (long long)c->leb_size * UBIFS_MIN_BUD_LEBS ||
- c->max_bud_bytes > (long long)c->leb_size * c->main_lebs) {
- err = 8;
+ max_bytes = (long long)c->leb_size * c->main_lebs;
+ if (c->max_bud_bytes > max_bytes) {
+ ubifs_err("too large journal size (%lld bytes), only %lld bytes available in the main area",
+ c->max_bud_bytes, max_bytes);
goto failed;
}
@@ -167,7 +452,6 @@ static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
goto failed;
}
- max_bytes = c->main_lebs * (long long)c->leb_size;
if (c->rp_size < 0 || max_bytes < c->rp_size) {
err = 14;
goto failed;
@@ -183,7 +467,7 @@ static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
failed:
ubifs_err("bad superblock, error %d", err);
- dbg_dump_node(c, sup);
+ ubifs_dump_node(c, sup);
return -EINVAL;
}
@@ -192,7 +476,8 @@ failed:
* @c: UBIFS file-system description object
*
* This function returns a pointer to the superblock node or a negative error
- * code.
+ * code. Note, the user of this function is responsible of kfree()'ing the
+ * returned superblock buffer.
*/
struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
{
@@ -214,6 +499,21 @@ struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
}
/**
+ * ubifs_write_sb_node - write superblock node.
+ * @c: UBIFS file-system description object
+ * @sup: superblock node read with 'ubifs_read_sb_node()'
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
+{
+ int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
+
+ ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
+ return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
+}
+
+/**
* ubifs_read_superblock - read superblock.
* @c: UBIFS file-system description object
*
@@ -227,8 +527,14 @@ int ubifs_read_superblock(struct ubifs_info *c)
struct ubifs_sb_node *sup;
if (c->empty) {
+#ifndef __UBOOT__
+ err = create_default_filesystem(c);
+ if (err)
+ return err;
+#else
printf("No UBIFS filesystem found!\n");
return -1;
+#endif
}
sup = ubifs_read_sb_node(c);
@@ -243,16 +549,12 @@ int ubifs_read_superblock(struct ubifs_info *c)
* due to the unavailability of time-travelling equipment.
*/
if (c->fmt_version > UBIFS_FORMAT_VERSION) {
- struct super_block *sb = c->vfs_sb;
- int mounting_ro = sb->s_flags & MS_RDONLY;
-
- ubifs_assert(!c->ro_media || mounting_ro);
- if (!mounting_ro ||
+ ubifs_assert(!c->ro_media || c->ro_mount);
+ if (!c->ro_mount ||
c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
- ubifs_err("on-flash format version is w%d/r%d, but "
- "software only supports up to version "
- "w%d/r%d", c->fmt_version,
- c->ro_compat_version, UBIFS_FORMAT_VERSION,
+ ubifs_err("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
+ c->fmt_version, c->ro_compat_version,
+ UBIFS_FORMAT_VERSION,
UBIFS_RO_COMPAT_VERSION);
if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
ubifs_msg("only R/O mounting is possible");
@@ -310,22 +612,41 @@ int ubifs_read_superblock(struct ubifs_info *c)
c->jhead_cnt = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
c->fanout = le32_to_cpu(sup->fanout);
c->lsave_cnt = le32_to_cpu(sup->lsave_cnt);
- c->default_compr = le16_to_cpu(sup->default_compr);
c->rp_size = le64_to_cpu(sup->rp_size);
- c->rp_uid = le32_to_cpu(sup->rp_uid);
- c->rp_gid = le32_to_cpu(sup->rp_gid);
+#ifndef __UBOOT__
+ c->rp_uid = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
+ c->rp_gid = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
+#else
+ c->rp_uid.val = le32_to_cpu(sup->rp_uid);
+ c->rp_gid.val = le32_to_cpu(sup->rp_gid);
+#endif
sup_flags = le32_to_cpu(sup->flags);
+ if (!c->mount_opts.override_compr)
+ c->default_compr = le16_to_cpu(sup->default_compr);
c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
memcpy(&c->uuid, &sup->uuid, 16);
c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
+ c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
/* Automatically increase file system size to the maximum size */
c->old_leb_cnt = c->leb_cnt;
if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
- dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
- c->old_leb_cnt, c->leb_cnt);
+ if (c->ro_mount)
+ dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
+ c->old_leb_cnt, c->leb_cnt);
+#ifndef __UBOOT__
+ else {
+ dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
+ c->old_leb_cnt, c->leb_cnt);
+ sup->leb_cnt = cpu_to_le32(c->leb_cnt);
+ err = ubifs_write_sb_node(c, sup);
+ if (err)
+ goto out;
+ c->old_leb_cnt = c->leb_cnt;
+ }
+#endif
}
c->log_bytes = (long long)c->log_lebs * c->leb_size;
@@ -337,10 +658,162 @@ int ubifs_read_superblock(struct ubifs_info *c)
c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
c->main_first = c->leb_cnt - c->main_lebs;
- c->report_rp_size = ubifs_reported_space(c, c->rp_size);
err = validate_sb(c, sup);
out:
kfree(sup);
return err;
}
+
+/**
+ * fixup_leb - fixup/unmap an LEB containing free space.
+ * @c: UBIFS file-system description object
+ * @lnum: the LEB number to fix up
+ * @len: number of used bytes in LEB (starting at offset 0)
+ *
+ * This function reads the contents of the given LEB number @lnum, then fixes
+ * it up, so that empty min. I/O units in the end of LEB are actually erased on
+ * flash (rather than being just all-0xff real data). If the LEB is completely
+ * empty, it is simply unmapped.
+ */
+static int fixup_leb(struct ubifs_info *c, int lnum, int len)
+{
+ int err;
+
+ ubifs_assert(len >= 0);
+ ubifs_assert(len % c->min_io_size == 0);
+ ubifs_assert(len < c->leb_size);
+
+ if (len == 0) {
+ dbg_mnt("unmap empty LEB %d", lnum);
+ return ubifs_leb_unmap(c, lnum);
+ }
+
+ dbg_mnt("fixup LEB %d, data len %d", lnum, len);
+ err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
+ if (err)
+ return err;
+
+ return ubifs_leb_change(c, lnum, c->sbuf, len);
+}
+
+/**
+ * fixup_free_space - find & remap all LEBs containing free space.
+ * @c: UBIFS file-system description object
+ *
+ * This function walks through all LEBs in the filesystem and fiexes up those
+ * containing free/empty space.
+ */
+static int fixup_free_space(struct ubifs_info *c)
+{
+ int lnum, err = 0;
+ struct ubifs_lprops *lprops;
+
+ ubifs_get_lprops(c);
+
+ /* Fixup LEBs in the master area */
+ for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
+ err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
+ if (err)
+ goto out;
+ }
+
+ /* Unmap unused log LEBs */
+ lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
+ while (lnum != c->ltail_lnum) {
+ err = fixup_leb(c, lnum, 0);
+ if (err)
+ goto out;
+ lnum = ubifs_next_log_lnum(c, lnum);
+ }
+
+ /*
+ * Fixup the log head which contains the only a CS node at the
+ * beginning.
+ */
+ err = fixup_leb(c, c->lhead_lnum,
+ ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
+ if (err)
+ goto out;
+
+ /* Fixup LEBs in the LPT area */
+ for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
+ int free = c->ltab[lnum - c->lpt_first].free;
+
+ if (free > 0) {
+ err = fixup_leb(c, lnum, c->leb_size - free);
+ if (err)
+ goto out;
+ }
+ }
+
+ /* Unmap LEBs in the orphans area */
+ for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
+ err = fixup_leb(c, lnum, 0);
+ if (err)
+ goto out;
+ }
+
+ /* Fixup LEBs in the main area */
+ for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
+ lprops = ubifs_lpt_lookup(c, lnum);
+ if (IS_ERR(lprops)) {
+ err = PTR_ERR(lprops);
+ goto out;
+ }
+
+ if (lprops->free > 0) {
+ err = fixup_leb(c, lnum, c->leb_size - lprops->free);
+ if (err)
+ goto out;
+ }
+ }
+
+out:
+ ubifs_release_lprops(c);
+ return err;
+}
+
+/**
+ * ubifs_fixup_free_space - find & fix all LEBs with free space.
+ * @c: UBIFS file-system description object
+ *
+ * This function fixes up LEBs containing free space on first mount, if the
+ * appropriate flag was set when the FS was created. Each LEB with one or more
+ * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
+ * the free space is actually erased. E.g., this is necessary for some NAND
+ * chips, since the free space may have been programmed like real "0xff" data
+ * (generating a non-0xff ECC), causing future writes to the not-really-erased
+ * NAND pages to behave badly. After the space is fixed up, the superblock flag
+ * is cleared, so that this is skipped for all future mounts.
+ */
+int ubifs_fixup_free_space(struct ubifs_info *c)
+{
+ int err;
+ struct ubifs_sb_node *sup;
+
+ ubifs_assert(c->space_fixup);
+ ubifs_assert(!c->ro_mount);
+
+ ubifs_msg("start fixing up free space");
+
+ err = fixup_free_space(c);
+ if (err)
+ return err;
+
+ sup = ubifs_read_sb_node(c);
+ if (IS_ERR(sup))
+ return PTR_ERR(sup);
+
+ /* Free-space fixup is no longer required */
+ c->space_fixup = 0;
+ sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
+
+ err = ubifs_write_sb_node(c, sup);
+ kfree(sup);
+ if (err)
+ return err;
+
+ ubifs_msg("free space fixup complete");
+ return err;
+}
diff --git a/fs/ubifs/scan.c b/fs/ubifs/scan.c
index 0ed8247..5523d4e 100644
--- a/fs/ubifs/scan.c
+++ b/fs/ubifs/scan.c
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Adrian Hunter
* Artem Bityutskiy (Битюцкий Артём)
@@ -27,6 +16,10 @@
* debugging functions.
*/
+#define __UBOOT__
+#ifdef __UBOOT__
+#include <linux/err.h>
+#endif
#include "ubifs.h"
/**
@@ -75,7 +68,7 @@ int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum,
magic = le32_to_cpu(ch->magic);
if (magic == 0xFFFFFFFF) {
- dbg_scan("hit empty space");
+ dbg_scan("hit empty space at LEB %d:%d", lnum, offs);
return SCANNED_EMPTY_SPACE;
}
@@ -85,7 +78,8 @@ int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum,
if (len < UBIFS_CH_SZ)
return SCANNED_GARBAGE;
- dbg_scan("scanning %s", dbg_ntype(ch->node_type));
+ dbg_scan("scanning %s at LEB %d:%d",
+ dbg_ntype(ch->node_type), lnum, offs);
if (ubifs_check_node(c, buf, lnum, offs, quiet, 1))
return SCANNED_A_CORRUPT_NODE;
@@ -101,22 +95,21 @@ int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum,
if (!quiet) {
ubifs_err("bad pad node at LEB %d:%d",
lnum, offs);
- dbg_dump_node(c, pad);
+ ubifs_dump_node(c, pad);
}
return SCANNED_A_BAD_PAD_NODE;
}
/* Make the node pads to 8-byte boundary */
if ((node_len + pad_len) & 7) {
- if (!quiet) {
- dbg_err("bad padding length %d - %d",
- offs, offs + node_len + pad_len);
- }
+ if (!quiet)
+ ubifs_err("bad padding length %d - %d",
+ offs, offs + node_len + pad_len);
return SCANNED_A_BAD_PAD_NODE;
}
- dbg_scan("%d bytes padded, offset now %d",
- pad_len, ALIGN(offs + node_len + pad_len, 8));
+ dbg_scan("%d bytes padded at LEB %d:%d, offset now %d", pad_len,
+ lnum, offs, ALIGN(offs + node_len + pad_len, 8));
return node_len + pad_len;
}
@@ -149,10 +142,10 @@ struct ubifs_scan_leb *ubifs_start_scan(const struct ubifs_info *c, int lnum,
INIT_LIST_HEAD(&sleb->nodes);
sleb->buf = sbuf;
- err = ubi_read(c->ubi, lnum, sbuf + offs, offs, c->leb_size - offs);
+ err = ubifs_leb_read(c, lnum, sbuf + offs, offs, c->leb_size - offs, 0);
if (err && err != -EBADMSG) {
- ubifs_err("cannot read %d bytes from LEB %d:%d,"
- " error %d", c->leb_size - offs, lnum, offs, err);
+ ubifs_err("cannot read %d bytes from LEB %d:%d, error %d",
+ c->leb_size - offs, lnum, offs, err);
kfree(sleb);
return ERR_PTR(err);
}
@@ -198,7 +191,7 @@ int ubifs_add_snod(const struct ubifs_info *c, struct ubifs_scan_leb *sleb,
struct ubifs_ino_node *ino = buf;
struct ubifs_scan_node *snod;
- snod = kzalloc(sizeof(struct ubifs_scan_node), GFP_NOFS);
+ snod = kmalloc(sizeof(struct ubifs_scan_node), GFP_NOFS);
if (!snod)
return -ENOMEM;
@@ -213,13 +206,15 @@ int ubifs_add_snod(const struct ubifs_info *c, struct ubifs_scan_leb *sleb,
case UBIFS_DENT_NODE:
case UBIFS_XENT_NODE:
case UBIFS_DATA_NODE:
- case UBIFS_TRUN_NODE:
/*
* The key is in the same place in all keyed
* nodes.
*/
key_read(c, &ino->key, &snod->key);
break;
+ default:
+ invalid_key_init(c, &snod->key);
+ break;
}
list_add_tail(&snod->list, &sleb->nodes);
sleb->nodes_cnt += 1;
@@ -238,13 +233,11 @@ void ubifs_scanned_corruption(const struct ubifs_info *c, int lnum, int offs,
{
int len;
- ubifs_err("corrupted data at LEB %d:%d", lnum, offs);
- if (dbg_failure_mode)
- return;
+ ubifs_err("corruption at LEB %d:%d", lnum, offs);
len = c->leb_size - offs;
- if (len > 4096)
- len = 4096;
- dbg_err("first %d bytes from LEB %d:%d", len, lnum, offs);
+ if (len > 8192)
+ len = 8192;
+ ubifs_err("first %d bytes from LEB %d:%d", len, lnum, offs);
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 4, buf, len, 1);
}
@@ -253,13 +246,19 @@ void ubifs_scanned_corruption(const struct ubifs_info *c, int lnum, int offs,
* @c: UBIFS file-system description object
* @lnum: logical eraseblock number
* @offs: offset to start at (usually zero)
- * @sbuf: scan buffer (must be c->leb_size)
+ * @sbuf: scan buffer (must be of @c->leb_size bytes in size)
+ * @quiet: print no messages
*
* This function scans LEB number @lnum and returns complete information about
- * its contents. Returns an error code in case of failure.
+ * its contents. Returns the scaned information in case of success and,
+ * %-EUCLEAN if the LEB neads recovery, and other negative error codes in case
+ * of failure.
+ *
+ * If @quiet is non-zero, this function does not print large and scary
+ * error messages and flash dumps in case of errors.
*/
struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum,
- int offs, void *sbuf)
+ int offs, void *sbuf, int quiet)
{
void *buf = sbuf + offs;
int err, len = c->leb_size - offs;
@@ -278,8 +277,7 @@ struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum,
cond_resched();
- ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 0);
-
+ ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
if (ret > 0) {
/* Padding bytes or a valid padding node */
offs += ret;
@@ -294,17 +292,18 @@ struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum,
switch (ret) {
case SCANNED_GARBAGE:
- dbg_err("garbage");
+ ubifs_err("garbage");
goto corrupted;
case SCANNED_A_NODE:
break;
case SCANNED_A_CORRUPT_NODE:
case SCANNED_A_BAD_PAD_NODE:
- dbg_err("bad node");
+ ubifs_err("bad node");
goto corrupted;
default:
- dbg_err("unknown");
- goto corrupted;
+ ubifs_err("unknown");
+ err = -EINVAL;
+ goto error;
}
err = ubifs_add_snod(c, sleb, buf, offs);
@@ -317,8 +316,12 @@ struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum,
len -= node_len;
}
- if (offs % c->min_io_size)
+ if (offs % c->min_io_size) {
+ if (!quiet)
+ ubifs_err("empty space starts at non-aligned offset %d",
+ offs);
goto corrupted;
+ }
ubifs_end_scan(c, sleb, lnum, offs);
@@ -327,18 +330,25 @@ struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum,
break;
for (; len; offs++, buf++, len--)
if (*(uint8_t *)buf != 0xff) {
- ubifs_err("corrupt empty space at LEB %d:%d",
- lnum, offs);
+ if (!quiet)
+ ubifs_err("corrupt empty space at LEB %d:%d",
+ lnum, offs);
goto corrupted;
}
return sleb;
corrupted:
- ubifs_scanned_corruption(c, lnum, offs, buf);
+ if (!quiet) {
+ ubifs_scanned_corruption(c, lnum, offs, buf);
+ ubifs_err("LEB %d scanning failed", lnum);
+ }
err = -EUCLEAN;
+ ubifs_scan_destroy(sleb);
+ return ERR_PTR(err);
+
error:
- ubifs_err("LEB %d scanning failed", lnum);
+ ubifs_err("LEB %d scanning failed, error %d", lnum, err);
ubifs_scan_destroy(sleb);
return ERR_PTR(err);
}
diff --git a/fs/ubifs/super.c b/fs/ubifs/super.c
index 748ab67..9c87db4 100644
--- a/fs/ubifs/super.c
+++ b/fs/ubifs/super.c
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
@@ -26,103 +15,45 @@
* corresponding subsystems, but most of it is here.
*/
-#include "ubifs.h"
+#define __UBOOT__
+#ifndef __UBOOT__
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/ctype.h>
+#include <linux/kthread.h>
+#include <linux/parser.h>
+#include <linux/seq_file.h>
+#include <linux/mount.h>
#include <linux/math64.h>
+#include <linux/writeback.h>
+#else
-#define INODE_LOCKED_MAX 64
+#include <linux/compat.h>
+#include <linux/stat.h>
+#include <linux/err.h>
+#include "ubifs.h"
+#include <ubi_uboot.h>
+#include <mtd/ubi-user.h>
-struct super_block *ubifs_sb;
-static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
+struct dentry;
+struct file;
+struct iattr;
+struct kstat;
+struct vfsmount;
-/* shrinker.c */
+#define INODE_LOCKED_MAX 64
-/* List of all UBIFS file-system instances */
-struct list_head ubifs_infos;
+struct super_block *ubifs_sb;
+LIST_HEAD(super_blocks);
-/* linux/fs/super.c */
+static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
-static int sb_set(struct super_block *sb, void *data)
+int set_anon_super(struct super_block *s, void *data)
{
- dev_t *dev = data;
-
- sb->s_dev = *dev;
return 0;
}
-/**
- * sget - find or create a superblock
- * @type: filesystem type superblock should belong to
- * @test: comparison callback
- * @set: setup callback
- * @data: argument to each of them
- */
-struct super_block *sget(struct file_system_type *type,
- int (*test)(struct super_block *,void *),
- int (*set)(struct super_block *,void *),
- void *data)
-{
- struct super_block *s = NULL;
- int err;
-
- s = kzalloc(sizeof(struct super_block), GFP_USER);
- if (!s) {
- err = -ENOMEM;
- return ERR_PTR(err);
- }
-
- INIT_LIST_HEAD(&s->s_instances);
- INIT_LIST_HEAD(&s->s_inodes);
- s->s_time_gran = 1000000000;
-
- err = set(s, data);
- if (err) {
- return ERR_PTR(err);
- }
- s->s_type = type;
- strncpy(s->s_id, type->name, sizeof(s->s_id));
- list_add(&s->s_instances, &type->fs_supers);
- return s;
-}
-
-/**
- * validate_inode - validate inode.
- * @c: UBIFS file-system description object
- * @inode: the inode to validate
- *
- * This is a helper function for 'ubifs_iget()' which validates various fields
- * of a newly built inode to make sure they contain sane values and prevent
- * possible vulnerabilities. Returns zero if the inode is all right and
- * a non-zero error code if not.
- */
-static int validate_inode(struct ubifs_info *c, const struct inode *inode)
-{
- int err;
- const struct ubifs_inode *ui = ubifs_inode(inode);
-
- if (inode->i_size > c->max_inode_sz) {
- ubifs_err("inode is too large (%lld)",
- (long long)inode->i_size);
- return 1;
- }
-
- if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
- ubifs_err("unknown compression type %d", ui->compr_type);
- return 2;
- }
-
- if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
- return 4;
-
- if (!ubifs_compr_present(ui->compr_type)) {
- ubifs_warn("inode %lu uses '%s' compression, but it was not "
- "compiled in", inode->i_ino,
- ubifs_compr_name(ui->compr_type));
- }
-
- err = dbg_check_dir_size(c, inode);
- return err;
-}
-
struct inode *iget_locked(struct super_block *sb, unsigned long ino)
{
struct inode *inode;
@@ -138,6 +69,10 @@ struct inode *iget_locked(struct super_block *sb, unsigned long ino)
return inode;
}
+void iget_failed(struct inode *inode)
+{
+}
+
int ubifs_iput(struct inode *inode)
{
list_del_init(&inode->i_sb_list);
@@ -179,6 +114,125 @@ void iput(struct inode *inode)
inodes_locked_down[i] = ino;
}
+/* from fs/inode.c */
+/**
+ * clear_nlink - directly zero an inode's link count
+ * @inode: inode
+ *
+ * This is a low-level filesystem helper to replace any
+ * direct filesystem manipulation of i_nlink. See
+ * drop_nlink() for why we care about i_nlink hitting zero.
+ */
+void clear_nlink(struct inode *inode)
+{
+ if (inode->i_nlink) {
+ inode->__i_nlink = 0;
+ atomic_long_inc(&inode->i_sb->s_remove_count);
+ }
+}
+EXPORT_SYMBOL(clear_nlink);
+
+/**
+ * set_nlink - directly set an inode's link count
+ * @inode: inode
+ * @nlink: new nlink (should be non-zero)
+ *
+ * This is a low-level filesystem helper to replace any
+ * direct filesystem manipulation of i_nlink.
+ */
+void set_nlink(struct inode *inode, unsigned int nlink)
+{
+ if (!nlink) {
+ clear_nlink(inode);
+ } else {
+ /* Yes, some filesystems do change nlink from zero to one */
+ if (inode->i_nlink == 0)
+ atomic_long_dec(&inode->i_sb->s_remove_count);
+
+ inode->__i_nlink = nlink;
+ }
+}
+EXPORT_SYMBOL(set_nlink);
+
+/* from include/linux/fs.h */
+static inline void i_uid_write(struct inode *inode, uid_t uid)
+{
+ inode->i_uid.val = uid;
+}
+
+static inline void i_gid_write(struct inode *inode, gid_t gid)
+{
+ inode->i_gid.val = gid;
+}
+
+void unlock_new_inode(struct inode *inode)
+{
+ return;
+}
+#endif
+
+/*
+ * Maximum amount of memory we may 'kmalloc()' without worrying that we are
+ * allocating too much.
+ */
+#define UBIFS_KMALLOC_OK (128*1024)
+
+/* Slab cache for UBIFS inodes */
+struct kmem_cache *ubifs_inode_slab;
+
+#ifndef __UBOOT__
+/* UBIFS TNC shrinker description */
+static struct shrinker ubifs_shrinker_info = {
+ .scan_objects = ubifs_shrink_scan,
+ .count_objects = ubifs_shrink_count,
+ .seeks = DEFAULT_SEEKS,
+};
+#endif
+
+/**
+ * validate_inode - validate inode.
+ * @c: UBIFS file-system description object
+ * @inode: the inode to validate
+ *
+ * This is a helper function for 'ubifs_iget()' which validates various fields
+ * of a newly built inode to make sure they contain sane values and prevent
+ * possible vulnerabilities. Returns zero if the inode is all right and
+ * a non-zero error code if not.
+ */
+static int validate_inode(struct ubifs_info *c, const struct inode *inode)
+{
+ int err;
+ const struct ubifs_inode *ui = ubifs_inode(inode);
+
+ if (inode->i_size > c->max_inode_sz) {
+ ubifs_err("inode is too large (%lld)",
+ (long long)inode->i_size);
+ return 1;
+ }
+
+ if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
+ ubifs_err("unknown compression type %d", ui->compr_type);
+ return 2;
+ }
+
+ if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
+ return 3;
+
+ if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
+ return 4;
+
+ if (ui->xattr && !S_ISREG(inode->i_mode))
+ return 5;
+
+ if (!ubifs_compr_present(ui->compr_type)) {
+ ubifs_warn("inode %lu uses '%s' compression, but it was not compiled in",
+ inode->i_ino, ubifs_compr_name(ui->compr_type));
+ }
+
+ err = dbg_check_dir(c, inode);
+ return err;
+}
+
struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
{
int err;
@@ -187,10 +241,13 @@ struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
struct ubifs_info *c = sb->s_fs_info;
struct inode *inode;
struct ubifs_inode *ui;
+#ifdef __UBOOT__
int i;
+#endif
dbg_gen("inode %lu", inum);
+#ifdef __UBOOT__
/*
* U-Boot special handling of locked down inodes via recovery
* e.g. ubifs_recover_size()
@@ -211,6 +268,7 @@ struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
return inodes_locked_down[i];
}
}
+#endif
inode = iget_locked(sb, inum);
if (!inode)
@@ -232,9 +290,9 @@ struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
goto out_ino;
inode->i_flags |= (S_NOCMTIME | S_NOATIME);
- inode->i_nlink = le32_to_cpu(ino->nlink);
- inode->i_uid = le32_to_cpu(ino->uid);
- inode->i_gid = le32_to_cpu(ino->gid);
+ set_nlink(inode, le32_to_cpu(ino->nlink));
+ i_uid_write(inode, le32_to_cpu(ino->uid));
+ i_gid_write(inode, le32_to_cpu(ino->gid));
inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
@@ -248,12 +306,101 @@ struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
ui->flags = le32_to_cpu(ino->flags);
ui->compr_type = le16_to_cpu(ino->compr_type);
ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
+ ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
+ ui->xattr_size = le32_to_cpu(ino->xattr_size);
+ ui->xattr_names = le32_to_cpu(ino->xattr_names);
ui->synced_i_size = ui->ui_size = inode->i_size;
+ ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
+
err = validate_inode(c, inode);
if (err)
goto out_invalid;
+#ifndef __UBOOT__
+ /* Disable read-ahead */
+ inode->i_mapping->backing_dev_info = &c->bdi;
+
+ switch (inode->i_mode & S_IFMT) {
+ case S_IFREG:
+ inode->i_mapping->a_ops = &ubifs_file_address_operations;
+ inode->i_op = &ubifs_file_inode_operations;
+ inode->i_fop = &ubifs_file_operations;
+ if (ui->xattr) {
+ ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
+ if (!ui->data) {
+ err = -ENOMEM;
+ goto out_ino;
+ }
+ memcpy(ui->data, ino->data, ui->data_len);
+ ((char *)ui->data)[ui->data_len] = '\0';
+ } else if (ui->data_len != 0) {
+ err = 10;
+ goto out_invalid;
+ }
+ break;
+ case S_IFDIR:
+ inode->i_op = &ubifs_dir_inode_operations;
+ inode->i_fop = &ubifs_dir_operations;
+ if (ui->data_len != 0) {
+ err = 11;
+ goto out_invalid;
+ }
+ break;
+ case S_IFLNK:
+ inode->i_op = &ubifs_symlink_inode_operations;
+ if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
+ err = 12;
+ goto out_invalid;
+ }
+ ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
+ if (!ui->data) {
+ err = -ENOMEM;
+ goto out_ino;
+ }
+ memcpy(ui->data, ino->data, ui->data_len);
+ ((char *)ui->data)[ui->data_len] = '\0';
+ break;
+ case S_IFBLK:
+ case S_IFCHR:
+ {
+ dev_t rdev;
+ union ubifs_dev_desc *dev;
+
+ ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
+ if (!ui->data) {
+ err = -ENOMEM;
+ goto out_ino;
+ }
+
+ dev = (union ubifs_dev_desc *)ino->data;
+ if (ui->data_len == sizeof(dev->new))
+ rdev = new_decode_dev(le32_to_cpu(dev->new));
+ else if (ui->data_len == sizeof(dev->huge))
+ rdev = huge_decode_dev(le64_to_cpu(dev->huge));
+ else {
+ err = 13;
+ goto out_invalid;
+ }
+ memcpy(ui->data, ino->data, ui->data_len);
+ inode->i_op = &ubifs_file_inode_operations;
+ init_special_inode(inode, inode->i_mode, rdev);
+ break;
+ }
+ case S_IFSOCK:
+ case S_IFIFO:
+ inode->i_op = &ubifs_file_inode_operations;
+ init_special_inode(inode, inode->i_mode, 0);
+ if (ui->data_len != 0) {
+ err = 14;
+ goto out_invalid;
+ }
+ break;
+ default:
+ err = 15;
+ goto out_invalid;
+ }
+#else
if ((inode->i_mode & S_IFMT) == S_IFLNK) {
if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
err = 12;
@@ -267,23 +414,258 @@ struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
memcpy(ui->data, ino->data, ui->data_len);
((char *)ui->data)[ui->data_len] = '\0';
}
+#endif
kfree(ino);
- inode->i_state &= ~(I_LOCK | I_NEW);
+#ifndef __UBOOT__
+ ubifs_set_inode_flags(inode);
+#endif
+ unlock_new_inode(inode);
return inode;
out_invalid:
ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
- dbg_dump_node(c, ino);
- dbg_dump_inode(c, inode);
+ ubifs_dump_node(c, ino);
+ ubifs_dump_inode(c, inode);
err = -EINVAL;
out_ino:
kfree(ino);
out:
ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
+ iget_failed(inode);
return ERR_PTR(err);
}
+static struct inode *ubifs_alloc_inode(struct super_block *sb)
+{
+ struct ubifs_inode *ui;
+
+ ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
+ if (!ui)
+ return NULL;
+
+ memset((void *)ui + sizeof(struct inode), 0,
+ sizeof(struct ubifs_inode) - sizeof(struct inode));
+ mutex_init(&ui->ui_mutex);
+ spin_lock_init(&ui->ui_lock);
+ return &ui->vfs_inode;
+};
+
+#ifndef __UBOOT__
+static void ubifs_i_callback(struct rcu_head *head)
+{
+ struct inode *inode = container_of(head, struct inode, i_rcu);
+ struct ubifs_inode *ui = ubifs_inode(inode);
+ kmem_cache_free(ubifs_inode_slab, ui);
+}
+
+static void ubifs_destroy_inode(struct inode *inode)
+{
+ struct ubifs_inode *ui = ubifs_inode(inode);
+
+ kfree(ui->data);
+ call_rcu(&inode->i_rcu, ubifs_i_callback);
+}
+
+/*
+ * Note, Linux write-back code calls this without 'i_mutex'.
+ */
+static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
+{
+ int err = 0;
+ struct ubifs_info *c = inode->i_sb->s_fs_info;
+ struct ubifs_inode *ui = ubifs_inode(inode);
+
+ ubifs_assert(!ui->xattr);
+ if (is_bad_inode(inode))
+ return 0;
+
+ mutex_lock(&ui->ui_mutex);
+ /*
+ * Due to races between write-back forced by budgeting
+ * (see 'sync_some_inodes()') and background write-back, the inode may
+ * have already been synchronized, do not do this again. This might
+ * also happen if it was synchronized in an VFS operation, e.g.
+ * 'ubifs_link()'.
+ */
+ if (!ui->dirty) {
+ mutex_unlock(&ui->ui_mutex);
+ return 0;
+ }
+
+ /*
+ * As an optimization, do not write orphan inodes to the media just
+ * because this is not needed.
+ */
+ dbg_gen("inode %lu, mode %#x, nlink %u",
+ inode->i_ino, (int)inode->i_mode, inode->i_nlink);
+ if (inode->i_nlink) {
+ err = ubifs_jnl_write_inode(c, inode);
+ if (err)
+ ubifs_err("can't write inode %lu, error %d",
+ inode->i_ino, err);
+ else
+ err = dbg_check_inode_size(c, inode, ui->ui_size);
+ }
+
+ ui->dirty = 0;
+ mutex_unlock(&ui->ui_mutex);
+ ubifs_release_dirty_inode_budget(c, ui);
+ return err;
+}
+
+static void ubifs_evict_inode(struct inode *inode)
+{
+ int err;
+ struct ubifs_info *c = inode->i_sb->s_fs_info;
+ struct ubifs_inode *ui = ubifs_inode(inode);
+
+ if (ui->xattr)
+ /*
+ * Extended attribute inode deletions are fully handled in
+ * 'ubifs_removexattr()'. These inodes are special and have
+ * limited usage, so there is nothing to do here.
+ */
+ goto out;
+
+ dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
+ ubifs_assert(!atomic_read(&inode->i_count));
+
+ truncate_inode_pages(&inode->i_data, 0);
+
+ if (inode->i_nlink)
+ goto done;
+
+ if (is_bad_inode(inode))
+ goto out;
+
+ ui->ui_size = inode->i_size = 0;
+ err = ubifs_jnl_delete_inode(c, inode);
+ if (err)
+ /*
+ * Worst case we have a lost orphan inode wasting space, so a
+ * simple error message is OK here.
+ */
+ ubifs_err("can't delete inode %lu, error %d",
+ inode->i_ino, err);
+
+out:
+ if (ui->dirty)
+ ubifs_release_dirty_inode_budget(c, ui);
+ else {
+ /* We've deleted something - clean the "no space" flags */
+ c->bi.nospace = c->bi.nospace_rp = 0;
+ smp_wmb();
+ }
+done:
+ clear_inode(inode);
+}
+#endif
+
+static void ubifs_dirty_inode(struct inode *inode, int flags)
+{
+ struct ubifs_inode *ui = ubifs_inode(inode);
+
+ ubifs_assert(mutex_is_locked(&ui->ui_mutex));
+ if (!ui->dirty) {
+ ui->dirty = 1;
+ dbg_gen("inode %lu", inode->i_ino);
+ }
+}
+
+#ifndef __UBOOT__
+static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
+{
+ struct ubifs_info *c = dentry->d_sb->s_fs_info;
+ unsigned long long free;
+ __le32 *uuid = (__le32 *)c->uuid;
+
+ free = ubifs_get_free_space(c);
+ dbg_gen("free space %lld bytes (%lld blocks)",
+ free, free >> UBIFS_BLOCK_SHIFT);
+
+ buf->f_type = UBIFS_SUPER_MAGIC;
+ buf->f_bsize = UBIFS_BLOCK_SIZE;
+ buf->f_blocks = c->block_cnt;
+ buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
+ if (free > c->report_rp_size)
+ buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
+ else
+ buf->f_bavail = 0;
+ buf->f_files = 0;
+ buf->f_ffree = 0;
+ buf->f_namelen = UBIFS_MAX_NLEN;
+ buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
+ buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
+ ubifs_assert(buf->f_bfree <= c->block_cnt);
+ return 0;
+}
+
+static int ubifs_show_options(struct seq_file *s, struct dentry *root)
+{
+ struct ubifs_info *c = root->d_sb->s_fs_info;
+
+ if (c->mount_opts.unmount_mode == 2)
+ seq_printf(s, ",fast_unmount");
+ else if (c->mount_opts.unmount_mode == 1)
+ seq_printf(s, ",norm_unmount");
+
+ if (c->mount_opts.bulk_read == 2)
+ seq_printf(s, ",bulk_read");
+ else if (c->mount_opts.bulk_read == 1)
+ seq_printf(s, ",no_bulk_read");
+
+ if (c->mount_opts.chk_data_crc == 2)
+ seq_printf(s, ",chk_data_crc");
+ else if (c->mount_opts.chk_data_crc == 1)
+ seq_printf(s, ",no_chk_data_crc");
+
+ if (c->mount_opts.override_compr) {
+ seq_printf(s, ",compr=%s",
+ ubifs_compr_name(c->mount_opts.compr_type));
+ }
+
+ return 0;
+}
+
+static int ubifs_sync_fs(struct super_block *sb, int wait)
+{
+ int i, err;
+ struct ubifs_info *c = sb->s_fs_info;
+
+ /*
+ * Zero @wait is just an advisory thing to help the file system shove
+ * lots of data into the queues, and there will be the second
+ * '->sync_fs()' call, with non-zero @wait.
+ */
+ if (!wait)
+ return 0;
+
+ /*
+ * Synchronize write buffers, because 'ubifs_run_commit()' does not
+ * do this if it waits for an already running commit.
+ */
+ for (i = 0; i < c->jhead_cnt; i++) {
+ err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
+ if (err)
+ return err;
+ }
+
+ /*
+ * Strictly speaking, it is not necessary to commit the journal here,
+ * synchronizing write-buffers would be enough. But committing makes
+ * UBIFS free space predictions much more accurate, so we want to let
+ * the user be able to get more accurate results of 'statfs()' after
+ * they synchronize the file system.
+ */
+ err = ubifs_run_commit(c);
+ if (err)
+ return err;
+
+ return ubi_sync(c->vi.ubi_num);
+}
+#endif
+
/**
* init_constants_early - initialize UBIFS constants.
* @c: UBIFS file-system description object
@@ -312,9 +694,12 @@ static int init_constants_early(struct ubifs_info *c)
c->leb_cnt = c->vi.size;
c->leb_size = c->vi.usable_leb_size;
+ c->leb_start = c->di.leb_start;
c->half_leb_size = c->leb_size / 2;
c->min_io_size = c->di.min_io_size;
c->min_io_shift = fls(c->min_io_size) - 1;
+ c->max_write_size = c->di.max_write_size;
+ c->max_write_shift = fls(c->max_write_size) - 1;
if (c->leb_size < UBIFS_MIN_LEB_SZ) {
ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
@@ -334,6 +719,18 @@ static int init_constants_early(struct ubifs_info *c)
}
/*
+ * Maximum write size has to be greater or equivalent to min. I/O
+ * size, and be multiple of min. I/O size.
+ */
+ if (c->max_write_size < c->min_io_size ||
+ c->max_write_size % c->min_io_size ||
+ !is_power_of_2(c->max_write_size)) {
+ ubifs_err("bad write buffer size %d for %d min. I/O unit",
+ c->max_write_size, c->min_io_size);
+ return -EINVAL;
+ }
+
+ /*
* UBIFS aligns all node to 8-byte boundary, so to make function in
* io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
* less than 8.
@@ -341,6 +738,10 @@ static int init_constants_early(struct ubifs_info *c)
if (c->min_io_size < 8) {
c->min_io_size = 8;
c->min_io_shift = 3;
+ if (c->max_write_size < c->min_io_size) {
+ c->max_write_size = c->min_io_size;
+ c->max_write_shift = c->min_io_shift;
+ }
}
c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
@@ -393,9 +794,33 @@ static int init_constants_early(struct ubifs_info *c)
*/
c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
+ /* Buffer size for bulk-reads */
+ c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
+ if (c->max_bu_buf_len > c->leb_size)
+ c->max_bu_buf_len = c->leb_size;
return 0;
}
+/**
+ * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
+ * @c: UBIFS file-system description object
+ * @lnum: LEB the write-buffer was synchronized to
+ * @free: how many free bytes left in this LEB
+ * @pad: how many bytes were padded
+ *
+ * This is a callback function which is called by the I/O unit when the
+ * write-buffer is synchronized. We need this to correctly maintain space
+ * accounting in bud logical eraseblocks. This function returns zero in case of
+ * success and a negative error code in case of failure.
+ *
+ * This function actually belongs to the journal, but we keep it here because
+ * we want to keep it static.
+ */
+static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
+{
+ return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
+}
+
/*
* init_constants_sb - initialize UBIFS constants.
* @c: UBIFS file-system description object
@@ -426,8 +851,8 @@ static int init_constants_sb(struct ubifs_info *c)
tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
tmp = ALIGN(tmp, c->min_io_size);
if (tmp > c->leb_size) {
- dbg_err("too small LEB size %d, at least %d needed",
- c->leb_size, tmp);
+ ubifs_err("too small LEB size %d, at least %d needed",
+ c->leb_size, tmp);
return -EINVAL;
}
@@ -441,8 +866,8 @@ static int init_constants_sb(struct ubifs_info *c)
tmp /= c->leb_size;
tmp += 1;
if (c->log_lebs < tmp) {
- dbg_err("too small log %d LEBs, required min. %d LEBs",
- c->log_lebs, tmp);
+ ubifs_err("too small log %d LEBs, required min. %d LEBs",
+ c->log_lebs, tmp);
return -EINVAL;
}
@@ -451,11 +876,11 @@ static int init_constants_sb(struct ubifs_info *c)
* be compressed and direntries are of the maximum size.
*
* Note, data, which may be stored in inodes is budgeted separately, so
- * it is not included into 'c->inode_budget'.
+ * it is not included into 'c->bi.inode_budget'.
*/
- c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
- c->inode_budget = UBIFS_INO_NODE_SZ;
- c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
+ c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
+ c->bi.inode_budget = UBIFS_INO_NODE_SZ;
+ c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
/*
* When the amount of flash space used by buds becomes
@@ -482,6 +907,8 @@ static int init_constants_sb(struct ubifs_info *c)
if (err)
return err;
+ /* Initialize effective LEB size used in budgeting calculations */
+ c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
return 0;
}
@@ -497,7 +924,8 @@ static void init_constants_master(struct ubifs_info *c)
{
long long tmp64;
- c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
+ c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
+ c->report_rp_size = ubifs_reported_space(c, c->rp_size);
/*
* Calculate total amount of FS blocks. This number is not used
@@ -515,6 +943,88 @@ static void init_constants_master(struct ubifs_info *c)
}
/**
+ * take_gc_lnum - reserve GC LEB.
+ * @c: UBIFS file-system description object
+ *
+ * This function ensures that the LEB reserved for garbage collection is marked
+ * as "taken" in lprops. We also have to set free space to LEB size and dirty
+ * space to zero, because lprops may contain out-of-date information if the
+ * file-system was un-mounted before it has been committed. This function
+ * returns zero in case of success and a negative error code in case of
+ * failure.
+ */
+static int take_gc_lnum(struct ubifs_info *c)
+{
+ int err;
+
+ if (c->gc_lnum == -1) {
+ ubifs_err("no LEB for GC");
+ return -EINVAL;
+ }
+
+ /* And we have to tell lprops that this LEB is taken */
+ err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
+ LPROPS_TAKEN, 0, 0);
+ return err;
+}
+
+/**
+ * alloc_wbufs - allocate write-buffers.
+ * @c: UBIFS file-system description object
+ *
+ * This helper function allocates and initializes UBIFS write-buffers. Returns
+ * zero in case of success and %-ENOMEM in case of failure.
+ */
+static int alloc_wbufs(struct ubifs_info *c)
+{
+ int i, err;
+
+ c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
+ GFP_KERNEL);
+ if (!c->jheads)
+ return -ENOMEM;
+
+ /* Initialize journal heads */
+ for (i = 0; i < c->jhead_cnt; i++) {
+ INIT_LIST_HEAD(&c->jheads[i].buds_list);
+ err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
+ if (err)
+ return err;
+
+ c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
+ c->jheads[i].wbuf.jhead = i;
+ c->jheads[i].grouped = 1;
+ }
+
+ /*
+ * Garbage Collector head does not need to be synchronized by timer.
+ * Also GC head nodes are not grouped.
+ */
+ c->jheads[GCHD].wbuf.no_timer = 1;
+ c->jheads[GCHD].grouped = 0;
+
+ return 0;
+}
+
+/**
+ * free_wbufs - free write-buffers.
+ * @c: UBIFS file-system description object
+ */
+static void free_wbufs(struct ubifs_info *c)
+{
+ int i;
+
+ if (c->jheads) {
+ for (i = 0; i < c->jhead_cnt; i++) {
+ kfree(c->jheads[i].wbuf.buf);
+ kfree(c->jheads[i].wbuf.inodes);
+ }
+ kfree(c->jheads);
+ c->jheads = NULL;
+ }
+}
+
+/**
* free_orphans - free orphans.
* @c: UBIFS file-system description object
*/
@@ -533,13 +1043,27 @@ static void free_orphans(struct ubifs_info *c)
orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
list_del(&orph->list);
kfree(orph);
- dbg_err("orphan list not empty at unmount");
+ ubifs_err("orphan list not empty at unmount");
}
vfree(c->orph_buf);
c->orph_buf = NULL;
}
+#ifndef __UBOOT__
+/**
+ * free_buds - free per-bud objects.
+ * @c: UBIFS file-system description object
+ */
+static void free_buds(struct ubifs_info *c)
+{
+ struct ubifs_bud *bud, *n;
+
+ rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
+ kfree(bud);
+}
+#endif
+
/**
* check_volume_empty - check if the UBI volume is empty.
* @c: UBIFS file-system description object
@@ -555,7 +1079,7 @@ static int check_volume_empty(struct ubifs_info *c)
c->empty = 1;
for (lnum = 0; lnum < c->leb_cnt; lnum++) {
- err = ubi_is_mapped(c->ubi, lnum);
+ err = ubifs_is_mapped(c, lnum);
if (unlikely(err < 0))
return err;
if (err == 1) {
@@ -569,23 +1093,258 @@ static int check_volume_empty(struct ubifs_info *c)
return 0;
}
+/*
+ * UBIFS mount options.
+ *
+ * Opt_fast_unmount: do not run a journal commit before un-mounting
+ * Opt_norm_unmount: run a journal commit before un-mounting
+ * Opt_bulk_read: enable bulk-reads
+ * Opt_no_bulk_read: disable bulk-reads
+ * Opt_chk_data_crc: check CRCs when reading data nodes
+ * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
+ * Opt_override_compr: override default compressor
+ * Opt_err: just end of array marker
+ */
+enum {
+ Opt_fast_unmount,
+ Opt_norm_unmount,
+ Opt_bulk_read,
+ Opt_no_bulk_read,
+ Opt_chk_data_crc,
+ Opt_no_chk_data_crc,
+ Opt_override_compr,
+ Opt_err,
+};
+
+#ifndef __UBOOT__
+static const match_table_t tokens = {
+ {Opt_fast_unmount, "fast_unmount"},
+ {Opt_norm_unmount, "norm_unmount"},
+ {Opt_bulk_read, "bulk_read"},
+ {Opt_no_bulk_read, "no_bulk_read"},
+ {Opt_chk_data_crc, "chk_data_crc"},
+ {Opt_no_chk_data_crc, "no_chk_data_crc"},
+ {Opt_override_compr, "compr=%s"},
+ {Opt_err, NULL},
+};
+
+/**
+ * parse_standard_option - parse a standard mount option.
+ * @option: the option to parse
+ *
+ * Normally, standard mount options like "sync" are passed to file-systems as
+ * flags. However, when a "rootflags=" kernel boot parameter is used, they may
+ * be present in the options string. This function tries to deal with this
+ * situation and parse standard options. Returns 0 if the option was not
+ * recognized, and the corresponding integer flag if it was.
+ *
+ * UBIFS is only interested in the "sync" option, so do not check for anything
+ * else.
+ */
+static int parse_standard_option(const char *option)
+{
+ ubifs_msg("parse %s", option);
+ if (!strcmp(option, "sync"))
+ return MS_SYNCHRONOUS;
+ return 0;
+}
+
+/**
+ * ubifs_parse_options - parse mount parameters.
+ * @c: UBIFS file-system description object
+ * @options: parameters to parse
+ * @is_remount: non-zero if this is FS re-mount
+ *
+ * This function parses UBIFS mount options and returns zero in case success
+ * and a negative error code in case of failure.
+ */
+static int ubifs_parse_options(struct ubifs_info *c, char *options,
+ int is_remount)
+{
+ char *p;
+ substring_t args[MAX_OPT_ARGS];
+
+ if (!options)
+ return 0;
+
+ while ((p = strsep(&options, ","))) {
+ int token;
+
+ if (!*p)
+ continue;
+
+ token = match_token(p, tokens, args);
+ switch (token) {
+ /*
+ * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
+ * We accept them in order to be backward-compatible. But this
+ * should be removed at some point.
+ */
+ case Opt_fast_unmount:
+ c->mount_opts.unmount_mode = 2;
+ break;
+ case Opt_norm_unmount:
+ c->mount_opts.unmount_mode = 1;
+ break;
+ case Opt_bulk_read:
+ c->mount_opts.bulk_read = 2;
+ c->bulk_read = 1;
+ break;
+ case Opt_no_bulk_read:
+ c->mount_opts.bulk_read = 1;
+ c->bulk_read = 0;
+ break;
+ case Opt_chk_data_crc:
+ c->mount_opts.chk_data_crc = 2;
+ c->no_chk_data_crc = 0;
+ break;
+ case Opt_no_chk_data_crc:
+ c->mount_opts.chk_data_crc = 1;
+ c->no_chk_data_crc = 1;
+ break;
+ case Opt_override_compr:
+ {
+ char *name = match_strdup(&args[0]);
+
+ if (!name)
+ return -ENOMEM;
+ if (!strcmp(name, "none"))
+ c->mount_opts.compr_type = UBIFS_COMPR_NONE;
+ else if (!strcmp(name, "lzo"))
+ c->mount_opts.compr_type = UBIFS_COMPR_LZO;
+ else if (!strcmp(name, "zlib"))
+ c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
+ else {
+ ubifs_err("unknown compressor \"%s\"", name);
+ kfree(name);
+ return -EINVAL;
+ }
+ kfree(name);
+ c->mount_opts.override_compr = 1;
+ c->default_compr = c->mount_opts.compr_type;
+ break;
+ }
+ default:
+ {
+ unsigned long flag;
+ struct super_block *sb = c->vfs_sb;
+
+ flag = parse_standard_option(p);
+ if (!flag) {
+ ubifs_err("unrecognized mount option \"%s\" or missing value",
+ p);
+ return -EINVAL;
+ }
+ sb->s_flags |= flag;
+ break;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * destroy_journal - destroy journal data structures.
+ * @c: UBIFS file-system description object
+ *
+ * This function destroys journal data structures including those that may have
+ * been created by recovery functions.
+ */
+static void destroy_journal(struct ubifs_info *c)
+{
+ while (!list_empty(&c->unclean_leb_list)) {
+ struct ubifs_unclean_leb *ucleb;
+
+ ucleb = list_entry(c->unclean_leb_list.next,
+ struct ubifs_unclean_leb, list);
+ list_del(&ucleb->list);
+ kfree(ucleb);
+ }
+ while (!list_empty(&c->old_buds)) {
+ struct ubifs_bud *bud;
+
+ bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
+ list_del(&bud->list);
+ kfree(bud);
+ }
+ ubifs_destroy_idx_gc(c);
+ ubifs_destroy_size_tree(c);
+ ubifs_tnc_close(c);
+ free_buds(c);
+}
+#endif
+
+/**
+ * bu_init - initialize bulk-read information.
+ * @c: UBIFS file-system description object
+ */
+static void bu_init(struct ubifs_info *c)
+{
+ ubifs_assert(c->bulk_read == 1);
+
+ if (c->bu.buf)
+ return; /* Already initialized */
+
+again:
+ c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
+ if (!c->bu.buf) {
+ if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
+ c->max_bu_buf_len = UBIFS_KMALLOC_OK;
+ goto again;
+ }
+
+ /* Just disable bulk-read */
+ ubifs_warn("cannot allocate %d bytes of memory for bulk-read, disabling it",
+ c->max_bu_buf_len);
+ c->mount_opts.bulk_read = 1;
+ c->bulk_read = 0;
+ return;
+ }
+}
+
+#ifndef __UBOOT__
+/**
+ * check_free_space - check if there is enough free space to mount.
+ * @c: UBIFS file-system description object
+ *
+ * This function makes sure UBIFS has enough free space to be mounted in
+ * read/write mode. UBIFS must always have some free space to allow deletions.
+ */
+static int check_free_space(struct ubifs_info *c)
+{
+ ubifs_assert(c->dark_wm > 0);
+ if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
+ ubifs_err("insufficient free space to mount in R/W mode");
+ ubifs_dump_budg(c, &c->bi);
+ ubifs_dump_lprops(c);
+ return -ENOSPC;
+ }
+ return 0;
+}
+#endif
+
/**
* mount_ubifs - mount UBIFS file-system.
* @c: UBIFS file-system description object
*
* This function mounts UBIFS file system. Returns zero in case of success and
* a negative error code in case of failure.
- *
- * Note, the function does not de-allocate resources it it fails half way
- * through, and the caller has to do this instead.
*/
static int mount_ubifs(struct ubifs_info *c)
{
- struct super_block *sb = c->vfs_sb;
- int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
- long long x;
+ int err;
+ long long x, y;
size_t sz;
+ c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
+#ifdef __UBOOT__
+ if (!c->ro_mount) {
+ printf("UBIFS: only ro mode in U-Boot allowed.\n");
+ return -EACCES;
+ }
+#endif
+
err = init_constants_early(c);
if (err)
return err;
@@ -598,7 +1357,7 @@ static int mount_ubifs(struct ubifs_info *c)
if (err)
goto out_free;
- if (c->empty && (mounted_read_only || c->ro_media)) {
+ if (c->empty && (c->ro_mount || c->ro_media)) {
/*
* This UBI volume is empty, and read-only, or the file system
* is mounted read-only - we cannot format it.
@@ -609,7 +1368,7 @@ static int mount_ubifs(struct ubifs_info *c)
goto out_free;
}
- if (c->ro_media && !mounted_read_only) {
+ if (c->ro_media && !c->ro_mount) {
ubifs_err("cannot mount read-write - read-only media");
err = -EROFS;
goto out_free;
@@ -629,11 +1388,27 @@ static int mount_ubifs(struct ubifs_info *c)
if (!c->sbuf)
goto out_free;
- /*
- * We have to check all CRCs, even for data nodes, when we mount the FS
- * (specifically, when we are replaying).
- */
- c->always_chk_crc = 1;
+#ifndef __UBOOT__
+ if (!c->ro_mount) {
+ c->ileb_buf = vmalloc(c->leb_size);
+ if (!c->ileb_buf)
+ goto out_free;
+ }
+#endif
+
+ if (c->bulk_read == 1)
+ bu_init(c);
+
+#ifndef __UBOOT__
+ if (!c->ro_mount) {
+ c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
+ GFP_KERNEL);
+ if (!c->write_reserve_buf)
+ goto out_free;
+ }
+#endif
+
+ c->mounting = 1;
err = ubifs_read_superblock(c);
if (err)
@@ -646,11 +1421,10 @@ static int mount_ubifs(struct ubifs_info *c)
if (!ubifs_compr_present(c->default_compr)) {
ubifs_err("'compressor \"%s\" is not compiled in",
ubifs_compr_name(c->default_compr));
+ err = -ENOTSUPP;
goto out_free;
}
- dbg_failure_mode_registration(c);
-
err = init_constants_sb(c);
if (err)
goto out_free;
@@ -663,7 +1437,25 @@ static int mount_ubifs(struct ubifs_info *c)
goto out_free;
}
+ err = alloc_wbufs(c);
+ if (err)
+ goto out_cbuf;
+
sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
+#ifndef __UBOOT__
+ if (!c->ro_mount) {
+ /* Create background thread */
+ c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
+ if (IS_ERR(c->bgt)) {
+ err = PTR_ERR(c->bgt);
+ c->bgt = NULL;
+ ubifs_err("cannot spawn \"%s\", error %d",
+ c->bgt_name, err);
+ goto out_wbufs;
+ }
+ wake_up_process(c->bgt);
+ }
+#endif
err = ubifs_read_master(c);
if (err)
@@ -676,118 +1468,208 @@ static int mount_ubifs(struct ubifs_info *c)
c->need_recovery = 1;
}
- err = ubifs_lpt_init(c, 1, !mounted_read_only);
+#ifndef __UBOOT__
+ if (c->need_recovery && !c->ro_mount) {
+ err = ubifs_recover_inl_heads(c, c->sbuf);
+ if (err)
+ goto out_master;
+ }
+#endif
+
+ err = ubifs_lpt_init(c, 1, !c->ro_mount);
if (err)
- goto out_lpt;
+ goto out_master;
+
+#ifndef __UBOOT__
+ if (!c->ro_mount && c->space_fixup) {
+ err = ubifs_fixup_free_space(c);
+ if (err)
+ goto out_lpt;
+ }
+
+ if (!c->ro_mount) {
+ /*
+ * Set the "dirty" flag so that if we reboot uncleanly we
+ * will notice this immediately on the next mount.
+ */
+ c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
+ err = ubifs_write_master(c);
+ if (err)
+ goto out_lpt;
+ }
+#endif
- err = dbg_check_idx_size(c, c->old_idx_sz);
+ err = dbg_check_idx_size(c, c->bi.old_idx_sz);
if (err)
goto out_lpt;
+#ifndef __UBOOT__
err = ubifs_replay_journal(c);
if (err)
goto out_journal;
+#endif
+
+ /* Calculate 'min_idx_lebs' after journal replay */
+ c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
- err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
+ err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
if (err)
goto out_orphans;
- if (c->need_recovery) {
+ if (!c->ro_mount) {
+#ifndef __UBOOT__
+ int lnum;
+
+ err = check_free_space(c);
+ if (err)
+ goto out_orphans;
+
+ /* Check for enough log space */
+ lnum = c->lhead_lnum + 1;
+ if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
+ lnum = UBIFS_LOG_LNUM;
+ if (lnum == c->ltail_lnum) {
+ err = ubifs_consolidate_log(c);
+ if (err)
+ goto out_orphans;
+ }
+
+ if (c->need_recovery) {
+ err = ubifs_recover_size(c);
+ if (err)
+ goto out_orphans;
+ err = ubifs_rcvry_gc_commit(c);
+ if (err)
+ goto out_orphans;
+ } else {
+ err = take_gc_lnum(c);
+ if (err)
+ goto out_orphans;
+
+ /*
+ * GC LEB may contain garbage if there was an unclean
+ * reboot, and it should be un-mapped.
+ */
+ err = ubifs_leb_unmap(c, c->gc_lnum);
+ if (err)
+ goto out_orphans;
+ }
+
+ err = dbg_check_lprops(c);
+ if (err)
+ goto out_orphans;
+#endif
+ } else if (c->need_recovery) {
err = ubifs_recover_size(c);
if (err)
goto out_orphans;
+ } else {
+ /*
+ * Even if we mount read-only, we have to set space in GC LEB
+ * to proper value because this affects UBIFS free space
+ * reporting. We do not want to have a situation when
+ * re-mounting from R/O to R/W changes amount of free space.
+ */
+ err = take_gc_lnum(c);
+ if (err)
+ goto out_orphans;
}
+#ifndef __UBOOT__
spin_lock(&ubifs_infos_lock);
list_add_tail(&c->infos_list, &ubifs_infos);
spin_unlock(&ubifs_infos_lock);
+#endif
if (c->need_recovery) {
- if (mounted_read_only)
+ if (c->ro_mount)
ubifs_msg("recovery deferred");
else {
c->need_recovery = 0;
ubifs_msg("recovery completed");
+ /*
+ * GC LEB has to be empty and taken at this point. But
+ * the journal head LEBs may also be accounted as
+ * "empty taken" if they are empty.
+ */
+ ubifs_assert(c->lst.taken_empty_lebs > 0);
}
- }
+ } else
+ ubifs_assert(c->lst.taken_empty_lebs > 0);
err = dbg_check_filesystem(c);
if (err)
goto out_infos;
- c->always_chk_crc = 0;
+ err = dbg_debugfs_init_fs(c);
+ if (err)
+ goto out_infos;
+
+ c->mounting = 0;
- ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
- c->vi.ubi_num, c->vi.vol_id, c->vi.name);
- if (mounted_read_only)
- ubifs_msg("mounted read-only");
+ ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"%s",
+ c->vi.ubi_num, c->vi.vol_id, c->vi.name,
+ c->ro_mount ? ", R/O mode" : "");
x = (long long)c->main_lebs * c->leb_size;
- ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
- "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
- x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
- ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
- "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
- ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)",
+ y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
+ ubifs_msg("LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
+ c->leb_size, c->leb_size >> 10, c->min_io_size,
+ c->max_write_size);
+ ubifs_msg("FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
+ x, x >> 20, c->main_lebs,
+ y, y >> 20, c->log_lebs + c->max_bud_cnt);
+ ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
+ c->report_rp_size, c->report_rp_size >> 10);
+ ubifs_msg("media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
c->fmt_version, c->ro_compat_version,
- UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
- ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
- ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
- c->report_rp_size, c->report_rp_size >> 10);
-
- dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
- dbg_msg("LEB size: %d bytes (%d KiB)",
- c->leb_size, c->leb_size >> 10);
- dbg_msg("data journal heads: %d",
+ UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
+ c->big_lpt ? ", big LPT model" : ", small LPT model");
+
+ dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
+ dbg_gen("data journal heads: %d",
c->jhead_cnt - NONDATA_JHEADS_CNT);
- dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
- "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
- c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
- c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
- c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
- c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
- dbg_msg("big_lpt %d", c->big_lpt);
- dbg_msg("log LEBs: %d (%d - %d)",
+ dbg_gen("log LEBs: %d (%d - %d)",
c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
- dbg_msg("LPT area LEBs: %d (%d - %d)",
+ dbg_gen("LPT area LEBs: %d (%d - %d)",
c->lpt_lebs, c->lpt_first, c->lpt_last);
- dbg_msg("orphan area LEBs: %d (%d - %d)",
+ dbg_gen("orphan area LEBs: %d (%d - %d)",
c->orph_lebs, c->orph_first, c->orph_last);
- dbg_msg("main area LEBs: %d (%d - %d)",
+ dbg_gen("main area LEBs: %d (%d - %d)",
c->main_lebs, c->main_first, c->leb_cnt - 1);
- dbg_msg("index LEBs: %d", c->lst.idx_lebs);
- dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
- c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
- dbg_msg("key hash type: %d", c->key_hash_type);
- dbg_msg("tree fanout: %d", c->fanout);
- dbg_msg("reserved GC LEB: %d", c->gc_lnum);
- dbg_msg("first main LEB: %d", c->main_first);
- dbg_msg("max. znode size %d", c->max_znode_sz);
- dbg_msg("max. index node size %d", c->max_idx_node_sz);
- dbg_msg("node sizes: data %zu, inode %zu, dentry %zu",
+ dbg_gen("index LEBs: %d", c->lst.idx_lebs);
+ dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
+ c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
+ c->bi.old_idx_sz >> 20);
+ dbg_gen("key hash type: %d", c->key_hash_type);
+ dbg_gen("tree fanout: %d", c->fanout);
+ dbg_gen("reserved GC LEB: %d", c->gc_lnum);
+ dbg_gen("max. znode size %d", c->max_znode_sz);
+ dbg_gen("max. index node size %d", c->max_idx_node_sz);
+ dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
- dbg_msg("node sizes: trun %zu, sb %zu, master %zu",
+ dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
- dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu",
+ dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
- dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu",
+ dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
- UBIFS_MAX_DENT_NODE_SZ);
- dbg_msg("dead watermark: %d", c->dead_wm);
- dbg_msg("dark watermark: %d", c->dark_wm);
- dbg_msg("LEB overhead: %d", c->leb_overhead);
+ UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
+ dbg_gen("dead watermark: %d", c->dead_wm);
+ dbg_gen("dark watermark: %d", c->dark_wm);
+ dbg_gen("LEB overhead: %d", c->leb_overhead);
x = (long long)c->main_lebs * c->dark_wm;
- dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
+ dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
x, x >> 10, x >> 20);
- dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
+ dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
c->max_bud_bytes, c->max_bud_bytes >> 10,
c->max_bud_bytes >> 20);
- dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
+ dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
c->bg_bud_bytes, c->bg_bud_bytes >> 10,
c->bg_bud_bytes >> 20);
- dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
+ dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
- dbg_msg("max. seq. number: %llu", c->max_sqnum);
- dbg_msg("commit number: %llu", c->cmt_no);
+ dbg_gen("max. seq. number: %llu", c->max_sqnum);
+ dbg_gen("commit number: %llu", c->cmt_no);
return 0;
@@ -797,7 +1679,10 @@ out_infos:
spin_unlock(&ubifs_infos_lock);
out_orphans:
free_orphans(c);
+#ifndef __UBOOT__
out_journal:
+ destroy_journal(c);
+#endif
out_lpt:
ubifs_lpt_free(c, 0);
out_master:
@@ -805,8 +1690,15 @@ out_master:
kfree(c->rcvrd_mst_node);
if (c->bgt)
kthread_stop(c->bgt);
+#ifndef __UBOOT__
+out_wbufs:
+#endif
+ free_wbufs(c);
+out_cbuf:
kfree(c->cbuf);
out_free:
+ kfree(c->write_reserve_buf);
+ kfree(c->bu.buf);
vfree(c->ileb_buf);
vfree(c->sbuf);
kfree(c->bottom_up_buf);
@@ -823,57 +1715,447 @@ out_free:
* through mounting (error path cleanup function). So it has to make sure the
* resource was actually allocated before freeing it.
*/
+#ifndef __UBOOT__
+static void ubifs_umount(struct ubifs_info *c)
+#else
void ubifs_umount(struct ubifs_info *c)
+#endif
{
dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
c->vi.vol_id);
+ dbg_debugfs_exit_fs(c);
spin_lock(&ubifs_infos_lock);
list_del(&c->infos_list);
spin_unlock(&ubifs_infos_lock);
+#ifndef __UBOOT__
if (c->bgt)
kthread_stop(c->bgt);
+ destroy_journal(c);
+#endif
+ free_wbufs(c);
free_orphans(c);
ubifs_lpt_free(c, 0);
kfree(c->cbuf);
kfree(c->rcvrd_mst_node);
kfree(c->mst_node);
+ kfree(c->write_reserve_buf);
+ kfree(c->bu.buf);
vfree(c->ileb_buf);
vfree(c->sbuf);
kfree(c->bottom_up_buf);
ubifs_debugging_exit(c);
-
+#ifdef __UBOOT__
/* Finally free U-Boot's global copy of superblock */
if (ubifs_sb != NULL) {
free(ubifs_sb->s_fs_info);
free(ubifs_sb);
}
+#endif
+}
+
+#ifndef __UBOOT__
+/**
+ * ubifs_remount_rw - re-mount in read-write mode.
+ * @c: UBIFS file-system description object
+ *
+ * UBIFS avoids allocating many unnecessary resources when mounted in read-only
+ * mode. This function allocates the needed resources and re-mounts UBIFS in
+ * read-write mode.
+ */
+static int ubifs_remount_rw(struct ubifs_info *c)
+{
+ int err, lnum;
+
+ if (c->rw_incompat) {
+ ubifs_err("the file-system is not R/W-compatible");
+ ubifs_msg("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
+ c->fmt_version, c->ro_compat_version,
+ UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
+ return -EROFS;
+ }
+
+ mutex_lock(&c->umount_mutex);
+ dbg_save_space_info(c);
+ c->remounting_rw = 1;
+ c->ro_mount = 0;
+
+ if (c->space_fixup) {
+ err = ubifs_fixup_free_space(c);
+ if (err)
+ return err;
+ }
+
+ err = check_free_space(c);
+ if (err)
+ goto out;
+
+ if (c->old_leb_cnt != c->leb_cnt) {
+ struct ubifs_sb_node *sup;
+
+ sup = ubifs_read_sb_node(c);
+ if (IS_ERR(sup)) {
+ err = PTR_ERR(sup);
+ goto out;
+ }
+ sup->leb_cnt = cpu_to_le32(c->leb_cnt);
+ err = ubifs_write_sb_node(c, sup);
+ kfree(sup);
+ if (err)
+ goto out;
+ }
+
+ if (c->need_recovery) {
+ ubifs_msg("completing deferred recovery");
+ err = ubifs_write_rcvrd_mst_node(c);
+ if (err)
+ goto out;
+ err = ubifs_recover_size(c);
+ if (err)
+ goto out;
+ err = ubifs_clean_lebs(c, c->sbuf);
+ if (err)
+ goto out;
+ err = ubifs_recover_inl_heads(c, c->sbuf);
+ if (err)
+ goto out;
+ } else {
+ /* A readonly mount is not allowed to have orphans */
+ ubifs_assert(c->tot_orphans == 0);
+ err = ubifs_clear_orphans(c);
+ if (err)
+ goto out;
+ }
+
+ if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
+ c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
+ err = ubifs_write_master(c);
+ if (err)
+ goto out;
+ }
+
+ c->ileb_buf = vmalloc(c->leb_size);
+ if (!c->ileb_buf) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
+ if (!c->write_reserve_buf) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ err = ubifs_lpt_init(c, 0, 1);
+ if (err)
+ goto out;
+
+ /* Create background thread */
+ c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
+ if (IS_ERR(c->bgt)) {
+ err = PTR_ERR(c->bgt);
+ c->bgt = NULL;
+ ubifs_err("cannot spawn \"%s\", error %d",
+ c->bgt_name, err);
+ goto out;
+ }
+ wake_up_process(c->bgt);
+
+ c->orph_buf = vmalloc(c->leb_size);
+ if (!c->orph_buf) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ /* Check for enough log space */
+ lnum = c->lhead_lnum + 1;
+ if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
+ lnum = UBIFS_LOG_LNUM;
+ if (lnum == c->ltail_lnum) {
+ err = ubifs_consolidate_log(c);
+ if (err)
+ goto out;
+ }
+
+ if (c->need_recovery)
+ err = ubifs_rcvry_gc_commit(c);
+ else
+ err = ubifs_leb_unmap(c, c->gc_lnum);
+ if (err)
+ goto out;
+
+ dbg_gen("re-mounted read-write");
+ c->remounting_rw = 0;
+
+ if (c->need_recovery) {
+ c->need_recovery = 0;
+ ubifs_msg("deferred recovery completed");
+ } else {
+ /*
+ * Do not run the debugging space check if the were doing
+ * recovery, because when we saved the information we had the
+ * file-system in a state where the TNC and lprops has been
+ * modified in memory, but all the I/O operations (including a
+ * commit) were deferred. So the file-system was in
+ * "non-committed" state. Now the file-system is in committed
+ * state, and of course the amount of free space will change
+ * because, for example, the old index size was imprecise.
+ */
+ err = dbg_check_space_info(c);
+ }
+
+ mutex_unlock(&c->umount_mutex);
+ return err;
+
+out:
+ c->ro_mount = 1;
+ vfree(c->orph_buf);
+ c->orph_buf = NULL;
+ if (c->bgt) {
+ kthread_stop(c->bgt);
+ c->bgt = NULL;
+ }
+ free_wbufs(c);
+ kfree(c->write_reserve_buf);
+ c->write_reserve_buf = NULL;
+ vfree(c->ileb_buf);
+ c->ileb_buf = NULL;
+ ubifs_lpt_free(c, 1);
+ c->remounting_rw = 0;
+ mutex_unlock(&c->umount_mutex);
+ return err;
+}
+
+/**
+ * ubifs_remount_ro - re-mount in read-only mode.
+ * @c: UBIFS file-system description object
+ *
+ * We assume VFS has stopped writing. Possibly the background thread could be
+ * running a commit, however kthread_stop will wait in that case.
+ */
+static void ubifs_remount_ro(struct ubifs_info *c)
+{
+ int i, err;
+
+ ubifs_assert(!c->need_recovery);
+ ubifs_assert(!c->ro_mount);
+
+ mutex_lock(&c->umount_mutex);
+ if (c->bgt) {
+ kthread_stop(c->bgt);
+ c->bgt = NULL;
+ }
+
+ dbg_save_space_info(c);
+
+ for (i = 0; i < c->jhead_cnt; i++)
+ ubifs_wbuf_sync(&c->jheads[i].wbuf);
+
+ c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
+ c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
+ c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
+ err = ubifs_write_master(c);
+ if (err)
+ ubifs_ro_mode(c, err);
+
+ vfree(c->orph_buf);
+ c->orph_buf = NULL;
+ kfree(c->write_reserve_buf);
+ c->write_reserve_buf = NULL;
+ vfree(c->ileb_buf);
+ c->ileb_buf = NULL;
+ ubifs_lpt_free(c, 1);
+ c->ro_mount = 1;
+ err = dbg_check_space_info(c);
+ if (err)
+ ubifs_ro_mode(c, err);
+ mutex_unlock(&c->umount_mutex);
+}
+
+static void ubifs_put_super(struct super_block *sb)
+{
+ int i;
+ struct ubifs_info *c = sb->s_fs_info;
+
+ ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
+ c->vi.vol_id);
+
+ /*
+ * The following asserts are only valid if there has not been a failure
+ * of the media. For example, there will be dirty inodes if we failed
+ * to write them back because of I/O errors.
+ */
+ if (!c->ro_error) {
+ ubifs_assert(c->bi.idx_growth == 0);
+ ubifs_assert(c->bi.dd_growth == 0);
+ ubifs_assert(c->bi.data_growth == 0);
+ }
+
+ /*
+ * The 'c->umount_lock' prevents races between UBIFS memory shrinker
+ * and file system un-mount. Namely, it prevents the shrinker from
+ * picking this superblock for shrinking - it will be just skipped if
+ * the mutex is locked.
+ */
+ mutex_lock(&c->umount_mutex);
+ if (!c->ro_mount) {
+ /*
+ * First of all kill the background thread to make sure it does
+ * not interfere with un-mounting and freeing resources.
+ */
+ if (c->bgt) {
+ kthread_stop(c->bgt);
+ c->bgt = NULL;
+ }
+
+ /*
+ * On fatal errors c->ro_error is set to 1, in which case we do
+ * not write the master node.
+ */
+ if (!c->ro_error) {
+ int err;
+
+ /* Synchronize write-buffers */
+ for (i = 0; i < c->jhead_cnt; i++)
+ ubifs_wbuf_sync(&c->jheads[i].wbuf);
+
+ /*
+ * We are being cleanly unmounted which means the
+ * orphans were killed - indicate this in the master
+ * node. Also save the reserved GC LEB number.
+ */
+ c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
+ c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
+ c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
+ err = ubifs_write_master(c);
+ if (err)
+ /*
+ * Recovery will attempt to fix the master area
+ * next mount, so we just print a message and
+ * continue to unmount normally.
+ */
+ ubifs_err("failed to write master node, error %d",
+ err);
+ } else {
+#ifndef __UBOOT__
+ for (i = 0; i < c->jhead_cnt; i++)
+ /* Make sure write-buffer timers are canceled */
+ hrtimer_cancel(&c->jheads[i].wbuf.timer);
+#endif
+ }
+ }
+
+ ubifs_umount(c);
+#ifndef __UBOOT__
+ bdi_destroy(&c->bdi);
+#endif
+ ubi_close_volume(c->ubi);
+ mutex_unlock(&c->umount_mutex);
+}
+#endif
+
+#ifndef __UBOOT__
+static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
+{
+ int err;
+ struct ubifs_info *c = sb->s_fs_info;
+
+ dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
+
+ err = ubifs_parse_options(c, data, 1);
+ if (err) {
+ ubifs_err("invalid or unknown remount parameter");
+ return err;
+ }
+
+ if (c->ro_mount && !(*flags & MS_RDONLY)) {
+ if (c->ro_error) {
+ ubifs_msg("cannot re-mount R/W due to prior errors");
+ return -EROFS;
+ }
+ if (c->ro_media) {
+ ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
+ return -EROFS;
+ }
+ err = ubifs_remount_rw(c);
+ if (err)
+ return err;
+ } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
+ if (c->ro_error) {
+ ubifs_msg("cannot re-mount R/O due to prior errors");
+ return -EROFS;
+ }
+ ubifs_remount_ro(c);
+ }
+
+ if (c->bulk_read == 1)
+ bu_init(c);
+ else {
+ dbg_gen("disable bulk-read");
+ kfree(c->bu.buf);
+ c->bu.buf = NULL;
+ }
+
+ ubifs_assert(c->lst.taken_empty_lebs > 0);
+ return 0;
}
+#endif
+
+const struct super_operations ubifs_super_operations = {
+ .alloc_inode = ubifs_alloc_inode,
+#ifndef __UBOOT__
+ .destroy_inode = ubifs_destroy_inode,
+ .put_super = ubifs_put_super,
+ .write_inode = ubifs_write_inode,
+ .evict_inode = ubifs_evict_inode,
+ .statfs = ubifs_statfs,
+#endif
+ .dirty_inode = ubifs_dirty_inode,
+#ifndef __UBOOT__
+ .remount_fs = ubifs_remount_fs,
+ .show_options = ubifs_show_options,
+ .sync_fs = ubifs_sync_fs,
+#endif
+};
/**
* open_ubi - parse UBI device name string and open the UBI device.
* @name: UBI volume name
* @mode: UBI volume open mode
*
- * There are several ways to specify UBI volumes when mounting UBIFS:
- * o ubiX_Y - UBI device number X, volume Y;
- * o ubiY - UBI device number 0, volume Y;
+ * The primary method of mounting UBIFS is by specifying the UBI volume
+ * character device node path. However, UBIFS may also be mounted withoug any
+ * character device node using one of the following methods:
+ *
+ * o ubiX_Y - mount UBI device number X, volume Y;
+ * o ubiY - mount UBI device number 0, volume Y;
* o ubiX:NAME - mount UBI device X, volume with name NAME;
* o ubi:NAME - mount UBI device 0, volume with name NAME.
*
* Alternative '!' separator may be used instead of ':' (because some shells
* like busybox may interpret ':' as an NFS host name separator). This function
- * returns ubi volume object in case of success and a negative error code in
- * case of failure.
+ * returns UBI volume description object in case of success and a negative
+ * error code in case of failure.
*/
static struct ubi_volume_desc *open_ubi(const char *name, int mode)
{
+#ifndef __UBOOT__
+ struct ubi_volume_desc *ubi;
+#endif
int dev, vol;
char *endptr;
+#ifndef __UBOOT__
+ /* First, try to open using the device node path method */
+ ubi = ubi_open_volume_path(name, mode);
+ if (!IS_ERR(ubi))
+ return ubi;
+#endif
+
+ /* Try the "nodev" method */
if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
return ERR_PTR(-EINVAL);
@@ -905,78 +2187,100 @@ static struct ubi_volume_desc *open_ubi(const char *name, int mode)
return ERR_PTR(-EINVAL);
}
-static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
+static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
{
- struct ubi_volume_desc *ubi = sb->s_fs_info;
struct ubifs_info *c;
- struct inode *root;
- int err;
c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
- if (!c)
- return -ENOMEM;
+ if (c) {
+ spin_lock_init(&c->cnt_lock);
+ spin_lock_init(&c->cs_lock);
+ spin_lock_init(&c->buds_lock);
+ spin_lock_init(&c->space_lock);
+ spin_lock_init(&c->orphan_lock);
+ init_rwsem(&c->commit_sem);
+ mutex_init(&c->lp_mutex);
+ mutex_init(&c->tnc_mutex);
+ mutex_init(&c->log_mutex);
+ mutex_init(&c->mst_mutex);
+ mutex_init(&c->umount_mutex);
+ mutex_init(&c->bu_mutex);
+ mutex_init(&c->write_reserve_mutex);
+ init_waitqueue_head(&c->cmt_wq);
+ c->buds = RB_ROOT;
+ c->old_idx = RB_ROOT;
+ c->size_tree = RB_ROOT;
+ c->orph_tree = RB_ROOT;
+ INIT_LIST_HEAD(&c->infos_list);
+ INIT_LIST_HEAD(&c->idx_gc);
+ INIT_LIST_HEAD(&c->replay_list);
+ INIT_LIST_HEAD(&c->replay_buds);
+ INIT_LIST_HEAD(&c->uncat_list);
+ INIT_LIST_HEAD(&c->empty_list);
+ INIT_LIST_HEAD(&c->freeable_list);
+ INIT_LIST_HEAD(&c->frdi_idx_list);
+ INIT_LIST_HEAD(&c->unclean_leb_list);
+ INIT_LIST_HEAD(&c->old_buds);
+ INIT_LIST_HEAD(&c->orph_list);
+ INIT_LIST_HEAD(&c->orph_new);
+ c->no_chk_data_crc = 1;
+
+ c->highest_inum = UBIFS_FIRST_INO;
+ c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
+
+ ubi_get_volume_info(ubi, &c->vi);
+ ubi_get_device_info(c->vi.ubi_num, &c->di);
+ }
+ return c;
+}
- spin_lock_init(&c->cnt_lock);
- spin_lock_init(&c->cs_lock);
- spin_lock_init(&c->buds_lock);
- spin_lock_init(&c->space_lock);
- spin_lock_init(&c->orphan_lock);
- init_rwsem(&c->commit_sem);
- mutex_init(&c->lp_mutex);
- mutex_init(&c->tnc_mutex);
- mutex_init(&c->log_mutex);
- mutex_init(&c->mst_mutex);
- mutex_init(&c->umount_mutex);
- init_waitqueue_head(&c->cmt_wq);
- c->buds = RB_ROOT;
- c->old_idx = RB_ROOT;
- c->size_tree = RB_ROOT;
- c->orph_tree = RB_ROOT;
- INIT_LIST_HEAD(&c->infos_list);
- INIT_LIST_HEAD(&c->idx_gc);
- INIT_LIST_HEAD(&c->replay_list);
- INIT_LIST_HEAD(&c->replay_buds);
- INIT_LIST_HEAD(&c->uncat_list);
- INIT_LIST_HEAD(&c->empty_list);
- INIT_LIST_HEAD(&c->freeable_list);
- INIT_LIST_HEAD(&c->frdi_idx_list);
- INIT_LIST_HEAD(&c->unclean_leb_list);
- INIT_LIST_HEAD(&c->old_buds);
- INIT_LIST_HEAD(&c->orph_list);
- INIT_LIST_HEAD(&c->orph_new);
-
- c->highest_inum = UBIFS_FIRST_INO;
- c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
-
- ubi_get_volume_info(ubi, &c->vi);
- ubi_get_device_info(c->vi.ubi_num, &c->di);
+static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
+{
+ struct ubifs_info *c = sb->s_fs_info;
+ struct inode *root;
+ int err;
+ c->vfs_sb = sb;
/* Re-open the UBI device in read-write mode */
- c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
+ c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
if (IS_ERR(c->ubi)) {
err = PTR_ERR(c->ubi);
- goto out_free;
+ goto out;
}
- c->vfs_sb = sb;
+#ifndef __UBOOT__
+ /*
+ * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
+ * UBIFS, I/O is not deferred, it is done immediately in readpage,
+ * which means the user would have to wait not just for their own I/O
+ * but the read-ahead I/O as well i.e. completely pointless.
+ *
+ * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
+ */
+ co>bdi.name = "ubifs",
+ c->bdi.capabilities = BDI_CAP_MAP_COPY;
+ err = bdi_init(&c->bdi);
+ if (err)
+ goto out_close;
+ err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
+ c->vi.ubi_num, c->vi.vol_id);
+ if (err)
+ goto out_bdi;
+
+ err = ubifs_parse_options(c, data, 0);
+ if (err)
+ goto out_bdi;
+ sb->s_bdi = &c->bdi;
+#endif
sb->s_fs_info = c;
sb->s_magic = UBIFS_SUPER_MAGIC;
sb->s_blocksize = UBIFS_BLOCK_SIZE;
sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
- sb->s_dev = c->vi.cdev;
sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
if (c->max_inode_sz > MAX_LFS_FILESIZE)
sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
-
- if (c->rw_incompat) {
- ubifs_err("the file-system is not R/W-compatible");
- ubifs_msg("on-flash format version is w%d/r%d, but software "
- "only supports up to version w%d/r%d", c->fmt_version,
- c->ro_compat_version, UBIFS_FORMAT_VERSION,
- UBIFS_RO_COMPAT_VERSION);
- return -EROFS;
- }
+ sb->s_op = &ubifs_super_operations;
mutex_lock(&c->umount_mutex);
err = mount_ubifs(c);
@@ -992,7 +2296,15 @@ static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
goto out_umount;
}
+#ifndef __UBOOT__
+ sb->s_root = d_make_root(root);
+ if (!sb->s_root) {
+ err = -ENOMEM;
+ goto out_umount;
+ }
+#else
sb->s_root = NULL;
+#endif
mutex_unlock(&c->umount_mutex);
return 0;
@@ -1001,24 +2313,130 @@ out_umount:
ubifs_umount(c);
out_unlock:
mutex_unlock(&c->umount_mutex);
+#ifndef __UBOOT__
+out_bdi:
+ bdi_destroy(&c->bdi);
+out_close:
+#endif
ubi_close_volume(c->ubi);
-out_free:
- kfree(c);
+out:
return err;
}
static int sb_test(struct super_block *sb, void *data)
{
- dev_t *dev = data;
+ struct ubifs_info *c1 = data;
+ struct ubifs_info *c = sb->s_fs_info;
- return sb->s_dev == *dev;
+ return c->vi.cdev == c1->vi.cdev;
}
-static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
- const char *name, void *data, struct vfsmount *mnt)
+static int sb_set(struct super_block *sb, void *data)
+{
+ sb->s_fs_info = data;
+ return set_anon_super(sb, NULL);
+}
+
+static struct super_block *alloc_super(struct file_system_type *type, int flags)
+{
+ struct super_block *s;
+ int err;
+
+ s = kzalloc(sizeof(struct super_block), GFP_USER);
+ if (!s) {
+ err = -ENOMEM;
+ return ERR_PTR(err);
+ }
+
+ INIT_HLIST_NODE(&s->s_instances);
+ INIT_LIST_HEAD(&s->s_inodes);
+ s->s_time_gran = 1000000000;
+ s->s_flags = flags;
+
+ return s;
+}
+
+/**
+ * sget - find or create a superblock
+ * @type: filesystem type superblock should belong to
+ * @test: comparison callback
+ * @set: setup callback
+ * @flags: mount flags
+ * @data: argument to each of them
+ */
+struct super_block *sget(struct file_system_type *type,
+ int (*test)(struct super_block *,void *),
+ int (*set)(struct super_block *,void *),
+ int flags,
+ void *data)
+{
+ struct super_block *s = NULL;
+#ifndef __UBOOT__
+ struct super_block *old;
+#endif
+ int err;
+
+#ifndef __UBOOT__
+retry:
+ spin_lock(&sb_lock);
+ if (test) {
+ hlist_for_each_entry(old, &type->fs_supers, s_instances) {
+ if (!test(old, data))
+ continue;
+ if (!grab_super(old))
+ goto retry;
+ if (s) {
+ up_write(&s->s_umount);
+ destroy_super(s);
+ s = NULL;
+ }
+ return old;
+ }
+ }
+#endif
+ if (!s) {
+ spin_unlock(&sb_lock);
+ s = alloc_super(type, flags);
+ if (!s)
+ return ERR_PTR(-ENOMEM);
+#ifndef __UBOOT__
+ goto retry;
+#endif
+ }
+
+ err = set(s, data);
+ if (err) {
+#ifndef __UBOOT__
+ spin_unlock(&sb_lock);
+ up_write(&s->s_umount);
+ destroy_super(s);
+#endif
+ return ERR_PTR(err);
+ }
+ s->s_type = type;
+#ifndef __UBOOT__
+ strlcpy(s->s_id, type->name, sizeof(s->s_id));
+#else
+ strncpy(s->s_id, type->name, sizeof(s->s_id));
+#endif
+ list_add_tail(&s->s_list, &super_blocks);
+ hlist_add_head(&s->s_instances, &type->fs_supers);
+#ifndef __UBOOT__
+ spin_unlock(&sb_lock);
+ get_filesystem(type);
+ register_shrinker(&s->s_shrink);
+#endif
+ return s;
+}
+
+EXPORT_SYMBOL(sget);
+
+
+static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
+ const char *name, void *data)
{
struct ubi_volume_desc *ubi;
- struct ubi_volume_info vi;
+ struct ubifs_info *c;
struct super_block *sb;
int err;
@@ -1033,32 +2451,34 @@ static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
if (IS_ERR(ubi)) {
ubifs_err("cannot open \"%s\", error %d",
name, (int)PTR_ERR(ubi));
- return PTR_ERR(ubi);
+ return ERR_CAST(ubi);
+ }
+
+ c = alloc_ubifs_info(ubi);
+ if (!c) {
+ err = -ENOMEM;
+ goto out_close;
}
- ubi_get_volume_info(ubi, &vi);
- dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
+ dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
- sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
+ sb = sget(fs_type, sb_test, sb_set, flags, c);
if (IS_ERR(sb)) {
err = PTR_ERR(sb);
+ kfree(c);
goto out_close;
}
if (sb->s_root) {
+ struct ubifs_info *c1 = sb->s_fs_info;
+ kfree(c);
/* A new mount point for already mounted UBIFS */
dbg_gen("this ubi volume is already mounted");
- if ((flags ^ sb->s_flags) & MS_RDONLY) {
+ if (!!(flags & MS_RDONLY) != c1->ro_mount) {
err = -EBUSY;
goto out_deact;
}
} else {
- sb->s_flags = flags;
- /*
- * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
- * replaced by 'c'.
- */
- sb->s_fs_info = ubi;
err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
if (err)
goto out_deact;
@@ -1069,17 +2489,53 @@ static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
/* 'fill_super()' opens ubi again so we must close it here */
ubi_close_volume(ubi);
+#ifdef __UBOOT__
ubifs_sb = sb;
return 0;
+#else
+ return dget(sb->s_root);
+#endif
out_deact:
- up_write(&sb->s_umount);
+#ifndef __UBOOT__
+ deactivate_locked_super(sb);
+#endif
out_close:
ubi_close_volume(ubi);
- return err;
+ return ERR_PTR(err);
+}
+
+static void kill_ubifs_super(struct super_block *s)
+{
+ struct ubifs_info *c = s->s_fs_info;
+#ifndef __UBOOT__
+ kill_anon_super(s);
+#endif
+ kfree(c);
+}
+
+static struct file_system_type ubifs_fs_type = {
+ .name = "ubifs",
+ .owner = THIS_MODULE,
+ .mount = ubifs_mount,
+ .kill_sb = kill_ubifs_super,
+};
+#ifndef __UBOOT__
+MODULE_ALIAS_FS("ubifs");
+
+/*
+ * Inode slab cache constructor.
+ */
+static void inode_slab_ctor(void *obj)
+{
+ struct ubifs_inode *ui = obj;
+ inode_init_once(&ui->vfs_inode);
}
-int __init ubifs_init(void)
+static int __init ubifs_init(void)
+#else
+int ubifs_init(void)
+#endif
{
int err;
@@ -1135,41 +2591,84 @@ int __init ubifs_init(void)
* UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
*/
if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
- ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
- " at least 4096 bytes",
+ ubifs_err("VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
(unsigned int)PAGE_CACHE_SIZE);
return -EINVAL;
}
- err = -ENOMEM;
+#ifndef __UBOOT__
+ ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
+ sizeof(struct ubifs_inode), 0,
+ SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
+ &inode_slab_ctor);
+ if (!ubifs_inode_slab)
+ return -ENOMEM;
+
+ register_shrinker(&ubifs_shrinker_info);
+#endif
err = ubifs_compressors_init();
if (err)
goto out_shrinker;
+#ifndef __UBOOT__
+ err = dbg_debugfs_init();
+ if (err)
+ goto out_compr;
+
+ err = register_filesystem(&ubifs_fs_type);
+ if (err) {
+ ubifs_err("cannot register file system, error %d", err);
+ goto out_dbg;
+ }
+#endif
return 0;
+#ifndef __UBOOT__
+out_dbg:
+ dbg_debugfs_exit();
+out_compr:
+ ubifs_compressors_exit();
+#endif
out_shrinker:
+#ifndef __UBOOT__
+ unregister_shrinker(&ubifs_shrinker_info);
+#endif
+ kmem_cache_destroy(ubifs_inode_slab);
return err;
}
+/* late_initcall to let compressors initialize first */
+late_initcall(ubifs_init);
-/*
- * ubifsmount...
- */
+#ifndef __UBOOT__
+static void __exit ubifs_exit(void)
+{
+ ubifs_assert(list_empty(&ubifs_infos));
+ ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
-static struct file_system_type ubifs_fs_type = {
- .name = "ubifs",
- .owner = THIS_MODULE,
- .get_sb = ubifs_get_sb,
-};
+ dbg_debugfs_exit();
+ ubifs_compressors_exit();
+ unregister_shrinker(&ubifs_shrinker_info);
-int ubifs_mount(char *name)
+ /*
+ * Make sure all delayed rcu free inodes are flushed before we
+ * destroy cache.
+ */
+ rcu_barrier();
+ kmem_cache_destroy(ubifs_inode_slab);
+ unregister_filesystem(&ubifs_fs_type);
+}
+module_exit(ubifs_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_VERSION(__stringify(UBIFS_VERSION));
+MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
+MODULE_DESCRIPTION("UBIFS - UBI File System");
+#else
+int uboot_ubifs_mount(char *vol_name)
{
+ struct dentry *ret;
int flags;
- void *data;
- struct vfsmount *mnt;
- int ret;
- struct ubifs_info *c;
/*
* First unmount if allready mounted
@@ -1177,23 +2676,17 @@ int ubifs_mount(char *name)
if (ubifs_sb)
ubifs_umount(ubifs_sb->s_fs_info);
- INIT_LIST_HEAD(&ubifs_infos);
- INIT_LIST_HEAD(&ubifs_fs_type.fs_supers);
-
/*
* Mount in read-only mode
*/
flags = MS_RDONLY;
- data = NULL;
- mnt = NULL;
- ret = ubifs_get_sb(&ubifs_fs_type, flags, name, data, mnt);
- if (ret) {
- ubifs_err("Error reading superblock on volume '%s' errno=%d!\n", name, ret);
+ ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
+ if (IS_ERR(ret)) {
+ printf("Error reading superblock on volume '%s' " \
+ "errno=%d!\n", vol_name, (int)PTR_ERR(ret));
return -1;
}
- c = ubifs_sb->s_fs_info;
- ubi_close_volume(c->ubi);
-
return 0;
}
+#endif
diff --git a/fs/ubifs/tnc.c b/fs/ubifs/tnc.c
index ccda938..eda5070 100644
--- a/fs/ubifs/tnc.c
+++ b/fs/ubifs/tnc.c
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Adrian Hunter
* Artem Bityutskiy (Битюцкий Артём)
@@ -30,6 +19,15 @@
* the mutex locked.
*/
+#define __UBOOT__
+#ifndef __UBOOT__
+#include <linux/crc32.h>
+#include <linux/slab.h>
+#else
+#include <linux/compat.h>
+#include <linux/err.h>
+#include <linux/stat.h>
+#endif
#include "ubifs.h"
/*
@@ -176,27 +174,11 @@ static int ins_clr_old_idx_znode(struct ubifs_info *c,
*/
void destroy_old_idx(struct ubifs_info *c)
{
- struct rb_node *this = c->old_idx.rb_node;
- struct ubifs_old_idx *old_idx;
+ struct ubifs_old_idx *old_idx, *n;
- while (this) {
- if (this->rb_left) {
- this = this->rb_left;
- continue;
- } else if (this->rb_right) {
- this = this->rb_right;
- continue;
- }
- old_idx = rb_entry(this, struct ubifs_old_idx, rb);
- this = rb_parent(this);
- if (this) {
- if (this->rb_left == &old_idx->rb)
- this->rb_left = NULL;
- else
- this->rb_right = NULL;
- }
+ rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
kfree(old_idx);
- }
+
c->old_idx = RB_ROOT;
}
@@ -221,7 +203,7 @@ static struct ubifs_znode *copy_znode(struct ubifs_info *c,
__set_bit(DIRTY_ZNODE, &zn->flags);
__clear_bit(COW_ZNODE, &zn->flags);
- ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
+ ubifs_assert(!ubifs_zn_obsolete(znode));
__set_bit(OBSOLETE_ZNODE, &znode->flags);
if (znode->level != 0) {
@@ -269,7 +251,7 @@ static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
struct ubifs_znode *zn;
int err;
- if (!test_bit(COW_ZNODE, &znode->flags)) {
+ if (!ubifs_zn_cow(znode)) {
/* znode is not being committed */
if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
atomic_long_inc(&c->dirty_zn_cnt);
@@ -337,17 +319,16 @@ static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
err = ubifs_validate_entry(c, dent);
if (err) {
- dbg_dump_stack();
- dbg_dump_node(c, dent);
+ dump_stack();
+ ubifs_dump_node(c, dent);
return err;
}
- lnc_node = kmalloc(zbr->len, GFP_NOFS);
+ lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
if (!lnc_node)
/* We don't have to have the cache, so no error */
return 0;
- memcpy(lnc_node, node, zbr->len);
zbr->leaf = lnc_node;
return 0;
}
@@ -371,8 +352,8 @@ static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
err = ubifs_validate_entry(c, node);
if (err) {
- dbg_dump_stack();
- dbg_dump_node(c, node);
+ dump_stack();
+ ubifs_dump_node(c, node);
return err;
}
@@ -445,8 +426,11 @@ static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
*
* Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
* is true (it is controlled by corresponding mount option). However, if
- * @c->always_chk_crc is true, @c->no_chk_data_crc is ignored and CRC is always
- * checked.
+ * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
+ * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
+ * because during mounting or re-mounting from R/O mode to R/W mode we may read
+ * journal nodes (when replying the journal or doing the recovery) and the
+ * journal nodes may potentially be corrupted, so checking is required.
*/
static int try_read_node(const struct ubifs_info *c, void *buf, int type,
int len, int lnum, int offs)
@@ -457,7 +441,7 @@ static int try_read_node(const struct ubifs_info *c, void *buf, int type,
dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
- err = ubi_read(c->ubi, lnum, buf, offs, len);
+ err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
if (err) {
ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
type, lnum, offs, err);
@@ -474,7 +458,8 @@ static int try_read_node(const struct ubifs_info *c, void *buf, int type,
if (node_len != len)
return 0;
- if (type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc)
+ if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
+ !c->remounting_rw)
return 1;
crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
@@ -500,7 +485,7 @@ static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
{
int ret;
- dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
+ dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
zbr->offs);
@@ -514,8 +499,8 @@ static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
ret = 0;
}
if (ret == 0 && c->replaying)
- dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
- zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
+ dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
+ zbr->lnum, zbr->offs, zbr->len);
return ret;
}
@@ -990,9 +975,9 @@ static int fallible_resolve_collision(struct ubifs_info *c,
if (adding || !o_znode)
return 0;
- dbg_mnt("dangling match LEB %d:%d len %d %s",
+ dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
- o_znode->zbranch[o_n].len, DBGKEY(key));
+ o_znode->zbranch[o_n].len);
*zn = o_znode;
*n = o_n;
return 1;
@@ -1158,8 +1143,8 @@ static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
* o exact match, i.e. the found zero-level znode contains key @key, then %1
* is returned and slot number of the matched branch is stored in @n;
* o not exact match, which means that zero-level znode does not contain
- * @key, then %0 is returned and slot number of the closed branch is stored
- * in @n;
+ * @key, then %0 is returned and slot number of the closest branch is stored
+ * in @n;
* o @key is so small that it is even less than the lowest key of the
* leftmost zero-level node, then %0 is returned and %0 is stored in @n.
*
@@ -1174,7 +1159,8 @@ int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
struct ubifs_znode *znode;
unsigned long time = get_seconds();
- dbg_tnc("search key %s", DBGKEY(key));
+ dbg_tnck(key, "search key ");
+ ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
znode = c->zroot.znode;
if (unlikely(!znode)) {
@@ -1251,7 +1237,7 @@ int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
* splitting in the middle of the colliding sequence. Also, when
* removing the leftmost key, we would have to correct the key of the
* parent node, which would introduce additional complications. Namely,
- * if we changed the the leftmost key of the parent znode, the garbage
+ * if we changed the leftmost key of the parent znode, the garbage
* collector would be unable to find it (GC is doing this when GC'ing
* indexing LEBs). Although we already have an additional RB-tree where
* we save such changed znodes (see 'ins_clr_old_idx_znode()') until
@@ -1309,7 +1295,7 @@ static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
struct ubifs_znode *znode;
unsigned long time = get_seconds();
- dbg_tnc("search and dirty key %s", DBGKEY(key));
+ dbg_tnck(key, "search and dirty key ");
znode = c->zroot.znode;
if (unlikely(!znode)) {
@@ -1400,9 +1386,31 @@ static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
*/
static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
{
+#ifndef __UBOOT__
+ int gc_seq2, gced_lnum;
+
+ gced_lnum = c->gced_lnum;
+ smp_rmb();
+ gc_seq2 = c->gc_seq;
+ /* Same seq means no GC */
+ if (gc_seq1 == gc_seq2)
+ return 0;
+ /* Different by more than 1 means we don't know */
+ if (gc_seq1 + 1 != gc_seq2)
+ return 1;
/*
- * No garbage collection in the read-only U-Boot implementation
+ * We have seen the sequence number has increased by 1. Now we need to
+ * be sure we read the right LEB number, so read it again.
*/
+ smp_rmb();
+ if (gced_lnum != c->gced_lnum)
+ return 1;
+ /* Finally we can check lnum */
+ if (gced_lnum == lnum)
+ return 1;
+#else
+ /* No garbage collection in the read-only U-Boot implementation */
+#endif
return 0;
}
@@ -1414,7 +1422,7 @@ static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
* @lnum: LEB number is returned here
* @offs: offset is returned here
*
- * This function look up and reads node with key @key. The caller has to make
+ * This function looks up and reads node with key @key. The caller has to make
* sure the @node buffer is large enough to fit the node. Returns zero in case
* of success, %-ENOENT if the node was not found, and a negative error code in
* case of failure. The node location can be returned in @lnum and @offs.
@@ -1458,6 +1466,12 @@ again:
gc_seq1 = c->gc_seq;
mutex_unlock(&c->tnc_mutex);
+ if (ubifs_get_wbuf(c, zbr.lnum)) {
+ /* We do not GC journal heads */
+ err = ubifs_tnc_read_node(c, &zbr, node);
+ return err;
+ }
+
err = fallible_read_node(c, key, &zbr, node);
if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
/*
@@ -1610,6 +1624,51 @@ out:
}
/**
+ * read_wbuf - bulk-read from a LEB with a wbuf.
+ * @wbuf: wbuf that may overlap the read
+ * @buf: buffer into which to read
+ * @len: read length
+ * @lnum: LEB number from which to read
+ * @offs: offset from which to read
+ *
+ * This functions returns %0 on success or a negative error code on failure.
+ */
+static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
+ int offs)
+{
+ const struct ubifs_info *c = wbuf->c;
+ int rlen, overlap;
+
+ dbg_io("LEB %d:%d, length %d", lnum, offs, len);
+ ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
+ ubifs_assert(!(offs & 7) && offs < c->leb_size);
+ ubifs_assert(offs + len <= c->leb_size);
+
+ spin_lock(&wbuf->lock);
+ overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
+ if (!overlap) {
+ /* We may safely unlock the write-buffer and read the data */
+ spin_unlock(&wbuf->lock);
+ return ubifs_leb_read(c, lnum, buf, offs, len, 0);
+ }
+
+ /* Don't read under wbuf */
+ rlen = wbuf->offs - offs;
+ if (rlen < 0)
+ rlen = 0;
+
+ /* Copy the rest from the write-buffer */
+ memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
+ spin_unlock(&wbuf->lock);
+
+ if (rlen > 0)
+ /* Read everything that goes before write-buffer */
+ return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
+
+ return 0;
+}
+
+/**
* validate_data_node - validate data nodes for bulk-read.
* @c: UBIFS file-system description object
* @buf: buffer containing data node to validate
@@ -1647,8 +1706,8 @@ static int validate_data_node(struct ubifs_info *c, void *buf,
if (!keys_eq(c, &zbr->key, &key1)) {
ubifs_err("bad key in node at LEB %d:%d",
zbr->lnum, zbr->offs);
- dbg_tnc("looked for key %s found node's key %s",
- DBGKEY(&zbr->key), DBGKEY1(&key1));
+ dbg_tnck(&zbr->key, "looked for key ");
+ dbg_tnck(&key1, "found node's key ");
goto out_err;
}
@@ -1658,8 +1717,8 @@ out_err:
err = -EINVAL;
out:
ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
- dbg_dump_node(c, buf);
- dbg_dump_stack();
+ ubifs_dump_node(c, buf);
+ dump_stack();
return err;
}
@@ -1676,6 +1735,7 @@ out:
int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
{
int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
+ struct ubifs_wbuf *wbuf;
void *buf;
len = bu->zbranch[bu->cnt - 1].offs;
@@ -1686,7 +1746,11 @@ int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
}
/* Do the read */
- err = ubi_read(c->ubi, lnum, bu->buf, offs, len);
+ wbuf = ubifs_get_wbuf(c, lnum);
+ if (wbuf)
+ err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
+ else
+ err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
/* Check for a race with GC */
if (maybe_leb_gced(c, lnum, bu->gc_seq))
@@ -1695,8 +1759,8 @@ int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
if (err && err != -EBADMSG) {
ubifs_err("failed to read from LEB %d:%d, error %d",
lnum, offs, err);
- dbg_dump_stack();
- dbg_tnc("key %s", DBGKEY(&bu->key));
+ dump_stack();
+ dbg_tnck(&bu->key, "key ");
return err;
}
@@ -1731,7 +1795,7 @@ static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
int found, n, err;
struct ubifs_znode *znode;
- dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
+ dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
mutex_lock(&c->tnc_mutex);
found = ubifs_lookup_level0(c, key, &znode, &n);
if (!found) {
@@ -1905,8 +1969,7 @@ again:
zp = znode->parent;
if (znode->child_cnt < c->fanout) {
ubifs_assert(n != c->fanout);
- dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
- DBGKEY(key));
+ dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
insert_zbranch(znode, zbr, n);
@@ -1921,7 +1984,7 @@ again:
* Unfortunately, @znode does not have more empty slots and we have to
* split it.
*/
- dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
+ dbg_tnck(key, "splitting level %d, key ", znode->level);
if (znode->alt)
/*
@@ -2015,7 +2078,7 @@ do_split:
}
/* Insert new key and branch */
- dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
+ dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
insert_zbranch(zi, zbr, n);
@@ -2091,7 +2154,7 @@ int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
struct ubifs_znode *znode;
mutex_lock(&c->tnc_mutex);
- dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
+ dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
found = lookup_level0_dirty(c, key, &znode, &n);
if (!found) {
struct ubifs_zbranch zbr;
@@ -2140,8 +2203,8 @@ int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
struct ubifs_znode *znode;
mutex_lock(&c->tnc_mutex);
- dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
- old_offs, lnum, offs, len, DBGKEY(key));
+ dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
+ old_offs, lnum, offs, len);
found = lookup_level0_dirty(c, key, &znode, &n);
if (found < 0) {
err = found;
@@ -2223,8 +2286,8 @@ int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
struct ubifs_znode *znode;
mutex_lock(&c->tnc_mutex);
- dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
- DBGKEY(key));
+ dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
+ lnum, offs, nm->len, nm->name);
found = lookup_level0_dirty(c, key, &znode, &n);
if (found < 0) {
err = found;
@@ -2282,7 +2345,7 @@ int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
* by passing 'ubifs_tnc_remove_nm()' the same key but
* an unmatchable name.
*/
- struct qstr noname = { .len = 0, .name = "" };
+ struct qstr noname = { .name = "" };
err = dbg_check_tnc(c, 0);
mutex_unlock(&c->tnc_mutex);
@@ -2317,14 +2380,14 @@ static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
/* Delete without merge for now */
ubifs_assert(znode->level == 0);
ubifs_assert(n >= 0 && n < c->fanout);
- dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
+ dbg_tnck(&znode->zbranch[n].key, "deleting key ");
zbr = &znode->zbranch[n];
lnc_free(zbr);
err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
if (err) {
- dbg_dump_znode(c, znode);
+ ubifs_dump_znode(c, znode);
return err;
}
@@ -2342,7 +2405,7 @@ static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
*/
do {
- ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
+ ubifs_assert(!ubifs_zn_obsolete(znode));
ubifs_assert(ubifs_zn_dirty(znode));
zp = znode->parent;
@@ -2398,9 +2461,8 @@ static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
c->zroot.offs = zbr->offs;
c->zroot.len = zbr->len;
c->zroot.znode = znode;
- ubifs_assert(!test_bit(OBSOLETE_ZNODE,
- &zp->flags));
- ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags));
+ ubifs_assert(!ubifs_zn_obsolete(zp));
+ ubifs_assert(ubifs_zn_dirty(zp));
atomic_long_dec(&c->dirty_zn_cnt);
if (zp->cnext) {
@@ -2428,7 +2490,7 @@ int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
struct ubifs_znode *znode;
mutex_lock(&c->tnc_mutex);
- dbg_tnc("key %s", DBGKEY(key));
+ dbg_tnck(key, "key ");
found = lookup_level0_dirty(c, key, &znode, &n);
if (found < 0) {
err = found;
@@ -2459,7 +2521,7 @@ int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
struct ubifs_znode *znode;
mutex_lock(&c->tnc_mutex);
- dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
+ dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
err = lookup_level0_dirty(c, key, &znode, &n);
if (err < 0)
goto out_unlock;
@@ -2476,11 +2538,11 @@ int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
if (err) {
/* Ensure the znode is dirtied */
if (znode->cnext || !ubifs_zn_dirty(znode)) {
- znode = dirty_cow_bottom_up(c, znode);
- if (IS_ERR(znode)) {
- err = PTR_ERR(znode);
- goto out_unlock;
- }
+ znode = dirty_cow_bottom_up(c, znode);
+ if (IS_ERR(znode)) {
+ err = PTR_ERR(znode);
+ goto out_unlock;
+ }
}
err = tnc_delete(c, znode, n);
}
@@ -2571,10 +2633,10 @@ int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
znode->zbranch[i].len);
if (err) {
- dbg_dump_znode(c, znode);
+ ubifs_dump_znode(c, znode);
goto out_unlock;
}
- dbg_tnc("removing %s", DBGKEY(key));
+ dbg_tnck(key, "removing key ");
}
if (k) {
for (i = n + 1 + k; i < znode->child_cnt; i++)
@@ -2633,7 +2695,7 @@ int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
dbg_tnc("xent '%s', ino %lu", xent->name,
(unsigned long)xattr_inum);
- nm.name = (char *)xent->name;
+ nm.name = xent->name;
nm.len = le16_to_cpu(xent->nlen);
err = ubifs_tnc_remove_nm(c, &key1, &nm);
if (err) {
@@ -2694,7 +2756,7 @@ struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
struct ubifs_zbranch *zbr;
union ubifs_key *dkey;
- dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
+ dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
ubifs_assert(is_hash_key(c, key));
mutex_lock(&c->tnc_mutex);
@@ -2765,3 +2827,503 @@ out_unlock:
mutex_unlock(&c->tnc_mutex);
return ERR_PTR(err);
}
+
+#ifndef __UBOOT__
+/**
+ * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
+ * @c: UBIFS file-system description object
+ *
+ * Destroy left-over obsolete znodes from a failed commit.
+ */
+static void tnc_destroy_cnext(struct ubifs_info *c)
+{
+ struct ubifs_znode *cnext;
+
+ if (!c->cnext)
+ return;
+ ubifs_assert(c->cmt_state == COMMIT_BROKEN);
+ cnext = c->cnext;
+ do {
+ struct ubifs_znode *znode = cnext;
+
+ cnext = cnext->cnext;
+ if (ubifs_zn_obsolete(znode))
+ kfree(znode);
+ } while (cnext && cnext != c->cnext);
+}
+
+/**
+ * ubifs_tnc_close - close TNC subsystem and free all related resources.
+ * @c: UBIFS file-system description object
+ */
+void ubifs_tnc_close(struct ubifs_info *c)
+{
+ tnc_destroy_cnext(c);
+ if (c->zroot.znode) {
+ long n;
+
+ ubifs_destroy_tnc_subtree(c->zroot.znode);
+ n = atomic_long_read(&c->clean_zn_cnt);
+ atomic_long_sub(n, &ubifs_clean_zn_cnt);
+ }
+ kfree(c->gap_lebs);
+ kfree(c->ilebs);
+ destroy_old_idx(c);
+}
+#endif
+
+/**
+ * left_znode - get the znode to the left.
+ * @c: UBIFS file-system description object
+ * @znode: znode
+ *
+ * This function returns a pointer to the znode to the left of @znode or NULL if
+ * there is not one. A negative error code is returned on failure.
+ */
+static struct ubifs_znode *left_znode(struct ubifs_info *c,
+ struct ubifs_znode *znode)
+{
+ int level = znode->level;
+
+ while (1) {
+ int n = znode->iip - 1;
+
+ /* Go up until we can go left */
+ znode = znode->parent;
+ if (!znode)
+ return NULL;
+ if (n >= 0) {
+ /* Now go down the rightmost branch to 'level' */
+ znode = get_znode(c, znode, n);
+ if (IS_ERR(znode))
+ return znode;
+ while (znode->level != level) {
+ n = znode->child_cnt - 1;
+ znode = get_znode(c, znode, n);
+ if (IS_ERR(znode))
+ return znode;
+ }
+ break;
+ }
+ }
+ return znode;
+}
+
+/**
+ * right_znode - get the znode to the right.
+ * @c: UBIFS file-system description object
+ * @znode: znode
+ *
+ * This function returns a pointer to the znode to the right of @znode or NULL
+ * if there is not one. A negative error code is returned on failure.
+ */
+static struct ubifs_znode *right_znode(struct ubifs_info *c,
+ struct ubifs_znode *znode)
+{
+ int level = znode->level;
+
+ while (1) {
+ int n = znode->iip + 1;
+
+ /* Go up until we can go right */
+ znode = znode->parent;
+ if (!znode)
+ return NULL;
+ if (n < znode->child_cnt) {
+ /* Now go down the leftmost branch to 'level' */
+ znode = get_znode(c, znode, n);
+ if (IS_ERR(znode))
+ return znode;
+ while (znode->level != level) {
+ znode = get_znode(c, znode, 0);
+ if (IS_ERR(znode))
+ return znode;
+ }
+ break;
+ }
+ }
+ return znode;
+}
+
+/**
+ * lookup_znode - find a particular indexing node from TNC.
+ * @c: UBIFS file-system description object
+ * @key: index node key to lookup
+ * @level: index node level
+ * @lnum: index node LEB number
+ * @offs: index node offset
+ *
+ * This function searches an indexing node by its first key @key and its
+ * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
+ * nodes it traverses to TNC. This function is called for indexing nodes which
+ * were found on the media by scanning, for example when garbage-collecting or
+ * when doing in-the-gaps commit. This means that the indexing node which is
+ * looked for does not have to have exactly the same leftmost key @key, because
+ * the leftmost key may have been changed, in which case TNC will contain a
+ * dirty znode which still refers the same @lnum:@offs. This function is clever
+ * enough to recognize such indexing nodes.
+ *
+ * Note, if a znode was deleted or changed too much, then this function will
+ * not find it. For situations like this UBIFS has the old index RB-tree
+ * (indexed by @lnum:@offs).
+ *
+ * This function returns a pointer to the znode found or %NULL if it is not
+ * found. A negative error code is returned on failure.
+ */
+static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
+ union ubifs_key *key, int level,
+ int lnum, int offs)
+{
+ struct ubifs_znode *znode, *zn;
+ int n, nn;
+
+ ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
+
+ /*
+ * The arguments have probably been read off flash, so don't assume
+ * they are valid.
+ */
+ if (level < 0)
+ return ERR_PTR(-EINVAL);
+
+ /* Get the root znode */
+ znode = c->zroot.znode;
+ if (!znode) {
+ znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
+ if (IS_ERR(znode))
+ return znode;
+ }
+ /* Check if it is the one we are looking for */
+ if (c->zroot.lnum == lnum && c->zroot.offs == offs)
+ return znode;
+ /* Descend to the parent level i.e. (level + 1) */
+ if (level >= znode->level)
+ return NULL;
+ while (1) {
+ ubifs_search_zbranch(c, znode, key, &n);
+ if (n < 0) {
+ /*
+ * We reached a znode where the leftmost key is greater
+ * than the key we are searching for. This is the same
+ * situation as the one described in a huge comment at
+ * the end of the 'ubifs_lookup_level0()' function. And
+ * for exactly the same reasons we have to try to look
+ * left before giving up.
+ */
+ znode = left_znode(c, znode);
+ if (!znode)
+ return NULL;
+ if (IS_ERR(znode))
+ return znode;
+ ubifs_search_zbranch(c, znode, key, &n);
+ ubifs_assert(n >= 0);
+ }
+ if (znode->level == level + 1)
+ break;
+ znode = get_znode(c, znode, n);
+ if (IS_ERR(znode))
+ return znode;
+ }
+ /* Check if the child is the one we are looking for */
+ if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
+ return get_znode(c, znode, n);
+ /* If the key is unique, there is nowhere else to look */
+ if (!is_hash_key(c, key))
+ return NULL;
+ /*
+ * The key is not unique and so may be also in the znodes to either
+ * side.
+ */
+ zn = znode;
+ nn = n;
+ /* Look left */
+ while (1) {
+ /* Move one branch to the left */
+ if (n)
+ n -= 1;
+ else {
+ znode = left_znode(c, znode);
+ if (!znode)
+ break;
+ if (IS_ERR(znode))
+ return znode;
+ n = znode->child_cnt - 1;
+ }
+ /* Check it */
+ if (znode->zbranch[n].lnum == lnum &&
+ znode->zbranch[n].offs == offs)
+ return get_znode(c, znode, n);
+ /* Stop if the key is less than the one we are looking for */
+ if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
+ break;
+ }
+ /* Back to the middle */
+ znode = zn;
+ n = nn;
+ /* Look right */
+ while (1) {
+ /* Move one branch to the right */
+ if (++n >= znode->child_cnt) {
+ znode = right_znode(c, znode);
+ if (!znode)
+ break;
+ if (IS_ERR(znode))
+ return znode;
+ n = 0;
+ }
+ /* Check it */
+ if (znode->zbranch[n].lnum == lnum &&
+ znode->zbranch[n].offs == offs)
+ return get_znode(c, znode, n);
+ /* Stop if the key is greater than the one we are looking for */
+ if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
+ break;
+ }
+ return NULL;
+}
+
+/**
+ * is_idx_node_in_tnc - determine if an index node is in the TNC.
+ * @c: UBIFS file-system description object
+ * @key: key of index node
+ * @level: index node level
+ * @lnum: LEB number of index node
+ * @offs: offset of index node
+ *
+ * This function returns %0 if the index node is not referred to in the TNC, %1
+ * if the index node is referred to in the TNC and the corresponding znode is
+ * dirty, %2 if an index node is referred to in the TNC and the corresponding
+ * znode is clean, and a negative error code in case of failure.
+ *
+ * Note, the @key argument has to be the key of the first child. Also note,
+ * this function relies on the fact that 0:0 is never a valid LEB number and
+ * offset for a main-area node.
+ */
+int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
+ int lnum, int offs)
+{
+ struct ubifs_znode *znode;
+
+ znode = lookup_znode(c, key, level, lnum, offs);
+ if (!znode)
+ return 0;
+ if (IS_ERR(znode))
+ return PTR_ERR(znode);
+
+ return ubifs_zn_dirty(znode) ? 1 : 2;
+}
+
+/**
+ * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
+ * @c: UBIFS file-system description object
+ * @key: node key
+ * @lnum: node LEB number
+ * @offs: node offset
+ *
+ * This function returns %1 if the node is referred to in the TNC, %0 if it is
+ * not, and a negative error code in case of failure.
+ *
+ * Note, this function relies on the fact that 0:0 is never a valid LEB number
+ * and offset for a main-area node.
+ */
+static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
+ int lnum, int offs)
+{
+ struct ubifs_zbranch *zbr;
+ struct ubifs_znode *znode, *zn;
+ int n, found, err, nn;
+ const int unique = !is_hash_key(c, key);
+
+ found = ubifs_lookup_level0(c, key, &znode, &n);
+ if (found < 0)
+ return found; /* Error code */
+ if (!found)
+ return 0;
+ zbr = &znode->zbranch[n];
+ if (lnum == zbr->lnum && offs == zbr->offs)
+ return 1; /* Found it */
+ if (unique)
+ return 0;
+ /*
+ * Because the key is not unique, we have to look left
+ * and right as well
+ */
+ zn = znode;
+ nn = n;
+ /* Look left */
+ while (1) {
+ err = tnc_prev(c, &znode, &n);
+ if (err == -ENOENT)
+ break;
+ if (err)
+ return err;
+ if (keys_cmp(c, key, &znode->zbranch[n].key))
+ break;
+ zbr = &znode->zbranch[n];
+ if (lnum == zbr->lnum && offs == zbr->offs)
+ return 1; /* Found it */
+ }
+ /* Look right */
+ znode = zn;
+ n = nn;
+ while (1) {
+ err = tnc_next(c, &znode, &n);
+ if (err) {
+ if (err == -ENOENT)
+ return 0;
+ return err;
+ }
+ if (keys_cmp(c, key, &znode->zbranch[n].key))
+ break;
+ zbr = &znode->zbranch[n];
+ if (lnum == zbr->lnum && offs == zbr->offs)
+ return 1; /* Found it */
+ }
+ return 0;
+}
+
+/**
+ * ubifs_tnc_has_node - determine whether a node is in the TNC.
+ * @c: UBIFS file-system description object
+ * @key: node key
+ * @level: index node level (if it is an index node)
+ * @lnum: node LEB number
+ * @offs: node offset
+ * @is_idx: non-zero if the node is an index node
+ *
+ * This function returns %1 if the node is in the TNC, %0 if it is not, and a
+ * negative error code in case of failure. For index nodes, @key has to be the
+ * key of the first child. An index node is considered to be in the TNC only if
+ * the corresponding znode is clean or has not been loaded.
+ */
+int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
+ int lnum, int offs, int is_idx)
+{
+ int err;
+
+ mutex_lock(&c->tnc_mutex);
+ if (is_idx) {
+ err = is_idx_node_in_tnc(c, key, level, lnum, offs);
+ if (err < 0)
+ goto out_unlock;
+ if (err == 1)
+ /* The index node was found but it was dirty */
+ err = 0;
+ else if (err == 2)
+ /* The index node was found and it was clean */
+ err = 1;
+ else
+ BUG_ON(err != 0);
+ } else
+ err = is_leaf_node_in_tnc(c, key, lnum, offs);
+
+out_unlock:
+ mutex_unlock(&c->tnc_mutex);
+ return err;
+}
+
+/**
+ * ubifs_dirty_idx_node - dirty an index node.
+ * @c: UBIFS file-system description object
+ * @key: index node key
+ * @level: index node level
+ * @lnum: index node LEB number
+ * @offs: index node offset
+ *
+ * This function loads and dirties an index node so that it can be garbage
+ * collected. The @key argument has to be the key of the first child. This
+ * function relies on the fact that 0:0 is never a valid LEB number and offset
+ * for a main-area node. Returns %0 on success and a negative error code on
+ * failure.
+ */
+int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
+ int lnum, int offs)
+{
+ struct ubifs_znode *znode;
+ int err = 0;
+
+ mutex_lock(&c->tnc_mutex);
+ znode = lookup_znode(c, key, level, lnum, offs);
+ if (!znode)
+ goto out_unlock;
+ if (IS_ERR(znode)) {
+ err = PTR_ERR(znode);
+ goto out_unlock;
+ }
+ znode = dirty_cow_bottom_up(c, znode);
+ if (IS_ERR(znode)) {
+ err = PTR_ERR(znode);
+ goto out_unlock;
+ }
+
+out_unlock:
+ mutex_unlock(&c->tnc_mutex);
+ return err;
+}
+
+/**
+ * dbg_check_inode_size - check if inode size is correct.
+ * @c: UBIFS file-system description object
+ * @inum: inode number
+ * @size: inode size
+ *
+ * This function makes sure that the inode size (@size) is correct and it does
+ * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
+ * if it has a data page beyond @size, and other negative error code in case of
+ * other errors.
+ */
+int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
+ loff_t size)
+{
+ int err, n;
+ union ubifs_key from_key, to_key, *key;
+ struct ubifs_znode *znode;
+ unsigned int block;
+
+ if (!S_ISREG(inode->i_mode))
+ return 0;
+ if (!dbg_is_chk_gen(c))
+ return 0;
+
+ block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
+ data_key_init(c, &from_key, inode->i_ino, block);
+ highest_data_key(c, &to_key, inode->i_ino);
+
+ mutex_lock(&c->tnc_mutex);
+ err = ubifs_lookup_level0(c, &from_key, &znode, &n);
+ if (err < 0)
+ goto out_unlock;
+
+ if (err) {
+ err = -EINVAL;
+ key = &from_key;
+ goto out_dump;
+ }
+
+ err = tnc_next(c, &znode, &n);
+ if (err == -ENOENT) {
+ err = 0;
+ goto out_unlock;
+ }
+ if (err < 0)
+ goto out_unlock;
+
+ ubifs_assert(err == 0);
+ key = &znode->zbranch[n].key;
+ if (!key_in_range(c, key, &from_key, &to_key))
+ goto out_unlock;
+
+out_dump:
+ block = key_block(c, key);
+ ubifs_err("inode %lu has size %lld, but there are data at offset %lld",
+ (unsigned long)inode->i_ino, size,
+ ((loff_t)block) << UBIFS_BLOCK_SHIFT);
+ mutex_unlock(&c->tnc_mutex);
+ ubifs_dump_inode(c, inode);
+ dump_stack();
+ return -EINVAL;
+
+out_unlock:
+ mutex_unlock(&c->tnc_mutex);
+ return err;
+}
diff --git a/fs/ubifs/tnc_misc.c b/fs/ubifs/tnc_misc.c
index 955219f..81bdad9 100644
--- a/fs/ubifs/tnc_misc.c
+++ b/fs/ubifs/tnc_misc.c
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Adrian Hunter
* Artem Bityutskiy (Битюцкий Артём)
@@ -27,6 +16,10 @@
* putting it all in one file would make that file too big and unreadable.
*/
+#define __UBOOT__
+#ifdef __UBOOT__
+#include <linux/err.h>
+#endif
#include "ubifs.h"
/**
@@ -219,6 +212,44 @@ struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode)
}
/**
+ * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
+ * @znode: znode defining subtree to destroy
+ *
+ * This function destroys subtree of the TNC tree. Returns number of clean
+ * znodes in the subtree.
+ */
+long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode)
+{
+ struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
+ long clean_freed = 0;
+ int n;
+
+ ubifs_assert(zn);
+ while (1) {
+ for (n = 0; n < zn->child_cnt; n++) {
+ if (!zn->zbranch[n].znode)
+ continue;
+
+ if (zn->level > 0 &&
+ !ubifs_zn_dirty(zn->zbranch[n].znode))
+ clean_freed += 1;
+
+ cond_resched();
+ kfree(zn->zbranch[n].znode);
+ }
+
+ if (zn == znode) {
+ if (!ubifs_zn_dirty(zn))
+ clean_freed += 1;
+ kfree(zn);
+ return clean_freed;
+ }
+
+ zn = ubifs_tnc_postorder_next(zn);
+ }
+}
+
+/**
* read_znode - read an indexing node from flash and fill znode.
* @c: UBIFS file-system description object
* @lnum: LEB of the indexing node to read
@@ -255,10 +286,10 @@ static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
lnum, offs, znode->level, znode->child_cnt);
if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
- dbg_err("current fanout %d, branch count %d",
- c->fanout, znode->child_cnt);
- dbg_err("max levels %d, znode level %d",
- UBIFS_MAX_LEVELS, znode->level);
+ ubifs_err("current fanout %d, branch count %d",
+ c->fanout, znode->child_cnt);
+ ubifs_err("max levels %d, znode level %d",
+ UBIFS_MAX_LEVELS, znode->level);
err = 1;
goto out_dump;
}
@@ -278,7 +309,7 @@ static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
if (zbr->lnum < c->main_first ||
zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
- dbg_err("bad branch %d", i);
+ ubifs_err("bad branch %d", i);
err = 2;
goto out_dump;
}
@@ -290,8 +321,8 @@ static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
case UBIFS_XENT_KEY:
break;
default:
- dbg_msg("bad key type at slot %d: %s", i,
- DBGKEY(&zbr->key));
+ ubifs_err("bad key type at slot %d: %d",
+ i, key_type(c, &zbr->key));
err = 3;
goto out_dump;
}
@@ -302,19 +333,19 @@ static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
type = key_type(c, &zbr->key);
if (c->ranges[type].max_len == 0) {
if (zbr->len != c->ranges[type].len) {
- dbg_err("bad target node (type %d) length (%d)",
- type, zbr->len);
- dbg_err("have to be %d", c->ranges[type].len);
+ ubifs_err("bad target node (type %d) length (%d)",
+ type, zbr->len);
+ ubifs_err("have to be %d", c->ranges[type].len);
err = 4;
goto out_dump;
}
} else if (zbr->len < c->ranges[type].min_len ||
zbr->len > c->ranges[type].max_len) {
- dbg_err("bad target node (type %d) length (%d)",
- type, zbr->len);
- dbg_err("have to be in range of %d-%d",
- c->ranges[type].min_len,
- c->ranges[type].max_len);
+ ubifs_err("bad target node (type %d) length (%d)",
+ type, zbr->len);
+ ubifs_err("have to be in range of %d-%d",
+ c->ranges[type].min_len,
+ c->ranges[type].max_len);
err = 5;
goto out_dump;
}
@@ -332,13 +363,13 @@ static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
cmp = keys_cmp(c, key1, key2);
if (cmp > 0) {
- dbg_err("bad key order (keys %d and %d)", i, i + 1);
+ ubifs_err("bad key order (keys %d and %d)", i, i + 1);
err = 6;
goto out_dump;
} else if (cmp == 0 && !is_hash_key(c, key1)) {
/* These can only be keys with colliding hash */
- dbg_err("keys %d and %d are not hashed but equivalent",
- i, i + 1);
+ ubifs_err("keys %d and %d are not hashed but equivalent",
+ i, i + 1);
err = 7;
goto out_dump;
}
@@ -349,7 +380,7 @@ static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
out_dump:
ubifs_err("bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
- dbg_dump_node(c, idx);
+ ubifs_dump_node(c, idx);
kfree(idx);
return -EINVAL;
}
@@ -385,6 +416,16 @@ struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
if (err)
goto out;
+ atomic_long_inc(&c->clean_zn_cnt);
+
+ /*
+ * Increment the global clean znode counter as well. It is OK that
+ * global and per-FS clean znode counters may be inconsistent for some
+ * short time (because we might be preempted at this point), the global
+ * one is only used in shrinker.
+ */
+ atomic_long_inc(&ubifs_clean_zn_cnt);
+
zbr->znode = znode;
znode->parent = parent;
znode->time = get_seconds();
@@ -412,11 +453,22 @@ int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
{
union ubifs_key key1, *key = &zbr->key;
int err, type = key_type(c, key);
+ struct ubifs_wbuf *wbuf;
- err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum, zbr->offs);
+ /*
+ * 'zbr' has to point to on-flash node. The node may sit in a bud and
+ * may even be in a write buffer, so we have to take care about this.
+ */
+ wbuf = ubifs_get_wbuf(c, zbr->lnum);
+ if (wbuf)
+ err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
+ zbr->lnum, zbr->offs);
+ else
+ err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
+ zbr->offs);
if (err) {
- dbg_tnc("key %s", DBGKEY(key));
+ dbg_tnck(key, "key ");
return err;
}
@@ -425,9 +477,9 @@ int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
if (!keys_eq(c, key, &key1)) {
ubifs_err("bad key in node at LEB %d:%d",
zbr->lnum, zbr->offs);
- dbg_tnc("looked for key %s found node's key %s",
- DBGKEY(key), DBGKEY1(&key1));
- dbg_dump_node(c, node);
+ dbg_tnck(key, "looked for key ");
+ dbg_tnck(&key1, "but found node's key ");
+ ubifs_dump_node(c, node);
return -EINVAL;
}
diff --git a/fs/ubifs/ubifs-media.h b/fs/ubifs/ubifs-media.h
index 3eee07e..90b8ffa 100644
--- a/fs/ubifs/ubifs-media.h
+++ b/fs/ubifs/ubifs-media.h
@@ -3,18 +3,7 @@
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
@@ -135,6 +124,13 @@
/* The key is always at the same position in all keyed nodes */
#define UBIFS_KEY_OFFSET offsetof(struct ubifs_ino_node, key)
+/* Garbage collector journal head number */
+#define UBIFS_GC_HEAD 0
+/* Base journal head number */
+#define UBIFS_BASE_HEAD 1
+/* Data journal head number */
+#define UBIFS_DATA_HEAD 2
+
/*
* LEB Properties Tree node types.
*
@@ -401,9 +397,11 @@ enum {
* Superblock flags.
*
* UBIFS_FLG_BIGLPT: if "big" LPT model is used if set
+ * UBIFS_FLG_SPACE_FIXUP: first-mount "fixup" of free space within LEBs needed
*/
enum {
UBIFS_FLG_BIGLPT = 0x02,
+ UBIFS_FLG_SPACE_FIXUP = 0x04,
};
/**
@@ -427,7 +425,7 @@ struct ubifs_ch {
__u8 node_type;
__u8 group_type;
__u8 padding[2];
-} __attribute__ ((packed));
+} __packed;
/**
* union ubifs_dev_desc - device node descriptor.
@@ -441,7 +439,7 @@ struct ubifs_ch {
union ubifs_dev_desc {
__le32 new;
__le64 huge;
-} __attribute__ ((packed));
+} __packed;
/**
* struct ubifs_ino_node - inode node.
@@ -502,7 +500,7 @@ struct ubifs_ino_node {
__le16 compr_type;
__u8 padding2[26]; /* Watch 'zero_ino_node_unused()' if changing! */
__u8 data[];
-} __attribute__ ((packed));
+} __packed;
/**
* struct ubifs_dent_node - directory entry node.
@@ -526,8 +524,12 @@ struct ubifs_dent_node {
__u8 type;
__le16 nlen;
__u8 padding2[4]; /* Watch 'zero_dent_node_unused()' if changing! */
+#ifndef __UBOOT__
__u8 name[];
-} __attribute__ ((packed));
+#else
+ char name[];
+#endif
+} __packed;
/**
* struct ubifs_data_node - data node.
@@ -548,7 +550,7 @@ struct ubifs_data_node {
__le16 compr_type;
__u8 padding[2]; /* Watch 'zero_data_node_unused()' if changing! */
__u8 data[];
-} __attribute__ ((packed));
+} __packed;
/**
* struct ubifs_trun_node - truncation node.
@@ -568,7 +570,7 @@ struct ubifs_trun_node {
__u8 padding[12]; /* Watch 'zero_trun_node_unused()' if changing! */
__le64 old_size;
__le64 new_size;
-} __attribute__ ((packed));
+} __packed;
/**
* struct ubifs_pad_node - padding node.
@@ -579,7 +581,7 @@ struct ubifs_trun_node {
struct ubifs_pad_node {
struct ubifs_ch ch;
__le32 pad_len;
-} __attribute__ ((packed));
+} __packed;
/**
* struct ubifs_sb_node - superblock node.
@@ -637,7 +639,7 @@ struct ubifs_sb_node {
__u8 uuid[16];
__le32 ro_compat_version;
__u8 padding2[3968];
-} __attribute__ ((packed));
+} __packed;
/**
* struct ubifs_mst_node - master node.
@@ -704,7 +706,7 @@ struct ubifs_mst_node {
__le32 idx_lebs;
__le32 leb_cnt;
__u8 padding[344];
-} __attribute__ ((packed));
+} __packed;
/**
* struct ubifs_ref_node - logical eraseblock reference node.
@@ -720,7 +722,7 @@ struct ubifs_ref_node {
__le32 offs;
__le32 jhead;
__u8 padding[28];
-} __attribute__ ((packed));
+} __packed;
/**
* struct ubifs_branch - key/reference/length branch
@@ -733,8 +735,12 @@ struct ubifs_branch {
__le32 lnum;
__le32 offs;
__le32 len;
+#ifndef __UBOOT__
__u8 key[];
-} __attribute__ ((packed));
+#else
+ char key[];
+#endif
+} __packed;
/**
* struct ubifs_idx_node - indexing node.
@@ -747,8 +753,12 @@ struct ubifs_idx_node {
struct ubifs_ch ch;
__le16 child_cnt;
__le16 level;
+#ifndef __UBOOT__
__u8 branches[];
-} __attribute__ ((packed));
+#else
+ char branches[];
+#endif
+} __packed;
/**
* struct ubifs_cs_node - commit start node.
@@ -758,7 +768,7 @@ struct ubifs_idx_node {
struct ubifs_cs_node {
struct ubifs_ch ch;
__le64 cmt_no;
-} __attribute__ ((packed));
+} __packed;
/**
* struct ubifs_orph_node - orphan node.
@@ -770,6 +780,6 @@ struct ubifs_orph_node {
struct ubifs_ch ch;
__le64 cmt_no;
__le64 inos[];
-} __attribute__ ((packed));
+} __packed;
#endif /* __UBIFS_MEDIA_H__ */
diff --git a/fs/ubifs/ubifs.c b/fs/ubifs/ubifs.c
index 273c0a9..b91a6fd 100644
--- a/fs/ubifs/ubifs.c
+++ b/fs/ubifs/ubifs.c
@@ -26,6 +26,10 @@
#include "ubifs.h"
#include <u-boot/zlib.h>
+#define __UBOOT__
+#include <linux/err.h>
+#include <linux/lzo.h>
+
DECLARE_GLOBAL_DATA_PTR;
/* compress.c */
@@ -44,20 +48,27 @@ static int gzip_decompress(const unsigned char *in, size_t in_len,
/* Fake description object for the "none" compressor */
static struct ubifs_compressor none_compr = {
.compr_type = UBIFS_COMPR_NONE,
- .name = "no compression",
+ .name = "none",
.capi_name = "",
.decompress = NULL,
};
static struct ubifs_compressor lzo_compr = {
.compr_type = UBIFS_COMPR_LZO,
- .name = "LZO",
+#ifndef __UBOOT__
+ .comp_mutex = &lzo_mutex,
+#endif
+ .name = "lzo",
.capi_name = "lzo",
.decompress = lzo1x_decompress_safe,
};
static struct ubifs_compressor zlib_compr = {
.compr_type = UBIFS_COMPR_ZLIB,
+#ifndef __UBOOT__
+ .comp_mutex = &deflate_mutex,
+ .decomp_mutex = &inflate_mutex,
+#endif
.name = "zlib",
.capi_name = "deflate",
.decompress = gzip_decompress,
@@ -66,6 +77,82 @@ static struct ubifs_compressor zlib_compr = {
/* All UBIFS compressors */
struct ubifs_compressor *ubifs_compressors[UBIFS_COMPR_TYPES_CNT];
+
+#ifdef __UBOOT__
+/* from mm/util.c */
+
+/**
+ * kmemdup - duplicate region of memory
+ *
+ * @src: memory region to duplicate
+ * @len: memory region length
+ * @gfp: GFP mask to use
+ */
+void *kmemdup(const void *src, size_t len, gfp_t gfp)
+{
+ void *p;
+
+ p = kmalloc(len, gfp);
+ if (p)
+ memcpy(p, src, len);
+ return p;
+}
+
+struct crypto_comp {
+ int compressor;
+};
+
+static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
+ u32 type, u32 mask)
+{
+ struct ubifs_compressor *comp;
+ struct crypto_comp *ptr;
+ int i = 0;
+
+ ptr = malloc(sizeof(struct crypto_comp));
+ while (i < UBIFS_COMPR_TYPES_CNT) {
+ comp = ubifs_compressors[i];
+ if (!comp) {
+ i++;
+ continue;
+ }
+ if (strncmp(alg_name, comp->capi_name, strlen(alg_name)) == 0) {
+ ptr->compressor = i;
+ return ptr;
+ }
+ i++;
+ }
+ if (i >= UBIFS_COMPR_TYPES_CNT) {
+ ubifs_err("invalid compression type %s", alg_name);
+ free (ptr);
+ return NULL;
+ }
+ return ptr;
+}
+static inline int crypto_comp_decompress(struct crypto_comp *tfm,
+ const u8 *src, unsigned int slen,
+ u8 *dst, unsigned int *dlen)
+{
+ struct ubifs_compressor *compr = ubifs_compressors[tfm->compressor];
+ int err;
+
+ if (compr->compr_type == UBIFS_COMPR_NONE) {
+ memcpy(dst, src, slen);
+ *dlen = slen;
+ return 0;
+ }
+
+ err = compr->decompress(src, slen, dst, (size_t *)dlen);
+ if (err)
+ ubifs_err("cannot decompress %d bytes, compressor %s, "
+ "error %d", slen, compr->name, err);
+
+ return err;
+
+ return 0;
+}
+#endif
+
/**
* ubifs_decompress - decompress data.
* @in_buf: data to decompress
@@ -102,10 +189,15 @@ int ubifs_decompress(const void *in_buf, int in_len, void *out_buf,
return 0;
}
- err = compr->decompress(in_buf, in_len, out_buf, (size_t *)out_len);
+ if (compr->decomp_mutex)
+ mutex_lock(compr->decomp_mutex);
+ err = crypto_comp_decompress(compr->cc, in_buf, in_len, out_buf,
+ (unsigned int *)out_len);
+ if (compr->decomp_mutex)
+ mutex_unlock(compr->decomp_mutex);
if (err)
- ubifs_err("cannot decompress %d bytes, compressor %s, "
- "error %d", in_len, compr->name, err);
+ ubifs_err("cannot decompress %d bytes, compressor %s, error %d",
+ in_len, compr->name, err);
return err;
}
@@ -127,6 +219,15 @@ static int __init compr_init(struct ubifs_compressor *compr)
ubifs_compressors[compr->compr_type]->decompress += gd->reloc_off;
#endif
+ if (compr->capi_name) {
+ compr->cc = crypto_alloc_comp(compr->capi_name, 0, 0);
+ if (IS_ERR(compr->cc)) {
+ ubifs_err("cannot initialize compressor %s, error %ld",
+ compr->name, PTR_ERR(compr->cc));
+ return PTR_ERR(compr->cc);
+ }
+ }
+
return 0;
}
@@ -188,7 +289,9 @@ static int filldir(struct ubifs_info *c, const char *name, int namlen,
}
ctime_r((time_t *)&inode->i_mtime, filetime);
printf("%9lld %24.24s ", inode->i_size, filetime);
+#ifndef __UBOOT__
ubifs_iput(inode);
+#endif
printf("%s\n", name);
@@ -562,7 +665,7 @@ static int read_block(struct inode *inode, void *addr, unsigned int block,
dump:
ubifs_err("bad data node (block %u, inode %lu)",
block, inode->i_ino);
- dbg_dump_node(c, dn);
+ ubifs_dump_node(c, dn);
return -EINVAL;
}
diff --git a/fs/ubifs/ubifs.h b/fs/ubifs/ubifs.h
index 2213201..acc6a40 100644
--- a/fs/ubifs/ubifs.h
+++ b/fs/ubifs/ubifs.h
@@ -6,18 +6,7 @@
* (C) Copyright 2008-2009
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier: GPL-2.0+
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
@@ -26,12 +15,25 @@
#ifndef __UBIFS_H__
#define __UBIFS_H__
-#if 0 /* Enable for debugging output */
-#define CONFIG_UBIFS_FS_DEBUG
-#define CONFIG_UBIFS_FS_DEBUG_MSG_LVL 3
-#endif
-
+#define __UBOOT__
+#ifndef __UBOOT__
+#include <asm/div64.h>
+#include <linux/statfs.h>
+#include <linux/fs.h>
+#include <linux/err.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/spinlock.h>
+#include <linux/mutex.h>
+#include <linux/rwsem.h>
+#include <linux/mtd/ubi.h>
+#include <linux/pagemap.h>
+#include <linux/backing-dev.h>
+#include "ubifs-media.h"
+#else
#include <ubi_uboot.h>
+
#include <linux/ctype.h>
#include <linux/time.h>
#include <linux/math64.h>
@@ -70,13 +72,26 @@ void iput(struct inode *inode);
#define atomic_long_dec(a)
#define atomic_long_sub(a, b)
+typedef unsigned long atomic_long_t;
+
/* linux/include/time.h */
+#define NSEC_PER_SEC 1000000000L
+#define get_seconds() 0
+#define CURRENT_TIME_SEC ((struct timespec) { get_seconds(), 0 })
struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */
};
+static struct timespec current_fs_time(struct super_block *sb)
+{
+ struct timespec now;
+ now.tv_sec = 0;
+ now.tv_nsec = 0;
+ return now;
+};
+
/* linux/include/dcache.h */
/*
@@ -89,111 +104,245 @@ struct timespec {
struct qstr {
unsigned int hash;
unsigned int len;
+#ifndef __UBOOT__
const char *name;
+#else
+ char *name;
+#endif
+};
+
+/* include/linux/fs.h */
+
+/* Possible states of 'frozen' field */
+enum {
+ SB_UNFROZEN = 0, /* FS is unfrozen */
+ SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */
+ SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */
+ SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop
+ * internal threads if needed) */
+ SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */
};
+#define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1)
+
+struct sb_writers {
+#ifndef __UBOOT__
+ /* Counters for counting writers at each level */
+ struct percpu_counter counter[SB_FREEZE_LEVELS];
+#endif
+ wait_queue_head_t wait; /* queue for waiting for
+ writers / faults to finish */
+ int frozen; /* Is sb frozen? */
+ wait_queue_head_t wait_unfrozen; /* queue for waiting for
+ sb to be thawed */
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+ struct lockdep_map lock_map[SB_FREEZE_LEVELS];
+#endif
+};
+
+struct address_space {
+ struct inode *host; /* owner: inode, block_device */
+#ifndef __UBOOT__
+ struct radix_tree_root page_tree; /* radix tree of all pages */
+#endif
+ spinlock_t tree_lock; /* and lock protecting it */
+ unsigned int i_mmap_writable;/* count VM_SHARED mappings */
+ struct rb_root i_mmap; /* tree of private and shared mappings */
+ struct list_head i_mmap_nonlinear;/*list VM_NONLINEAR mappings */
+ struct mutex i_mmap_mutex; /* protect tree, count, list */
+ /* Protected by tree_lock together with the radix tree */
+ unsigned long nrpages; /* number of total pages */
+ pgoff_t writeback_index;/* writeback starts here */
+ const struct address_space_operations *a_ops; /* methods */
+ unsigned long flags; /* error bits/gfp mask */
+#ifndef __UBOOT__
+ struct backing_dev_info *backing_dev_info; /* device readahead, etc */
+#endif
+ spinlock_t private_lock; /* for use by the address_space */
+ struct list_head private_list; /* ditto */
+ void *private_data; /* ditto */
+} __attribute__((aligned(sizeof(long))));
+
+/*
+ * Keep mostly read-only and often accessed (especially for
+ * the RCU path lookup and 'stat' data) fields at the beginning
+ * of the 'struct inode'
+ */
struct inode {
- struct hlist_node i_hash;
- struct list_head i_list;
- struct list_head i_sb_list;
- struct list_head i_dentry;
+ umode_t i_mode;
+ unsigned short i_opflags;
+ kuid_t i_uid;
+ kgid_t i_gid;
+ unsigned int i_flags;
+
+#ifdef CONFIG_FS_POSIX_ACL
+ struct posix_acl *i_acl;
+ struct posix_acl *i_default_acl;
+#endif
+
+ const struct inode_operations *i_op;
+ struct super_block *i_sb;
+ struct address_space *i_mapping;
+
+#ifdef CONFIG_SECURITY
+ void *i_security;
+#endif
+
+ /* Stat data, not accessed from path walking */
unsigned long i_ino;
- unsigned int i_nlink;
- uid_t i_uid;
- gid_t i_gid;
+ /*
+ * Filesystems may only read i_nlink directly. They shall use the
+ * following functions for modification:
+ *
+ * (set|clear|inc|drop)_nlink
+ * inode_(inc|dec)_link_count
+ */
+ union {
+ const unsigned int i_nlink;
+ unsigned int __i_nlink;
+ };
dev_t i_rdev;
- u64 i_version;
loff_t i_size;
-#ifdef __NEED_I_SIZE_ORDERED
- seqcount_t i_size_seqcount;
-#endif
struct timespec i_atime;
struct timespec i_mtime;
struct timespec i_ctime;
- unsigned int i_blkbits;
- unsigned short i_bytes;
- umode_t i_mode;
spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */
+ unsigned short i_bytes;
+ unsigned int i_blkbits;
+ blkcnt_t i_blocks;
+
+#ifdef __NEED_I_SIZE_ORDERED
+ seqcount_t i_size_seqcount;
+#endif
+
+ /* Misc */
+ unsigned long i_state;
struct mutex i_mutex;
- struct rw_semaphore i_alloc_sem;
- const struct inode_operations *i_op;
+
+ unsigned long dirtied_when; /* jiffies of first dirtying */
+
+ struct hlist_node i_hash;
+ struct list_head i_wb_list; /* backing dev IO list */
+ struct list_head i_lru; /* inode LRU list */
+ struct list_head i_sb_list;
+ union {
+ struct hlist_head i_dentry;
+ struct rcu_head i_rcu;
+ };
+ u64 i_version;
+ atomic_t i_count;
+ atomic_t i_dio_count;
+ atomic_t i_writecount;
const struct file_operations *i_fop; /* former ->i_op->default_file_ops */
- struct super_block *i_sb;
struct file_lock *i_flock;
+ struct address_space i_data;
#ifdef CONFIG_QUOTA
struct dquot *i_dquot[MAXQUOTAS];
#endif
struct list_head i_devices;
- int i_cindex;
+ union {
+ struct pipe_inode_info *i_pipe;
+ struct block_device *i_bdev;
+ struct cdev *i_cdev;
+ };
__u32 i_generation;
-#ifdef CONFIG_DNOTIFY
- unsigned long i_dnotify_mask; /* Directory notify events */
- struct dnotify_struct *i_dnotify; /* for directory notifications */
+#ifdef CONFIG_FSNOTIFY
+ __u32 i_fsnotify_mask; /* all events this inode cares about */
+ struct hlist_head i_fsnotify_marks;
#endif
-#ifdef CONFIG_INOTIFY
- struct list_head inotify_watches; /* watches on this inode */
- struct mutex inotify_mutex; /* protects the watches list */
+#ifdef CONFIG_IMA
+ atomic_t i_readcount; /* struct files open RO */
#endif
+ void *i_private; /* fs or device private pointer */
+};
- unsigned long i_state;
- unsigned long dirtied_when; /* jiffies of first dirtying */
-
- unsigned int i_flags;
-
-#ifdef CONFIG_SECURITY
- void *i_security;
+struct super_operations {
+ struct inode *(*alloc_inode)(struct super_block *sb);
+ void (*destroy_inode)(struct inode *);
+
+ void (*dirty_inode) (struct inode *, int flags);
+ int (*write_inode) (struct inode *, struct writeback_control *wbc);
+ int (*drop_inode) (struct inode *);
+ void (*evict_inode) (struct inode *);
+ void (*put_super) (struct super_block *);
+ int (*sync_fs)(struct super_block *sb, int wait);
+ int (*freeze_fs) (struct super_block *);
+ int (*unfreeze_fs) (struct super_block *);
+#ifndef __UBOOT__
+ int (*statfs) (struct dentry *, struct kstatfs *);
#endif
- void *i_private; /* fs or device private pointer */
+ int (*remount_fs) (struct super_block *, int *, char *);
+ void (*umount_begin) (struct super_block *);
+
+#ifndef __UBOOT__
+ int (*show_options)(struct seq_file *, struct dentry *);
+ int (*show_devname)(struct seq_file *, struct dentry *);
+ int (*show_path)(struct seq_file *, struct dentry *);
+ int (*show_stats)(struct seq_file *, struct dentry *);
+#endif
+#ifdef CONFIG_QUOTA
+ ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
+ ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
+#endif
+ int (*bdev_try_to_free_page)(struct super_block*, struct page*, gfp_t);
+ long (*nr_cached_objects)(struct super_block *, int);
+ long (*free_cached_objects)(struct super_block *, long, int);
};
struct super_block {
struct list_head s_list; /* Keep this first */
dev_t s_dev; /* search index; _not_ kdev_t */
- unsigned long s_blocksize;
unsigned char s_blocksize_bits;
- unsigned char s_dirt;
- unsigned long long s_maxbytes; /* Max file size */
+ unsigned long s_blocksize;
+ loff_t s_maxbytes; /* Max file size */
struct file_system_type *s_type;
const struct super_operations *s_op;
- struct dquot_operations *dq_op;
- struct quotactl_ops *s_qcop;
+ const struct dquot_operations *dq_op;
+ const struct quotactl_ops *s_qcop;
const struct export_operations *s_export_op;
unsigned long s_flags;
unsigned long s_magic;
struct dentry *s_root;
struct rw_semaphore s_umount;
- struct mutex s_lock;
int s_count;
- int s_syncing;
- int s_need_sync_fs;
+ atomic_t s_active;
#ifdef CONFIG_SECURITY
void *s_security;
#endif
- struct xattr_handler **s_xattr;
+ const struct xattr_handler **s_xattr;
struct list_head s_inodes; /* all inodes */
- struct list_head s_dirty; /* dirty inodes */
- struct list_head s_io; /* parked for writeback */
- struct list_head s_more_io; /* parked for more writeback */
- struct hlist_head s_anon; /* anonymous dentries for (nfs) exporting */
- struct list_head s_files;
- /* s_dentry_lru and s_nr_dentry_unused are protected by dcache_lock */
- struct list_head s_dentry_lru; /* unused dentry lru */
- int s_nr_dentry_unused; /* # of dentry on lru */
-
+#ifndef __UBOOT__
+ struct hlist_bl_head s_anon; /* anonymous dentries for (nfs) exporting */
+#endif
+ struct list_head s_mounts; /* list of mounts; _not_ for fs use */
struct block_device *s_bdev;
+#ifndef __UBOOT__
+ struct backing_dev_info *s_bdi;
+#endif
struct mtd_info *s_mtd;
- struct list_head s_instances;
+ struct hlist_node s_instances;
+#ifndef __UBOOT__
+ struct quota_info s_dquot; /* Diskquota specific options */
+#endif
- int s_frozen;
- wait_queue_head_t s_wait_unfrozen;
+ struct sb_writers s_writers;
char s_id[32]; /* Informational name */
+ u8 s_uuid[16]; /* UUID */
void *s_fs_info; /* Filesystem private info */
+ unsigned int s_max_links;
+#ifndef __UBOOT__
+ fmode_t s_mode;
+#endif
+
+ /* Granularity of c/m/atime in ns.
+ Cannot be worse than a second */
+ u32 s_time_gran;
/*
* The next field is for VFS *only*. No filesystems have any business
@@ -201,66 +350,83 @@ struct super_block {
*/
struct mutex s_vfs_rename_mutex; /* Kludge */
- /* Granularity of c/m/atime in ns.
- Cannot be worse than a second */
- u32 s_time_gran;
-
/*
* Filesystem subtype. If non-empty the filesystem type field
* in /proc/mounts will be "type.subtype"
*/
char *s_subtype;
+#ifndef __UBOOT__
/*
* Saved mount options for lazy filesystems using
* generic_show_options()
*/
- char *s_options;
+ char __rcu *s_options;
+#endif
+ const struct dentry_operations *s_d_op; /* default d_op for dentries */
+
+ /*
+ * Saved pool identifier for cleancache (-1 means none)
+ */
+ int cleancache_poolid;
+
+#ifndef __UBOOT__
+ struct shrinker s_shrink; /* per-sb shrinker handle */
+#endif
+
+ /* Number of inodes with nlink == 0 but still referenced */
+ atomic_long_t s_remove_count;
+
+ /* Being remounted read-only */
+ int s_readonly_remount;
+
+ /* AIO completions deferred from interrupt context */
+ struct workqueue_struct *s_dio_done_wq;
+
+#ifndef __UBOOT__
+ /*
+ * Keep the lru lists last in the structure so they always sit on their
+ * own individual cachelines.
+ */
+ struct list_lru s_dentry_lru ____cacheline_aligned_in_smp;
+ struct list_lru s_inode_lru ____cacheline_aligned_in_smp;
+#endif
+ struct rcu_head rcu;
};
struct file_system_type {
const char *name;
int fs_flags;
- int (*get_sb) (struct file_system_type *, int,
- const char *, void *, struct vfsmount *);
+#define FS_REQUIRES_DEV 1
+#define FS_BINARY_MOUNTDATA 2
+#define FS_HAS_SUBTYPE 4
+#define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */
+#define FS_USERNS_DEV_MOUNT 16 /* A userns mount does not imply MNT_NODEV */
+#define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */
+ struct dentry *(*mount) (struct file_system_type *, int,
+ const char *, void *);
void (*kill_sb) (struct super_block *);
struct module *owner;
struct file_system_type * next;
- struct list_head fs_supers;
+ struct hlist_head fs_supers;
+
+#ifndef __UBOOT__
+ struct lock_class_key s_lock_key;
+ struct lock_class_key s_umount_key;
+ struct lock_class_key s_vfs_rename_key;
+ struct lock_class_key s_writers_key[SB_FREEZE_LEVELS];
+
+ struct lock_class_key i_lock_key;
+ struct lock_class_key i_mutex_key;
+ struct lock_class_key i_mutex_dir_key;
+#endif
};
+/* include/linux/mount.h */
struct vfsmount {
- struct list_head mnt_hash;
- struct vfsmount *mnt_parent; /* fs we are mounted on */
- struct dentry *mnt_mountpoint; /* dentry of mountpoint */
struct dentry *mnt_root; /* root of the mounted tree */
struct super_block *mnt_sb; /* pointer to superblock */
- struct list_head mnt_mounts; /* list of children, anchored here */
- struct list_head mnt_child; /* and going through their mnt_child */
int mnt_flags;
- /* 4 bytes hole on 64bits arches */
- const char *mnt_devname; /* Name of device e.g. /dev/dsk/hda1 */
- struct list_head mnt_list;
- struct list_head mnt_expire; /* link in fs-specific expiry list */
- struct list_head mnt_share; /* circular list of shared mounts */
- struct list_head mnt_slave_list;/* list of slave mounts */
- struct list_head mnt_slave; /* slave list entry */
- struct vfsmount *mnt_master; /* slave is on master->mnt_slave_list */
- struct mnt_namespace *mnt_ns; /* containing namespace */
- int mnt_id; /* mount identifier */
- int mnt_group_id; /* peer group identifier */
- /*
- * We put mnt_count & mnt_expiry_mark at the end of struct vfsmount
- * to let these frequently modified fields in a separate cache line
- * (so that reads of mnt_flags wont ping-pong on SMP machines)
- */
- int mnt_expiry_mark; /* true if marked for expiry */
- int mnt_pinned;
- int mnt_ghosts;
- /*
- * This value is not stable unless all of the mnt_writers[] spinlocks
- * are held, and all mnt_writer[]s on this mount have 0 as their ->count
- */
};
struct path {
@@ -451,32 +617,35 @@ static inline ino_t parent_ino(struct dentry *dentry)
/* debug.c */
-#define DEFINE_SPINLOCK(...)
#define module_param_named(...)
/* misc.h */
#define mutex_lock_nested(...)
#define mutex_unlock_nested(...)
#define mutex_is_locked(...) 0
+#endif
/* Version of this UBIFS implementation */
#define UBIFS_VERSION 1
/* Normal UBIFS messages */
-#ifdef CONFIG_UBIFS_SILENCE_MSG
-#define ubifs_msg(fmt, ...)
-#else
-#define ubifs_msg(fmt, ...) \
- printk(KERN_NOTICE "UBIFS: " fmt "\n", ##__VA_ARGS__)
-#endif
+#define ubifs_msg(fmt, ...) pr_notice("UBIFS: " fmt "\n", ##__VA_ARGS__)
/* UBIFS error messages */
-#define ubifs_err(fmt, ...) \
- printk(KERN_ERR "UBIFS error (pid %d): %s: " fmt "\n", 0, \
+#ifndef __UBOOT__
+#define ubifs_err(fmt, ...) \
+ pr_err("UBIFS error (pid %d): %s: " fmt "\n", current->pid, \
__func__, ##__VA_ARGS__)
/* UBIFS warning messages */
-#define ubifs_warn(fmt, ...) \
- printk(KERN_WARNING "UBIFS warning (pid %d): %s: " fmt "\n", \
- 0, __func__, ##__VA_ARGS__)
+#define ubifs_warn(fmt, ...) \
+ pr_warn("UBIFS warning (pid %d): %s: " fmt "\n", \
+ current->pid, __func__, ##__VA_ARGS__)
+#else
+#define ubifs_err(fmt, ...) \
+ pr_err("UBIFS error: %s: " fmt "\n", __func__, ##__VA_ARGS__)
+/* UBIFS warning messages */
+#define ubifs_warn(fmt, ...) \
+ pr_warn("UBIFS warning: %s: " fmt "\n", __func__, ##__VA_ARGS__)
+#endif
/* UBIFS file system VFS magic number */
#define UBIFS_SUPER_MAGIC 0x24051905
@@ -509,9 +678,6 @@ static inline ino_t parent_ino(struct dentry *dentry)
#define INUM_WARN_WATERMARK 0xFFF00000
#define INUM_WATERMARK 0xFFFFFF00
-/* Largest key size supported in this implementation */
-#define CUR_MAX_KEY_LEN UBIFS_SK_LEN
-
/* Maximum number of entries in each LPT (LEB category) heap */
#define LPT_HEAP_SZ 256
@@ -521,8 +687,9 @@ static inline ino_t parent_ino(struct dentry *dentry)
*/
#define BGT_NAME_PATTERN "ubifs_bgt%d_%d"
-/* Default write-buffer synchronization timeout (5 secs) */
-#define DEFAULT_WBUF_TIMEOUT (5 * HZ)
+/* Write-buffer synchronization timeout interval in seconds */
+#define WBUF_TIMEOUT_SOFTLIMIT 3
+#define WBUF_TIMEOUT_HARDLIMIT 5
/* Maximum possible inode number (only 32-bit inodes are supported now) */
#define MAX_INUM 0xFFFFFFFF
@@ -530,12 +697,10 @@ static inline ino_t parent_ino(struct dentry *dentry)
/* Number of non-data journal heads */
#define NONDATA_JHEADS_CNT 2
-/* Garbage collector head */
-#define GCHD 0
-/* Base journal head number */
-#define BASEHD 1
-/* First "general purpose" journal head */
-#define DATAHD 2
+/* Shorter names for journal head numbers for internal usage */
+#define GCHD UBIFS_GC_HEAD
+#define BASEHD UBIFS_BASE_HEAD
+#define DATAHD UBIFS_DATA_HEAD
/* 'No change' value for 'ubifs_change_lp()' */
#define LPROPS_NC 0x80000001
@@ -545,8 +710,12 @@ static inline ino_t parent_ino(struct dentry *dentry)
* in TNC. However, when replaying, it is handy to introduce fake "truncation"
* keys for truncation nodes because the code becomes simpler. So we define
* %UBIFS_TRUN_KEY type.
+ *
+ * But otherwise, out of the journal reply scope, the truncation keys are
+ * invalid.
*/
-#define UBIFS_TRUN_KEY UBIFS_KEY_TYPES_CNT
+#define UBIFS_TRUN_KEY UBIFS_KEY_TYPES_CNT
+#define UBIFS_INVALID_KEY UBIFS_KEY_TYPES_CNT
/*
* How much a directory entry/extended attribute entry adds to the parent/host
@@ -573,6 +742,12 @@ static inline ino_t parent_ino(struct dentry *dentry)
*/
#define WORST_COMPR_FACTOR 2
+/*
+ * How much memory is needed for a buffer where we comress a data node.
+ */
+#define COMPRESSED_DATA_NODE_BUF_SZ \
+ (UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR)
+
/* Maximum expected tree height for use by bottom_up_buf */
#define BOTTOM_UP_HEIGHT 64
@@ -646,14 +821,14 @@ enum {
* LPT cnode flag bits.
*
* DIRTY_CNODE: cnode is dirty
- * COW_CNODE: cnode is being committed and must be copied before writing
* OBSOLETE_CNODE: cnode is being committed and has been copied (or deleted),
- * so it can (and must) be freed when the commit is finished
+ * so it can (and must) be freed when the commit is finished
+ * COW_CNODE: cnode is being committed and must be copied before writing
*/
enum {
DIRTY_CNODE = 0,
- COW_CNODE = 1,
- OBSOLETE_CNODE = 2,
+ OBSOLETE_CNODE = 1,
+ COW_CNODE = 2,
};
/*
@@ -693,10 +868,10 @@ struct ubifs_old_idx {
/* The below union makes it easier to deal with keys */
union ubifs_key {
- uint8_t u8[CUR_MAX_KEY_LEN];
- uint32_t u32[CUR_MAX_KEY_LEN/4];
- uint64_t u64[CUR_MAX_KEY_LEN/8];
- __le32 j32[CUR_MAX_KEY_LEN/4];
+ uint8_t u8[UBIFS_SK_LEN];
+ uint32_t u32[UBIFS_SK_LEN/4];
+ uint64_t u64[UBIFS_SK_LEN/8];
+ __le32 j32[UBIFS_SK_LEN/4];
};
/**
@@ -805,9 +980,9 @@ struct ubifs_gced_idx_leb {
* The @ui_size is a "shadow" variable for @inode->i_size and UBIFS uses
* @ui_size instead of @inode->i_size. The reason for this is that UBIFS cannot
* make sure @inode->i_size is always changed under @ui_mutex, because it
- * cannot call 'vmtruncate()' with @ui_mutex locked, because it would deadlock
- * with 'ubifs_writepage()' (see file.c). All the other inode fields are
- * changed under @ui_mutex, so they do not need "shadow" fields. Note, one
+ * cannot call 'truncate_setsize()' with @ui_mutex locked, because it would
+ * deadlock with 'ubifs_writepage()' (see file.c). All the other inode fields
+ * are changed under @ui_mutex, so they do not need "shadow" fields. Note, one
* could consider to rework locking and base it on "shadow" fields.
*/
struct ubifs_inode {
@@ -1068,17 +1243,19 @@ typedef int (*ubifs_lpt_scan_callback)(struct ubifs_info *c,
* @offs: write-buffer offset in this logical eraseblock
* @avail: number of bytes available in the write-buffer
* @used: number of used bytes in the write-buffer
- * @dtype: type of data stored in this LEB (%UBI_LONGTERM, %UBI_SHORTTERM,
- * %UBI_UNKNOWN)
+ * @size: write-buffer size (in [@c->min_io_size, @c->max_write_size] range)
* @jhead: journal head the mutex belongs to (note, needed only to shut lockdep
* up by 'mutex_lock_nested()).
* @sync_callback: write-buffer synchronization callback
* @io_mutex: serializes write-buffer I/O
* @lock: serializes @buf, @lnum, @offs, @avail, @used, @next_ino and @inodes
* fields
+ * @softlimit: soft write-buffer timeout interval
+ * @delta: hard and soft timeouts delta (the timer expire inteval is @softlimit
+ * and @softlimit + @delta)
* @timer: write-buffer timer
- * @timeout: timer expire interval in jiffies
- * @need_sync: it is set if its timer expired and needs sync
+ * @no_timer: non-zero if this write-buffer does not have a timer
+ * @need_sync: non-zero if the timer expired and the wbuf needs sync'ing
* @next_ino: points to the next position of the following inode number
* @inodes: stores the inode numbers of the nodes which are in wbuf
*
@@ -1099,13 +1276,16 @@ struct ubifs_wbuf {
int offs;
int avail;
int used;
- int dtype;
+ int size;
int jhead;
int (*sync_callback)(struct ubifs_info *c, int lnum, int free, int pad);
struct mutex io_mutex;
spinlock_t lock;
- int timeout;
- int need_sync;
+// ktime_t softlimit;
+// unsigned long long delta;
+// struct hrtimer timer;
+ unsigned int no_timer:1;
+ unsigned int need_sync:1;
int next_ino;
ino_t *inodes;
};
@@ -1130,12 +1310,14 @@ struct ubifs_bud {
* struct ubifs_jhead - journal head.
* @wbuf: head's write-buffer
* @buds_list: list of bud LEBs belonging to this journal head
+ * @grouped: non-zero if UBIFS groups nodes when writing to this journal head
*
* Note, the @buds list is protected by the @c->buds_lock.
*/
struct ubifs_jhead {
struct ubifs_wbuf wbuf;
struct list_head buds_list;
+ unsigned int grouped:1;
};
/**
@@ -1171,6 +1353,9 @@ struct ubifs_zbranch {
* @offs: offset of the corresponding indexing node
* @len: length of the corresponding indexing node
* @zbranch: array of znode branches (@c->fanout elements)
+ *
+ * Note! The @lnum, @offs, and @len fields are not really needed - we have them
+ * only for internal consistency check. They could be removed to save some RAM.
*/
struct ubifs_znode {
struct ubifs_znode *parent;
@@ -1181,9 +1366,9 @@ struct ubifs_znode {
int child_cnt;
int iip;
int alt;
-#ifdef CONFIG_UBIFS_FS_DEBUG
- int lnum, offs, len;
-#endif
+ int lnum;
+ int offs;
+ int len;
struct ubifs_zbranch zbranch[];
};
@@ -1236,10 +1421,15 @@ struct ubifs_node_range {
*/
struct ubifs_compressor {
int compr_type;
- char *name;
- char *capi_name;
+ struct crypto_comp *cc;
+ struct mutex *comp_mutex;
+ struct mutex *decomp_mutex;
+ const char *name;
+ const char *capi_name;
+#ifdef __UBOOT__
int (*decompress)(const unsigned char *in, size_t in_len,
unsigned char *out, size_t *out_len);
+#endif
};
/**
@@ -1313,6 +1503,8 @@ struct ubifs_budget_req {
* @dnext: next orphan to delete
* @inum: inode number
* @new: %1 => added since the last commit, otherwise %0
+ * @cmt: %1 => commit pending, otherwise %0
+ * @del: %1 => delete pending, otherwise %0
*/
struct ubifs_orphan {
struct rb_node rb;
@@ -1321,7 +1513,9 @@ struct ubifs_orphan {
struct ubifs_orphan *cnext;
struct ubifs_orphan *dnext;
ino_t inum;
- int new;
+ unsigned new:1;
+ unsigned cmt:1;
+ unsigned del:1;
};
/**
@@ -1344,6 +1538,40 @@ struct ubifs_mount_opts {
unsigned int compr_type:2;
};
+/**
+ * struct ubifs_budg_info - UBIFS budgeting information.
+ * @idx_growth: amount of bytes budgeted for index growth
+ * @data_growth: amount of bytes budgeted for cached data
+ * @dd_growth: amount of bytes budgeted for cached data that will make
+ * other data dirty
+ * @uncommitted_idx: amount of bytes were budgeted for growth of the index, but
+ * which still have to be taken into account because the index
+ * has not been committed so far
+ * @old_idx_sz: size of index on flash
+ * @min_idx_lebs: minimum number of LEBs required for the index
+ * @nospace: non-zero if the file-system does not have flash space (used as
+ * optimization)
+ * @nospace_rp: the same as @nospace, but additionally means that even reserved
+ * pool is full
+ * @page_budget: budget for a page (constant, nenver changed after mount)
+ * @inode_budget: budget for an inode (constant, nenver changed after mount)
+ * @dent_budget: budget for a directory entry (constant, nenver changed after
+ * mount)
+ */
+struct ubifs_budg_info {
+ long long idx_growth;
+ long long data_growth;
+ long long dd_growth;
+ long long uncommitted_idx;
+ unsigned long long old_idx_sz;
+ int min_idx_lebs;
+ unsigned int nospace:1;
+ unsigned int nospace_rp:1;
+ int page_budget;
+ int inode_budget;
+ int dent_budget;
+};
+
struct ubifs_debug_info;
/**
@@ -1387,6 +1615,7 @@ struct ubifs_debug_info;
* @cmt_wq: wait queue to sleep on if the log is full and a commit is running
*
* @big_lpt: flag that LPT is too big to write whole during commit
+ * @space_fixup: flag indicating that free space in LEBs needs to be cleaned up
* @no_chk_data_crc: do not check CRCs when reading data nodes (except during
* recovery)
* @bulk_read: enable bulk-reads
@@ -1418,6 +1647,11 @@ struct ubifs_debug_info;
* @bu_mutex: protects the pre-allocated bulk-read buffer and @c->bu
* @bu: pre-allocated bulk-read information
*
+ * @write_reserve_mutex: protects @write_reserve_buf
+ * @write_reserve_buf: on the write path we allocate memory, which might
+ * sometimes be unavailable, in which case we use this
+ * write reserve buffer
+ *
* @log_lebs: number of logical eraseblocks in the log
* @log_bytes: log size in bytes
* @log_last: last LEB of the log
@@ -1439,43 +1673,34 @@ struct ubifs_debug_info;
*
* @min_io_size: minimal input/output unit size
* @min_io_shift: number of bits in @min_io_size minus one
+ * @max_write_size: maximum amount of bytes the underlying flash can write at a
+ * time (MTD write buffer size)
+ * @max_write_shift: number of bits in @max_write_size minus one
* @leb_size: logical eraseblock size in bytes
+ * @leb_start: starting offset of logical eraseblocks within physical
+ * eraseblocks
* @half_leb_size: half LEB size
+ * @idx_leb_size: how many bytes of an LEB are effectively available when it is
+ * used to store indexing nodes (@leb_size - @max_idx_node_sz)
* @leb_cnt: count of logical eraseblocks
* @max_leb_cnt: maximum count of logical eraseblocks
* @old_leb_cnt: count of logical eraseblocks before re-size
* @ro_media: the underlying UBI volume is read-only
+ * @ro_mount: the file-system was mounted as read-only
+ * @ro_error: UBIFS switched to R/O mode because an error happened
*
* @dirty_pg_cnt: number of dirty pages (not used)
* @dirty_zn_cnt: number of dirty znodes
* @clean_zn_cnt: number of clean znodes
*
- * @budg_idx_growth: amount of bytes budgeted for index growth
- * @budg_data_growth: amount of bytes budgeted for cached data
- * @budg_dd_growth: amount of bytes budgeted for cached data that will make
- * other data dirty
- * @budg_uncommitted_idx: amount of bytes were budgeted for growth of the index,
- * but which still have to be taken into account because
- * the index has not been committed so far
- * @space_lock: protects @budg_idx_growth, @budg_data_growth, @budg_dd_growth,
- * @budg_uncommited_idx, @min_idx_lebs, @old_idx_sz, @lst,
- * @nospace, and @nospace_rp;
- * @min_idx_lebs: minimum number of LEBs required for the index
- * @old_idx_sz: size of index on flash
+ * @space_lock: protects @bi and @lst
+ * @lst: lprops statistics
+ * @bi: budgeting information
* @calc_idx_sz: temporary variable which is used to calculate new index size
* (contains accurate new index size at end of TNC commit start)
- * @lst: lprops statistics
- * @nospace: non-zero if the file-system does not have flash space (used as
- * optimization)
- * @nospace_rp: the same as @nospace, but additionally means that even reserved
- * pool is full
- *
- * @page_budget: budget for a page
- * @inode_budget: budget for an inode
- * @dent_budget: budget for a directory entry
*
* @ref_node_alsz: size of the LEB reference node aligned to the min. flash
- * I/O unit
+ * I/O unit
* @mst_node_alsz: master node aligned size
* @min_idx_node_sz: minimum indexing node aligned on 8-bytes boundary
* @max_idx_node_sz: maximum indexing node aligned on 8-bytes boundary
@@ -1558,9 +1783,11 @@ struct ubifs_debug_info;
* previous commit start
* @uncat_list: list of un-categorized LEBs
* @empty_list: list of empty LEBs
- * @freeable_list: list of freeable non-index LEBs (free + dirty == leb_size)
- * @frdi_idx_list: list of freeable index LEBs (free + dirty == leb_size)
+ * @freeable_list: list of freeable non-index LEBs (free + dirty == @leb_size)
+ * @frdi_idx_list: list of freeable index LEBs (free + dirty == @leb_size)
* @freeable_cnt: number of freeable LEBs in @freeable_list
+ * @in_a_category_cnt: count of lprops which are in a certain category, which
+ * basically meants that they were loaded from the flash
*
* @ltab_lnum: LEB number of LPT's own lprops table
* @ltab_offs: offset of LPT's own lprops table
@@ -1577,25 +1804,29 @@ struct ubifs_debug_info;
* @rp_uid: reserved pool user ID
* @rp_gid: reserved pool group ID
*
- * @empty: if the UBI device is empty
- * @replay_tree: temporary tree used during journal replay
+ * @empty: %1 if the UBI device is empty
+ * @need_recovery: %1 if the file-system needs recovery
+ * @replaying: %1 during journal replay
+ * @mounting: %1 while mounting
+ * @remounting_rw: %1 while re-mounting from R/O mode to R/W mode
* @replay_list: temporary list used during journal replay
* @replay_buds: list of buds to replay
* @cs_sqnum: sequence number of first node in the log (commit start node)
* @replay_sqnum: sequence number of node currently being replayed
- * @need_recovery: file-system needs recovery
- * @replaying: set to %1 during journal replay
- * @unclean_leb_list: LEBs to recover when mounting ro to rw
- * @rcvrd_mst_node: recovered master node to write when mounting ro to rw
+ * @unclean_leb_list: LEBs to recover when re-mounting R/O mounted FS to R/W
+ * mode
+ * @rcvrd_mst_node: recovered master node to write when re-mounting R/O mounted
+ * FS to R/W mode
* @size_tree: inode size information for recovery
- * @remounting_rw: set while remounting from ro to rw (sb flags have MS_RDONLY)
- * @always_chk_crc: always check CRCs (while mounting and remounting rw)
* @mount_opts: UBIFS-specific mount options
*
* @dbg: debugging-related information
*/
struct ubifs_info {
struct super_block *vfs_sb;
+#ifndef __UBOOT__
+ struct backing_dev_info bdi;
+#endif
ino_t highest_inum;
unsigned long long max_sqnum;
@@ -1628,6 +1859,7 @@ struct ubifs_info {
wait_queue_head_t cmt_wq;
unsigned int big_lpt:1;
+ unsigned int space_fixup:1;
unsigned int no_chk_data_crc:1;
unsigned int bulk_read:1;
unsigned int default_compr:2;
@@ -1657,6 +1889,9 @@ struct ubifs_info {
struct mutex bu_mutex;
struct bu_info bu;
+ struct mutex write_reserve_mutex;
+ void *write_reserve_buf;
+
int log_lebs;
long long log_bytes;
int log_last;
@@ -1678,28 +1913,27 @@ struct ubifs_info {
int min_io_size;
int min_io_shift;
+ int max_write_size;
+ int max_write_shift;
int leb_size;
+ int leb_start;
int half_leb_size;
+ int idx_leb_size;
int leb_cnt;
int max_leb_cnt;
int old_leb_cnt;
- int ro_media;
+ unsigned int ro_media:1;
+ unsigned int ro_mount:1;
+ unsigned int ro_error:1;
+
+ atomic_long_t dirty_pg_cnt;
+ atomic_long_t dirty_zn_cnt;
+ atomic_long_t clean_zn_cnt;
- long long budg_idx_growth;
- long long budg_data_growth;
- long long budg_dd_growth;
- long long budg_uncommitted_idx;
spinlock_t space_lock;
- int min_idx_lebs;
- unsigned long long old_idx_sz;
- unsigned long long calc_idx_sz;
struct ubifs_lp_stats lst;
- unsigned int nospace:1;
- unsigned int nospace_rp:1;
-
- int page_budget;
- int inode_budget;
- int dent_budget;
+ struct ubifs_budg_info bi;
+ unsigned long long calc_idx_sz;
int ref_node_alsz;
int mst_node_alsz;
@@ -1785,6 +2019,7 @@ struct ubifs_info {
struct list_head freeable_list;
struct list_head frdi_idx_list;
int freeable_cnt;
+ int in_a_category_cnt;
int ltab_lnum;
int ltab_offs;
@@ -1798,31 +2033,32 @@ struct ubifs_info {
long long rp_size;
long long report_rp_size;
- uid_t rp_uid;
- gid_t rp_gid;
+ kuid_t rp_uid;
+ kgid_t rp_gid;
/* The below fields are used only during mounting and re-mounting */
- int empty;
- struct rb_root replay_tree;
+ unsigned int empty:1;
+ unsigned int need_recovery:1;
+ unsigned int replaying:1;
+ unsigned int mounting:1;
+ unsigned int remounting_rw:1;
struct list_head replay_list;
struct list_head replay_buds;
unsigned long long cs_sqnum;
unsigned long long replay_sqnum;
- int need_recovery;
- int replaying;
struct list_head unclean_leb_list;
struct ubifs_mst_node *rcvrd_mst_node;
struct rb_root size_tree;
- int remounting_rw;
- int always_chk_crc;
struct ubifs_mount_opts mount_opts;
-#ifdef CONFIG_UBIFS_FS_DEBUG
+#ifndef __UBOOT__
struct ubifs_debug_info *dbg;
#endif
};
+extern struct list_head ubifs_infos;
extern spinlock_t ubifs_infos_lock;
+extern atomic_long_t ubifs_clean_zn_cnt;
extern struct kmem_cache *ubifs_inode_slab;
extern const struct super_operations ubifs_super_operations;
extern const struct address_space_operations ubifs_file_address_operations;
@@ -1836,16 +2072,23 @@ extern struct ubifs_compressor *ubifs_compressors[UBIFS_COMPR_TYPES_CNT];
/* io.c */
void ubifs_ro_mode(struct ubifs_info *c, int err);
+int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
+ int len, int even_ebadmsg);
+int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
+ int len);
+int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len);
+int ubifs_leb_unmap(struct ubifs_info *c, int lnum);
+int ubifs_leb_map(struct ubifs_info *c, int lnum);
+int ubifs_is_mapped(const struct ubifs_info *c, int lnum);
int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len);
-int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
- int dtype);
+int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs);
int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf);
int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
int lnum, int offs);
int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
int lnum, int offs);
int ubifs_write_node(struct ubifs_info *c, void *node, int len, int lnum,
- int offs, int dtype);
+ int offs);
int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
int offs, int quiet, int must_chk_crc);
void ubifs_prepare_node(struct ubifs_info *c, void *buf, int len, int pad);
@@ -1859,7 +2102,7 @@ int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode);
/* scan.c */
struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum,
- int offs, void *sbuf);
+ int offs, void *sbuf, int quiet);
void ubifs_scan_destroy(struct ubifs_scan_leb *sleb);
int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum,
int offs, int quiet);
@@ -1921,7 +2164,7 @@ long long ubifs_reported_space(const struct ubifs_info *c, long long free);
long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs);
/* find.c */
-int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *free,
+int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs,
int squeeze);
int ubifs_find_free_leb_for_idx(struct ubifs_info *c);
int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp,
@@ -1983,8 +2226,13 @@ int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot);
int ubifs_tnc_end_commit(struct ubifs_info *c);
+#ifndef __UBOOT__
/* shrinker.c */
-int ubifs_shrinker(int nr_to_scan, gfp_t gfp_mask);
+unsigned long ubifs_shrink_scan(struct shrinker *shrink,
+ struct shrink_control *sc);
+unsigned long ubifs_shrink_count(struct shrinker *shrink,
+ struct shrink_control *sc);
+#endif
/* commit.c */
int ubifs_bg_thread(void *info);
@@ -2003,6 +2251,7 @@ int ubifs_write_master(struct ubifs_info *c);
int ubifs_read_superblock(struct ubifs_info *c);
struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c);
int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup);
+int ubifs_fixup_free_space(struct ubifs_info *c);
/* replay.c */
int ubifs_validate_entry(struct ubifs_info *c,
@@ -2084,14 +2333,15 @@ const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c);
const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c);
const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c);
const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c);
+int ubifs_calc_dark(const struct ubifs_info *c, int spc);
/* file.c */
-int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync);
+int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync);
int ubifs_setattr(struct dentry *dentry, struct iattr *attr);
/* dir.c */
struct inode *ubifs_new_inode(struct ubifs_info *c, const struct inode *dir,
- int mode);
+ umode_t mode);
int ubifs_getattr(struct vfsmount *mnt, struct dentry *dentry,
struct kstat *stat);
@@ -2111,11 +2361,11 @@ int ubifs_iput(struct inode *inode);
int ubifs_recover_master_node(struct ubifs_info *c);
int ubifs_write_rcvrd_mst_node(struct ubifs_info *c);
struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
- int offs, void *sbuf, int grouped);
+ int offs, void *sbuf, int jhead);
struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
int offs, void *sbuf);
-int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf);
-int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf);
+int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf);
+int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf);
int ubifs_rcvry_gc_commit(struct ubifs_info *c);
int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
int deletion, loff_t new_size);
@@ -2131,24 +2381,22 @@ long ubifs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
/* compressor.c */
int __init ubifs_compressors_init(void);
-void __exit ubifs_compressors_exit(void);
+void ubifs_compressors_exit(void);
void ubifs_compress(const void *in_buf, int in_len, void *out_buf, int *out_len,
int *compr_type);
int ubifs_decompress(const void *buf, int len, void *out, int *out_len,
int compr_type);
+#include "debug.h"
+#include "misc.h"
+#include "key.h"
+
+#ifdef __UBOOT__
/* these are used in cmd_ubifs.c */
int ubifs_init(void);
-int ubifs_mount(char *vol_name);
+int uboot_ubifs_mount(char *vol_name);
void ubifs_umount(struct ubifs_info *c);
int ubifs_ls(char *dir_name);
int ubifs_load(char *filename, u32 addr, u32 size);
-
-#include "debug.h"
-#include "misc.h"
-#include "key.h"
-
-/* todo: Move these to a common U-Boot header */
-int lzo1x_decompress_safe(const unsigned char *in, size_t in_len,
- unsigned char *out, size_t *out_len);
+#endif
#endif /* !__UBIFS_H__ */