summaryrefslogtreecommitdiff
path: root/fs/zfs/zfs.c
diff options
context:
space:
mode:
authorJorgen Lundman <lundman@lundman.net>2012-07-19 20:48:25 +0000
committerWolfgang Denk <wd@denx.de>2012-08-09 23:42:20 +0200
commit4d3c95f5ea7c737a21cd6b9c59435ee693b3f127 (patch)
treed11c09245a46d3b0a55c0937874fb2debcb96490 /fs/zfs/zfs.c
parent753ac610880e6e563d0384bb114f8b41df89e520 (diff)
downloadu-boot-imx-4d3c95f5ea7c737a21cd6b9c59435ee693b3f127.zip
u-boot-imx-4d3c95f5ea7c737a21cd6b9c59435ee693b3f127.tar.gz
u-boot-imx-4d3c95f5ea7c737a21cd6b9c59435ee693b3f127.tar.bz2
zfs: Add ZFS filesystem support
U-Boot port is based on sources forked from GRUB-0.97 by Sun in 2004, which can be found here: http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/grub/grub-0.97/stage2/zfs-include/zfs.h Released by Sun for GRUB under the license: * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. GRUB official releases include ZFS in version: ftp://alpha.gnu.org/gnu/grub/grub-1.99~rc1.tar.gz And patched against GRUB Bazaar repository for ashift fixes (4KB HDDs) more conveniently found at github: https://github.com/pendor/grub-zfs/commit/e7b6ef3ac3b9685ac4c394c897b1d4221b7381f1 Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Diffstat (limited to 'fs/zfs/zfs.c')
-rw-r--r--fs/zfs/zfs.c2395
1 files changed, 2395 insertions, 0 deletions
diff --git a/fs/zfs/zfs.c b/fs/zfs/zfs.c
new file mode 100644
index 0000000..360f723
--- /dev/null
+++ b/fs/zfs/zfs.c
@@ -0,0 +1,2395 @@
+/*
+ *
+ * ZFS filesystem ported to u-boot by
+ * Jorgen Lundman <lundman at lundman.net>
+ *
+ * GRUB -- GRand Unified Bootloader
+ * Copyright (C) 1999,2000,2001,2002,2003,2004
+ * Free Software Foundation, Inc.
+ * Copyright 2004 Sun Microsystems, Inc.
+ *
+ * GRUB is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * GRUB is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
+ *
+ */
+
+#include <common.h>
+#include <malloc.h>
+#include <linux/stat.h>
+#include <linux/time.h>
+#include <linux/ctype.h>
+#include <asm/byteorder.h>
+#include "zfs_common.h"
+
+block_dev_desc_t *zfs_dev_desc;
+
+/*
+ * The zfs plug-in routines for GRUB are:
+ *
+ * zfs_mount() - locates a valid uberblock of the root pool and reads
+ * in its MOS at the memory address MOS.
+ *
+ * zfs_open() - locates a plain file object by following the MOS
+ * and places its dnode at the memory address DNODE.
+ *
+ * zfs_read() - read in the data blocks pointed by the DNODE.
+ *
+ */
+
+#include <zfs/zfs.h>
+#include <zfs/zio.h>
+#include <zfs/dnode.h>
+#include <zfs/uberblock_impl.h>
+#include <zfs/vdev_impl.h>
+#include <zfs/zio_checksum.h>
+#include <zfs/zap_impl.h>
+#include <zfs/zap_leaf.h>
+#include <zfs/zfs_znode.h>
+#include <zfs/dmu.h>
+#include <zfs/dmu_objset.h>
+#include <zfs/sa_impl.h>
+#include <zfs/dsl_dir.h>
+#include <zfs/dsl_dataset.h>
+
+
+#define ZPOOL_PROP_BOOTFS "bootfs"
+
+
+/*
+ * For nvlist manipulation. (from nvpair.h)
+ */
+#define NV_ENCODE_NATIVE 0
+#define NV_ENCODE_XDR 1
+#define NV_BIG_ENDIAN 0
+#define NV_LITTLE_ENDIAN 1
+#define DATA_TYPE_UINT64 8
+#define DATA_TYPE_STRING 9
+#define DATA_TYPE_NVLIST 19
+#define DATA_TYPE_NVLIST_ARRAY 20
+
+
+/*
+ * Macros to get fields in a bp or DVA.
+ */
+#define P2PHASE(x, align) ((x) & ((align) - 1))
+#define DVA_OFFSET_TO_PHYS_SECTOR(offset) \
+ ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT)
+
+/*
+ * return x rounded down to an align boundary
+ * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
+ * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
+ * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
+ * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
+ */
+#define P2ALIGN(x, align) ((x) & -(align))
+
+/*
+ * FAT ZAP data structures
+ */
+#define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
+#define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
+#define CHAIN_END 0xffff /* end of the chunk chain */
+
+/*
+ * The amount of space within the chunk available for the array is:
+ * chunk size - space for type (1) - space for next pointer (2)
+ */
+#define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
+
+#define ZAP_LEAF_HASH_SHIFT(bs) (bs - 5)
+#define ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs))
+#define LEAF_HASH(bs, h) \
+ ((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) & \
+ ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len)))
+
+/*
+ * The amount of space available for chunks is:
+ * block size shift - hash entry size (2) * number of hash
+ * entries - header space (2*chunksize)
+ */
+#define ZAP_LEAF_NUMCHUNKS(bs) \
+ (((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) / \
+ ZAP_LEAF_CHUNKSIZE - 2)
+
+/*
+ * The chunks start immediately after the hash table. The end of the
+ * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
+ * chunk_t.
+ */
+#define ZAP_LEAF_CHUNK(l, bs, idx) \
+ ((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx]
+#define ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry)
+
+
+/*
+ * Decompression Entry - lzjb
+ */
+#ifndef NBBY
+#define NBBY 8
+#endif
+
+
+
+typedef int zfs_decomp_func_t(void *s_start, void *d_start,
+ uint32_t s_len, uint32_t d_len);
+typedef struct decomp_entry {
+ char *name;
+ zfs_decomp_func_t *decomp_func;
+} decomp_entry_t;
+
+typedef struct dnode_end {
+ dnode_phys_t dn;
+ zfs_endian_t endian;
+} dnode_end_t;
+
+struct zfs_data {
+ /* cache for a file block of the currently zfs_open()-ed file */
+ char *file_buf;
+ uint64_t file_start;
+ uint64_t file_end;
+
+ /* XXX: ashift is per vdev, not per pool. We currently only ever touch
+ * a single vdev, but when/if raid-z or stripes are supported, this
+ * may need revision.
+ */
+ uint64_t vdev_ashift;
+ uint64_t label_txg;
+ uint64_t pool_guid;
+
+ /* cache for a dnode block */
+ dnode_phys_t *dnode_buf;
+ dnode_phys_t *dnode_mdn;
+ uint64_t dnode_start;
+ uint64_t dnode_end;
+ zfs_endian_t dnode_endian;
+
+ uberblock_t current_uberblock;
+
+ dnode_end_t mos;
+ dnode_end_t mdn;
+ dnode_end_t dnode;
+
+ uint64_t vdev_phys_sector;
+
+ int (*userhook)(const char *, const struct zfs_dirhook_info *);
+ struct zfs_dirhook_info *dirinfo;
+
+};
+
+
+
+
+static int
+zlib_decompress(void *s, void *d,
+ uint32_t slen, uint32_t dlen)
+{
+ if (zlib_decompress(s, d, slen, dlen) < 0)
+ return ZFS_ERR_BAD_FS;
+ return ZFS_ERR_NONE;
+}
+
+static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = {
+ {"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */
+ {"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */
+ {"off", NULL}, /* ZIO_COMPRESS_OFF */
+ {"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */
+ {"empty", NULL}, /* ZIO_COMPRESS_EMPTY */
+ {"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */
+ {"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */
+ {"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */
+ {"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */
+ {"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */
+ {"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */
+ {"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */
+ {"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */
+ {"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */
+};
+
+
+
+static int zio_read_data(blkptr_t *bp, zfs_endian_t endian,
+ void *buf, struct zfs_data *data);
+
+static int
+zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
+ size_t *size, struct zfs_data *data);
+
+/*
+ * Our own version of log2(). Same thing as highbit()-1.
+ */
+static int
+zfs_log2(uint64_t num)
+{
+ int i = 0;
+
+ while (num > 1) {
+ i++;
+ num = num >> 1;
+ }
+
+ return i;
+}
+
+
+/* Checksum Functions */
+static void
+zio_checksum_off(const void *buf __attribute__ ((unused)),
+ uint64_t size __attribute__ ((unused)),
+ zfs_endian_t endian __attribute__ ((unused)),
+ zio_cksum_t *zcp)
+{
+ ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
+}
+
+/* Checksum Table and Values */
+static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
+ {NULL, 0, 0, "inherit"},
+ {NULL, 0, 0, "on"},
+ {zio_checksum_off, 0, 0, "off"},
+ {zio_checksum_SHA256, 1, 1, "label"},
+ {zio_checksum_SHA256, 1, 1, "gang_header"},
+ {NULL, 0, 0, "zilog"},
+ {fletcher_2_endian, 0, 0, "fletcher2"},
+ {fletcher_4_endian, 1, 0, "fletcher4"},
+ {zio_checksum_SHA256, 1, 0, "SHA256"},
+ {NULL, 0, 0, "zilog2"},
+};
+
+/*
+ * zio_checksum_verify: Provides support for checksum verification.
+ *
+ * Fletcher2, Fletcher4, and SHA256 are supported.
+ *
+ */
+static int
+zio_checksum_verify(zio_cksum_t zc, uint32_t checksum,
+ zfs_endian_t endian, char *buf, int size)
+{
+ zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1;
+ zio_checksum_info_t *ci = &zio_checksum_table[checksum];
+ zio_cksum_t actual_cksum, expected_cksum;
+
+ if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) {
+ printf("zfs unknown checksum function %d\n", checksum);
+ return ZFS_ERR_NOT_IMPLEMENTED_YET;
+ }
+
+ if (ci->ci_eck) {
+ expected_cksum = zec->zec_cksum;
+ zec->zec_cksum = zc;
+ ci->ci_func(buf, size, endian, &actual_cksum);
+ zec->zec_cksum = expected_cksum;
+ zc = expected_cksum;
+ } else {
+ ci->ci_func(buf, size, endian, &actual_cksum);
+ }
+
+ if ((actual_cksum.zc_word[0] != zc.zc_word[0])
+ || (actual_cksum.zc_word[1] != zc.zc_word[1])
+ || (actual_cksum.zc_word[2] != zc.zc_word[2])
+ || (actual_cksum.zc_word[3] != zc.zc_word[3])) {
+ return ZFS_ERR_BAD_FS;
+ }
+
+ return ZFS_ERR_NONE;
+}
+
+/*
+ * vdev_uberblock_compare takes two uberblock structures and returns an integer
+ * indicating the more recent of the two.
+ * Return Value = 1 if ub2 is more recent
+ * Return Value = -1 if ub1 is more recent
+ * The most recent uberblock is determined using its transaction number and
+ * timestamp. The uberblock with the highest transaction number is
+ * considered "newer". If the transaction numbers of the two blocks match, the
+ * timestamps are compared to determine the "newer" of the two.
+ */
+static int
+vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
+{
+ zfs_endian_t ub1_endian, ub2_endian;
+ if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
+ ub1_endian = LITTLE_ENDIAN;
+ else
+ ub1_endian = BIG_ENDIAN;
+ if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
+ ub2_endian = LITTLE_ENDIAN;
+ else
+ ub2_endian = BIG_ENDIAN;
+
+ if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
+ < zfs_to_cpu64(ub2->ub_txg, ub2_endian))
+ return -1;
+ if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
+ > zfs_to_cpu64(ub2->ub_txg, ub2_endian))
+ return 1;
+
+ if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
+ < zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
+ return -1;
+ if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
+ > zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
+ return 1;
+
+ return 0;
+}
+
+/*
+ * Three pieces of information are needed to verify an uberblock: the magic
+ * number, the version number, and the checksum.
+ *
+ * Currently Implemented: version number, magic number, label txg
+ * Need to Implement: checksum
+ *
+ */
+static int
+uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data)
+{
+ int err;
+ zfs_endian_t endian = UNKNOWN_ENDIAN;
+ zio_cksum_t zc;
+
+ if (uber->ub_txg < data->label_txg) {
+ debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n",
+ uber->ub_txg, data->label_txg);
+ return ZFS_ERR_BAD_FS;
+ }
+
+ if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
+ && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0
+ && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION)
+ endian = LITTLE_ENDIAN;
+
+ if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC
+ && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0
+ && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION)
+ endian = BIG_ENDIAN;
+
+ if (endian == UNKNOWN_ENDIAN) {
+ printf("invalid uberblock magic\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ memset(&zc, 0, sizeof(zc));
+ zc.zc_word[0] = cpu_to_zfs64(offset, endian);
+ err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian,
+ (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift));
+
+ if (!err) {
+ /* Check that the data pointed by the rootbp is usable. */
+ void *osp = NULL;
+ size_t ospsize;
+ err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data);
+ free(osp);
+
+ if (!err && ospsize < OBJSET_PHYS_SIZE_V14) {
+ printf("uberblock rootbp points to invalid data\n");
+ return ZFS_ERR_BAD_FS;
+ }
+ }
+
+ return err;
+}
+
+/*
+ * Find the best uberblock.
+ * Return:
+ * Success - Pointer to the best uberblock.
+ * Failure - NULL
+ */
+static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data)
+{
+ const uint64_t sector = data->vdev_phys_sector;
+ uberblock_t *ubbest = NULL;
+ uberblock_t *ubnext;
+ unsigned int i, offset, pickedub = 0;
+ int err = ZFS_ERR_NONE;
+
+ const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift);
+ const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift);
+
+ for (i = 0; i < UBCOUNT; i++) {
+ ubnext = (uberblock_t *) (i * UBBYTES + ub_array);
+ offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES);
+
+ err = uberblock_verify(ubnext, offset, data);
+ if (err)
+ continue;
+
+ if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) {
+ ubbest = ubnext;
+ pickedub = i;
+ }
+ }
+
+ if (ubbest)
+ debug("zfs Found best uberblock at idx %d, txg %llu\n",
+ pickedub, (unsigned long long) ubbest->ub_txg);
+
+ return ubbest;
+}
+
+static inline size_t
+get_psize(blkptr_t *bp, zfs_endian_t endian)
+{
+ return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1)
+ << SPA_MINBLOCKSHIFT;
+}
+
+static uint64_t
+dva_get_offset(dva_t *dva, zfs_endian_t endian)
+{
+ return zfs_to_cpu64((dva)->dva_word[1],
+ endian) << SPA_MINBLOCKSHIFT;
+}
+
+/*
+ * Read a block of data based on the gang block address dva,
+ * and put its data in buf.
+ *
+ */
+static int
+zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf,
+ struct zfs_data *data)
+{
+ zio_gbh_phys_t *zio_gb;
+ uint64_t offset, sector;
+ unsigned i;
+ int err;
+ zio_cksum_t zc;
+
+ memset(&zc, 0, sizeof(zc));
+
+ zio_gb = malloc(SPA_GANGBLOCKSIZE);
+ if (!zio_gb)
+ return ZFS_ERR_OUT_OF_MEMORY;
+
+ offset = dva_get_offset(dva, endian);
+ sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
+
+ /* read in the gang block header */
+ err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb);
+
+ if (err) {
+ free(zio_gb);
+ return err;
+ }
+
+ /* XXX */
+ /* self checksuming the gang block header */
+ ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva),
+ dva_get_offset(dva, endian), bp->blk_birth, 0);
+ err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian,
+ (char *) zio_gb, SPA_GANGBLOCKSIZE);
+ if (err) {
+ free(zio_gb);
+ return err;
+ }
+
+ endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
+
+ for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
+ if (zio_gb->zg_blkptr[i].blk_birth == 0)
+ continue;
+
+ err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data);
+ if (err) {
+ free(zio_gb);
+ return err;
+ }
+ buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian);
+ }
+ free(zio_gb);
+ return ZFS_ERR_NONE;
+}
+
+/*
+ * Read in a block of raw data to buf.
+ */
+static int
+zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf,
+ struct zfs_data *data)
+{
+ int i, psize;
+ int err = ZFS_ERR_NONE;
+
+ psize = get_psize(bp, endian);
+
+ /* pick a good dva from the block pointer */
+ for (i = 0; i < SPA_DVAS_PER_BP; i++) {
+ uint64_t offset, sector;
+
+ if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0)
+ continue;
+
+ if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) {
+ err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data);
+ } else {
+ /* read in a data block */
+ offset = dva_get_offset(&bp->blk_dva[i], endian);
+ sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
+
+ err = zfs_devread(sector, 0, psize, buf);
+ }
+
+ if (!err) {
+ /*Check the underlying checksum before we rule this DVA as "good"*/
+ uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff;
+
+ err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize);
+ if (!err)
+ return ZFS_ERR_NONE;
+ }
+
+ /* If read failed or checksum bad, reset the error. Hopefully we've got some more DVA's to try.*/
+ }
+
+ if (!err) {
+ printf("couldn't find a valid DVA\n");
+ err = ZFS_ERR_BAD_FS;
+ }
+
+ return err;
+}
+
+/*
+ * Read in a block of data, verify its checksum, decompress if needed,
+ * and put the uncompressed data in buf.
+ */
+static int
+zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
+ size_t *size, struct zfs_data *data)
+{
+ size_t lsize, psize;
+ unsigned int comp;
+ char *compbuf = NULL;
+ int err;
+
+ *buf = NULL;
+
+ comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff;
+ lsize = (BP_IS_HOLE(bp) ? 0 :
+ (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1)
+ << SPA_MINBLOCKSHIFT));
+ psize = get_psize(bp, endian);
+
+ if (size)
+ *size = lsize;
+
+ if (comp >= ZIO_COMPRESS_FUNCTIONS) {
+ printf("compression algorithm %u not supported\n", (unsigned int) comp);
+ return ZFS_ERR_NOT_IMPLEMENTED_YET;
+ }
+
+ if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) {
+ printf("compression algorithm %s not supported\n", decomp_table[comp].name);
+ return ZFS_ERR_NOT_IMPLEMENTED_YET;
+ }
+
+ if (comp != ZIO_COMPRESS_OFF) {
+ compbuf = malloc(psize);
+ if (!compbuf)
+ return ZFS_ERR_OUT_OF_MEMORY;
+ } else {
+ compbuf = *buf = malloc(lsize);
+ }
+
+ err = zio_read_data(bp, endian, compbuf, data);
+ if (err) {
+ free(compbuf);
+ *buf = NULL;
+ return err;
+ }
+
+ if (comp != ZIO_COMPRESS_OFF) {
+ *buf = malloc(lsize);
+ if (!*buf) {
+ free(compbuf);
+ return ZFS_ERR_OUT_OF_MEMORY;
+ }
+
+ err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize);
+ free(compbuf);
+ if (err) {
+ free(*buf);
+ *buf = NULL;
+ return err;
+ }
+ }
+
+ return ZFS_ERR_NONE;
+}
+
+/*
+ * Get the block from a block id.
+ * push the block onto the stack.
+ *
+ */
+static int
+dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf,
+ zfs_endian_t *endian_out, struct zfs_data *data)
+{
+ int idx, level;
+ blkptr_t *bp_array = dn->dn.dn_blkptr;
+ int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT;
+ blkptr_t *bp;
+ void *tmpbuf = 0;
+ zfs_endian_t endian;
+ int err = ZFS_ERR_NONE;
+
+ bp = malloc(sizeof(blkptr_t));
+ if (!bp)
+ return ZFS_ERR_OUT_OF_MEMORY;
+
+ endian = dn->endian;
+ for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) {
+ idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1);
+ *bp = bp_array[idx];
+ if (bp_array != dn->dn.dn_blkptr) {
+ free(bp_array);
+ bp_array = 0;
+ }
+
+ if (BP_IS_HOLE(bp)) {
+ size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec,
+ dn->endian)
+ << SPA_MINBLOCKSHIFT;
+ *buf = malloc(size);
+ if (*buf) {
+ err = ZFS_ERR_OUT_OF_MEMORY;
+ break;
+ }
+ memset(*buf, 0, size);
+ endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
+ break;
+ }
+ if (level == 0) {
+ err = zio_read(bp, endian, buf, 0, data);
+ endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
+ break;
+ }
+ err = zio_read(bp, endian, &tmpbuf, 0, data);
+ endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
+ if (err)
+ break;
+ bp_array = tmpbuf;
+ }
+ if (bp_array != dn->dn.dn_blkptr)
+ free(bp_array);
+ if (endian_out)
+ *endian_out = endian;
+
+ free(bp);
+ return err;
+}
+
+/*
+ * mzap_lookup: Looks up property described by "name" and returns the value
+ * in "value".
+ */
+static int
+mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian,
+ int objsize, char *name, uint64_t * value)
+{
+ int i, chunks;
+ mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
+
+ chunks = objsize / MZAP_ENT_LEN - 1;
+ for (i = 0; i < chunks; i++) {
+ if (strcmp(mzap_ent[i].mze_name, name) == 0) {
+ *value = zfs_to_cpu64(mzap_ent[i].mze_value, endian);
+ return ZFS_ERR_NONE;
+ }
+ }
+
+ printf("couldn't find '%s'\n", name);
+ return ZFS_ERR_FILE_NOT_FOUND;
+}
+
+static int
+mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize,
+ int (*hook)(const char *name,
+ uint64_t val,
+ struct zfs_data *data),
+ struct zfs_data *data)
+{
+ int i, chunks;
+ mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
+
+ chunks = objsize / MZAP_ENT_LEN - 1;
+ for (i = 0; i < chunks; i++) {
+ if (hook(mzap_ent[i].mze_name,
+ zfs_to_cpu64(mzap_ent[i].mze_value, endian),
+ data))
+ return 1;
+ }
+
+ return 0;
+}
+
+static uint64_t
+zap_hash(uint64_t salt, const char *name)
+{
+ static uint64_t table[256];
+ const uint8_t *cp;
+ uint8_t c;
+ uint64_t crc = salt;
+
+ if (table[128] == 0) {
+ uint64_t *ct;
+ int i, j;
+ for (i = 0; i < 256; i++) {
+ for (ct = table + i, *ct = i, j = 8; j > 0; j--)
+ *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
+ }
+ }
+
+ for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++)
+ crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
+
+ /*
+ * Only use 28 bits, since we need 4 bits in the cookie for the
+ * collision differentiator. We MUST use the high bits, since
+ * those are the onces that we first pay attention to when
+ * chosing the bucket.
+ */
+ crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
+
+ return crc;
+}
+
+/*
+ * Only to be used on 8-bit arrays.
+ * array_len is actual len in bytes (not encoded le_value_length).
+ * buf is null-terminated.
+ */
+/* XXX */
+static int
+zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian,
+ int blksft, int chunk, int array_len, const char *buf)
+{
+ int bseen = 0;
+
+ while (bseen < array_len) {
+ struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
+ int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
+
+ if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
+ return 0;
+
+ if (memcmp(la->la_array, buf + bseen, toread) != 0)
+ break;
+ chunk = zfs_to_cpu16(la->la_next, endian);
+ bseen += toread;
+ }
+ return (bseen == array_len);
+}
+
+/* XXX */
+static int
+zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft,
+ int chunk, int array_len, char *buf)
+{
+ int bseen = 0;
+
+ while (bseen < array_len) {
+ struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
+ int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
+
+ if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
+ /* Don't use errno because this error is to be ignored. */
+ return ZFS_ERR_BAD_FS;
+
+ memcpy(buf + bseen, la->la_array, toread);
+ chunk = zfs_to_cpu16(la->la_next, endian);
+ bseen += toread;
+ }
+ return ZFS_ERR_NONE;
+}
+
+
+/*
+ * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
+ * value for the property "name".
+ *
+ */
+/* XXX */
+static int
+zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian,
+ int blksft, uint64_t h,
+ const char *name, uint64_t *value)
+{
+ uint16_t chunk;
+ struct zap_leaf_entry *le;
+
+ /* Verify if this is a valid leaf block */
+ if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
+ printf("invalid leaf type\n");
+ return ZFS_ERR_BAD_FS;
+ }
+ if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
+ printf("invalid leaf magic\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian);
+ chunk != CHAIN_END; chunk = le->le_next) {
+
+ if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) {
+ printf("invalid chunk number\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ le = ZAP_LEAF_ENTRY(l, blksft, chunk);
+
+ /* Verify the chunk entry */
+ if (le->le_type != ZAP_CHUNK_ENTRY) {
+ printf("invalid chunk entry\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ if (zfs_to_cpu64(le->le_hash, endian) != h)
+ continue;
+
+ if (zap_leaf_array_equal(l, endian, blksft,
+ zfs_to_cpu16(le->le_name_chunk, endian),
+ zfs_to_cpu16(le->le_name_length, endian),
+ name)) {
+ struct zap_leaf_array *la;
+
+ if (le->le_int_size != 8 || le->le_value_length != 1) {
+ printf("invalid leaf chunk entry\n");
+ return ZFS_ERR_BAD_FS;
+ }
+ /* get the uint64_t property value */
+ la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
+
+ *value = be64_to_cpu(la->la_array64);
+
+ return ZFS_ERR_NONE;
+ }
+ }
+
+ printf("couldn't find '%s'\n", name);
+ return ZFS_ERR_FILE_NOT_FOUND;
+}
+
+
+/* Verify if this is a fat zap header block */
+static int
+zap_verify(zap_phys_t *zap)
+{
+ if (zap->zap_magic != (uint64_t) ZAP_MAGIC) {
+ printf("bad ZAP magic\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ if (zap->zap_flags != 0) {
+ printf("bad ZAP flags\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ if (zap->zap_salt == 0) {
+ printf("bad ZAP salt\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ return ZFS_ERR_NONE;
+}
+
+/*
+ * Fat ZAP lookup
+ *
+ */
+/* XXX */
+static int
+fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap,
+ char *name, uint64_t *value, struct zfs_data *data)
+{
+ void *l;
+ uint64_t hash, idx, blkid;
+ int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
+ zap_dnode->endian) << DNODE_SHIFT);
+ int err;
+ zfs_endian_t leafendian;
+
+ err = zap_verify(zap);
+ if (err)
+ return err;
+
+ hash = zap_hash(zap->zap_salt, name);
+
+ /* get block id from index */
+ if (zap->zap_ptrtbl.zt_numblks != 0) {
+ printf("external pointer tables not supported\n");
+ return ZFS_ERR_NOT_IMPLEMENTED_YET;
+ }
+ idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
+ blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
+
+ /* Get the leaf block */
+ if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
+ printf("ZAP leaf is too small\n");
+ return ZFS_ERR_BAD_FS;
+ }
+ err = dmu_read(zap_dnode, blkid, &l, &leafendian, data);
+ if (err)
+ return err;
+
+ err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value);
+ free(l);
+ return err;
+}
+
+/* XXX */
+static int
+fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap,
+ int (*hook)(const char *name,
+ uint64_t val,
+ struct zfs_data *data),
+ struct zfs_data *data)
+{
+ zap_leaf_phys_t *l;
+ void *l_in;
+ uint64_t idx, blkid;
+ uint16_t chunk;
+ int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
+ zap_dnode->endian) << DNODE_SHIFT);
+ int err;
+ zfs_endian_t endian;
+
+ if (zap_verify(zap))
+ return 0;
+
+ /* get block id from index */
+ if (zap->zap_ptrtbl.zt_numblks != 0) {
+ printf("external pointer tables not supported\n");
+ return 0;
+ }
+ /* Get the leaf block */
+ if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
+ printf("ZAP leaf is too small\n");
+ return 0;
+ }
+ for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) {
+ blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
+
+ err = dmu_read(zap_dnode, blkid, &l_in, &endian, data);
+ l = l_in;
+ if (err)
+ continue;
+
+ /* Verify if this is a valid leaf block */
+ if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
+ free(l);
+ continue;
+ }
+ if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
+ free(l);
+ continue;
+ }
+
+ for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) {
+ char *buf;
+ struct zap_leaf_array *la;
+ struct zap_leaf_entry *le;
+ uint64_t val;
+ le = ZAP_LEAF_ENTRY(l, blksft, chunk);
+
+ /* Verify the chunk entry */
+ if (le->le_type != ZAP_CHUNK_ENTRY)
+ continue;
+
+ buf = malloc(zfs_to_cpu16(le->le_name_length, endian)
+ + 1);
+ if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk,
+ le->le_name_length, buf)) {
+ free(buf);
+ continue;
+ }
+ buf[le->le_name_length] = 0;
+
+ if (le->le_int_size != 8
+ || zfs_to_cpu16(le->le_value_length, endian) != 1)
+ continue;
+
+ /* get the uint64_t property value */
+ la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
+ val = be64_to_cpu(la->la_array64);
+ if (hook(buf, val, data))
+ return 1;
+ free(buf);
+ }
+ }
+ return 0;
+}
+
+
+/*
+ * Read in the data of a zap object and find the value for a matching
+ * property name.
+ *
+ */
+static int
+zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val,
+ struct zfs_data *data)
+{
+ uint64_t block_type;
+ int size;
+ void *zapbuf;
+ int err;
+ zfs_endian_t endian;
+
+ /* Read in the first block of the zap object data. */
+ size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
+ zap_dnode->endian) << SPA_MINBLOCKSHIFT;
+ err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
+ if (err)
+ return err;
+ block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
+
+ if (block_type == ZBT_MICRO) {
+ err = (mzap_lookup(zapbuf, endian, size, name, val));
+ free(zapbuf);
+ return err;
+ } else if (block_type == ZBT_HEADER) {
+ /* this is a fat zap */
+ err = (fzap_lookup(zap_dnode, zapbuf, name, val, data));
+ free(zapbuf);
+ return err;
+ }
+
+ printf("unknown ZAP type\n");
+ return ZFS_ERR_BAD_FS;
+}
+
+static int
+zap_iterate(dnode_end_t *zap_dnode,
+ int (*hook)(const char *name, uint64_t val,
+ struct zfs_data *data),
+ struct zfs_data *data)
+{
+ uint64_t block_type;
+ int size;
+ void *zapbuf;
+ int err;
+ int ret;
+ zfs_endian_t endian;
+
+ /* Read in the first block of the zap object data. */
+ size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT;
+ err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
+ if (err)
+ return 0;
+ block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
+
+ if (block_type == ZBT_MICRO) {
+ ret = mzap_iterate(zapbuf, endian, size, hook, data);
+ free(zapbuf);
+ return ret;
+ } else if (block_type == ZBT_HEADER) {
+ /* this is a fat zap */
+ ret = fzap_iterate(zap_dnode, zapbuf, hook, data);
+ free(zapbuf);
+ return ret;
+ }
+ printf("unknown ZAP type\n");
+ return 0;
+}
+
+
+/*
+ * Get the dnode of an object number from the metadnode of an object set.
+ *
+ * Input
+ * mdn - metadnode to get the object dnode
+ * objnum - object number for the object dnode
+ * buf - data buffer that holds the returning dnode
+ */
+static int
+dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type,
+ dnode_end_t *buf, struct zfs_data *data)
+{
+ uint64_t blkid, blksz; /* the block id this object dnode is in */
+ int epbs; /* shift of number of dnodes in a block */
+ int idx; /* index within a block */
+ void *dnbuf;
+ int err;
+ zfs_endian_t endian;
+
+ blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec,
+ mdn->endian) << SPA_MINBLOCKSHIFT;
+
+ epbs = zfs_log2(blksz) - DNODE_SHIFT;
+ blkid = objnum >> epbs;
+ idx = objnum & ((1 << epbs) - 1);
+
+ if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn,
+ sizeof(*mdn)) == 0
+ && objnum >= data->dnode_start && objnum < data->dnode_end) {
+ memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE);
+ buf->endian = data->dnode_endian;
+ if (type && buf->dn.dn_type != type) {
+ printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type);
+ return ZFS_ERR_BAD_FS;
+ }
+ return ZFS_ERR_NONE;
+ }
+
+ err = dmu_read(mdn, blkid, &dnbuf, &endian, data);
+ if (err)
+ return err;
+
+ free(data->dnode_buf);
+ free(data->dnode_mdn);
+ data->dnode_mdn = malloc(sizeof(*mdn));
+ if (!data->dnode_mdn) {
+ data->dnode_buf = 0;
+ } else {
+ memcpy(data->dnode_mdn, mdn, sizeof(*mdn));
+ data->dnode_buf = dnbuf;
+ data->dnode_start = blkid << epbs;
+ data->dnode_end = (blkid + 1) << epbs;
+ data->dnode_endian = endian;
+ }
+
+ memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE);
+ buf->endian = endian;
+ if (type && buf->dn.dn_type != type) {
+ printf("incorrect dnode type\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ return ZFS_ERR_NONE;
+}
+
+/*
+ * Get the file dnode for a given file name where mdn is the meta dnode
+ * for this ZFS object set. When found, place the file dnode in dn.
+ * The 'path' argument will be mangled.
+ *
+ */
+static int
+dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn,
+ struct zfs_data *data)
+{
+ uint64_t objnum, version;
+ char *cname, ch;
+ int err = ZFS_ERR_NONE;
+ char *path, *path_buf;
+ struct dnode_chain {
+ struct dnode_chain *next;
+ dnode_end_t dn;
+ };
+ struct dnode_chain *dnode_path = 0, *dn_new, *root;
+
+ dn_new = malloc(sizeof(*dn_new));
+ if (!dn_new)
+ return ZFS_ERR_OUT_OF_MEMORY;
+ dn_new->next = 0;
+ dnode_path = root = dn_new;
+
+ err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
+ &(dnode_path->dn), data);
+ if (err) {
+ free(dn_new);
+ return err;
+ }
+
+ err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data);
+ if (err) {
+ free(dn_new);
+ return err;
+ }
+ if (version > ZPL_VERSION) {
+ free(dn_new);
+ printf("too new ZPL version\n");
+ return ZFS_ERR_NOT_IMPLEMENTED_YET;
+ }
+
+ err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data);
+ if (err) {
+ free(dn_new);
+ return err;
+ }
+
+ err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
+ if (err) {
+ free(dn_new);
+ return err;
+ }
+
+ path = path_buf = strdup(path_in);
+ if (!path_buf) {
+ free(dn_new);
+ return ZFS_ERR_OUT_OF_MEMORY;
+ }
+
+ while (1) {
+ /* skip leading slashes */
+ while (*path == '/')
+ path++;
+ if (!*path)
+ break;
+ /* get the next component name */
+ cname = path;
+ while (*path && *path != '/')
+ path++;
+ /* Skip dot. */
+ if (cname + 1 == path && cname[0] == '.')
+ continue;
+ /* Handle double dot. */
+ if (cname + 2 == path && cname[0] == '.' && cname[1] == '.') {
+ if (dn_new->next) {
+ dn_new = dnode_path;
+ dnode_path = dn_new->next;
+ free(dn_new);
+ } else {
+ printf("can't resolve ..\n");
+ err = ZFS_ERR_FILE_NOT_FOUND;
+ break;
+ }
+ continue;
+ }
+
+ ch = *path;
+ *path = 0; /* ensure null termination */
+
+ if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
+ free(path_buf);
+ printf("not a directory\n");
+ return ZFS_ERR_BAD_FILE_TYPE;
+ }
+ err = zap_lookup(&(dnode_path->dn), cname, &objnum, data);
+ if (err)
+ break;
+
+ dn_new = malloc(sizeof(*dn_new));
+ if (!dn_new) {
+ err = ZFS_ERR_OUT_OF_MEMORY;
+ break;
+ }
+ dn_new->next = dnode_path;
+ dnode_path = dn_new;
+
+ objnum = ZFS_DIRENT_OBJ(objnum);
+ err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
+ if (err)
+ break;
+
+ *path = ch;
+ }
+
+ if (!err)
+ memcpy(dn, &(dnode_path->dn), sizeof(*dn));
+
+ while (dnode_path) {
+ dn_new = dnode_path->next;
+ free(dnode_path);
+ dnode_path = dn_new;
+ }
+ free(path_buf);
+ return err;
+}
+
+
+/*
+ * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
+ * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
+ * of pool/rootfs.
+ *
+ * If no fsname and no obj are given, return the DSL_DIR metadnode.
+ * If fsname is given, return its metadnode and its matching object number.
+ * If only obj is given, return the metadnode for this object number.
+ *
+ */
+static int
+get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname,
+ dnode_end_t *mdn, struct zfs_data *data)
+{
+ uint64_t objnum;
+ int err;
+
+ err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
+ DMU_OT_OBJECT_DIRECTORY, mdn, data);
+ if (err)
+ return err;
+
+ err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data);
+ if (err)
+ return err;
+
+ err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
+ if (err)
+ return err;
+
+ while (*fsname) {
+ uint64_t childobj;
+ char *cname, ch;
+
+ while (*fsname == '/')
+ fsname++;
+
+ if (!*fsname || *fsname == '@')
+ break;
+
+ cname = fsname;
+ while (*fsname && !isspace(*fsname) && *fsname != '/')
+ fsname++;
+ ch = *fsname;
+ *fsname = 0;
+
+ childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian);
+ err = dnode_get(mosmdn, childobj,
+ DMU_OT_DSL_DIR_CHILD_MAP, mdn, data);
+ if (err)
+ return err;
+
+ err = zap_lookup(mdn, cname, &objnum, data);
+ if (err)
+ return err;
+
+ err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
+ if (err)
+ return err;
+
+ *fsname = ch;
+ }
+ return ZFS_ERR_NONE;
+}
+
+static int
+make_mdn(dnode_end_t *mdn, struct zfs_data *data)
+{
+ void *osp;
+ blkptr_t *bp;
+ size_t ospsize;
+ int err;
+
+ bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp);
+ err = zio_read(bp, mdn->endian, &osp, &ospsize, data);
+ if (err)
+ return err;
+ if (ospsize < OBJSET_PHYS_SIZE_V14) {
+ free(osp);
+ printf("too small osp\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1;
+ memmove((char *) &(mdn->dn),
+ (char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
+ free(osp);
+ return ZFS_ERR_NONE;
+}
+
+static int
+dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn,
+ uint64_t *mdnobj, dnode_end_t *dn, int *isfs,
+ struct zfs_data *data)
+{
+ char *fsname, *snapname;
+ const char *ptr_at, *filename;
+ uint64_t headobj;
+ int err;
+
+ ptr_at = strchr(fullpath, '@');
+ if (!ptr_at) {
+ *isfs = 1;
+ filename = 0;
+ snapname = 0;
+ fsname = strdup(fullpath);
+ } else {
+ const char *ptr_slash = strchr(ptr_at, '/');
+
+ *isfs = 0;
+ fsname = malloc(ptr_at - fullpath + 1);
+ if (!fsname)
+ return ZFS_ERR_OUT_OF_MEMORY;
+ memcpy(fsname, fullpath, ptr_at - fullpath);
+ fsname[ptr_at - fullpath] = 0;
+ if (ptr_at[1] && ptr_at[1] != '/') {
+ snapname = malloc(ptr_slash - ptr_at);
+ if (!snapname) {
+ free(fsname);
+ return ZFS_ERR_OUT_OF_MEMORY;
+ }
+ memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1);
+ snapname[ptr_slash - ptr_at - 1] = 0;
+ } else {
+ snapname = 0;
+ }
+ if (ptr_slash)
+ filename = ptr_slash;
+ else
+ filename = "/";
+ printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n",
+ fsname, snapname, filename);
+ }
+
+
+ err = get_filesystem_dnode(&(data->mos), fsname, dn, data);
+
+ if (err) {
+ free(fsname);
+ free(snapname);
+ return err;
+ }
+
+ headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian);
+
+ err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
+ if (err) {
+ free(fsname);
+ free(snapname);
+ return err;
+ }
+
+ if (snapname) {
+ uint64_t snapobj;
+
+ snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian);
+
+ err = dnode_get(&(data->mos), snapobj,
+ DMU_OT_DSL_DS_SNAP_MAP, mdn, data);
+ if (!err)
+ err = zap_lookup(mdn, snapname, &headobj, data);
+ if (!err)
+ err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
+ if (err) {
+ free(fsname);
+ free(snapname);
+ return err;
+ }
+ }
+
+ if (mdnobj)
+ *mdnobj = headobj;
+
+ make_mdn(mdn, data);
+
+ if (*isfs) {
+ free(fsname);
+ free(snapname);
+ return ZFS_ERR_NONE;
+ }
+ err = dnode_get_path(mdn, filename, dn, data);
+ free(fsname);
+ free(snapname);
+ return err;
+}
+
+/*
+ * For a given XDR packed nvlist, verify the first 4 bytes and move on.
+ *
+ * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
+ *
+ * encoding method/host endian (4 bytes)
+ * nvl_version (4 bytes)
+ * nvl_nvflag (4 bytes)
+ * encoded nvpairs:
+ * encoded size of the nvpair (4 bytes)
+ * decoded size of the nvpair (4 bytes)
+ * name string size (4 bytes)
+ * name string data (sizeof(NV_ALIGN4(string))
+ * data type (4 bytes)
+ * # of elements in the nvpair (4 bytes)
+ * data
+ * 2 zero's for the last nvpair
+ * (end of the entire list) (8 bytes)
+ *
+ */
+
+static int
+nvlist_find_value(char *nvlist, char *name, int valtype, char **val,
+ size_t *size_out, size_t *nelm_out)
+{
+ int name_len, type, encode_size;
+ char *nvpair, *nvp_name;
+
+ /* Verify if the 1st and 2nd byte in the nvlist are valid. */
+ /* NOTE: independently of what endianness header announces all
+ subsequent values are big-endian. */
+ if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN
+ && nvlist[1] != NV_BIG_ENDIAN)) {
+ printf("zfs incorrect nvlist header\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ /* skip the header, nvl_version, and nvl_nvflag */
+ nvlist = nvlist + 4 * 3;
+ /*
+ * Loop thru the nvpair list
+ * The XDR representation of an integer is in big-endian byte order.
+ */
+ while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) {
+ int nelm;
+
+ nvpair = nvlist + 4 * 2; /* skip the encode/decode size */
+
+ name_len = be32_to_cpu(*(uint32_t *) nvpair);
+ nvpair += 4;
+
+ nvp_name = nvpair;
+ nvpair = nvpair + ((name_len + 3) & ~3); /* align */
+
+ type = be32_to_cpu(*(uint32_t *) nvpair);
+ nvpair += 4;
+
+ nelm = be32_to_cpu(*(uint32_t *) nvpair);
+ if (nelm < 1) {
+ printf("empty nvpair\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ nvpair += 4;
+
+ if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) {
+ *val = nvpair;
+ *size_out = encode_size;
+ if (nelm_out)
+ *nelm_out = nelm;
+ return 1;
+ }
+
+ nvlist += encode_size; /* goto the next nvpair */
+ }
+ return 0;
+}
+
+int
+zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out)
+{
+ char *nvpair;
+ size_t size;
+ int found;
+
+ found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0);
+ if (!found)
+ return 0;
+ if (size < sizeof(uint64_t)) {
+ printf("invalid uint64\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ *out = be64_to_cpu(*(uint64_t *) nvpair);
+ return 1;
+}
+
+char *
+zfs_nvlist_lookup_string(char *nvlist, char *name)
+{
+ char *nvpair;
+ char *ret;
+ size_t slen;
+ size_t size;
+ int found;
+
+ found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0);
+ if (!found)
+ return 0;
+ if (size < 4) {
+ printf("invalid string\n");
+ return 0;
+ }
+ slen = be32_to_cpu(*(uint32_t *) nvpair);
+ if (slen > size - 4)
+ slen = size - 4;
+ ret = malloc(slen + 1);
+ if (!ret)
+ return 0;
+ memcpy(ret, nvpair + 4, slen);
+ ret[slen] = 0;
+ return ret;
+}
+
+char *
+zfs_nvlist_lookup_nvlist(char *nvlist, char *name)
+{
+ char *nvpair;
+ char *ret;
+ size_t size;
+ int found;
+
+ found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
+ &size, 0);
+ if (!found)
+ return 0;
+ ret = calloc(1, size + 3 * sizeof(uint32_t));
+ if (!ret)
+ return 0;
+ memcpy(ret, nvlist, sizeof(uint32_t));
+
+ memcpy(ret + sizeof(uint32_t), nvpair, size);
+ return ret;
+}
+
+int
+zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name)
+{
+ char *nvpair;
+ size_t nelm, size;
+ int found;
+
+ found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
+ &size, &nelm);
+ if (!found)
+ return -1;
+ return nelm;
+}
+
+char *
+zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name,
+ size_t index)
+{
+ char *nvpair, *nvpairptr;
+ int found;
+ char *ret;
+ size_t size;
+ unsigned i;
+ size_t nelm;
+
+ found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
+ &size, &nelm);
+ if (!found)
+ return 0;
+ if (index >= nelm) {
+ printf("trying to lookup past nvlist array\n");
+ return 0;
+ }
+
+ nvpairptr = nvpair;
+
+ for (i = 0; i < index; i++) {
+ uint32_t encode_size;
+
+ /* skip the header, nvl_version, and nvl_nvflag */
+ nvpairptr = nvpairptr + 4 * 2;
+
+ while (nvpairptr < nvpair + size
+ && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr)))
+ nvlist += encode_size; /* goto the next nvpair */
+
+ nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */
+ }
+
+ if (nvpairptr >= nvpair + size
+ || nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
+ >= nvpair + size) {
+ printf("incorrect nvlist array\n");
+ return 0;
+ }
+
+ ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
+ + 3 * sizeof(uint32_t));
+ if (!ret)
+ return 0;
+ memcpy(ret, nvlist, sizeof(uint32_t));
+
+ memcpy(ret + sizeof(uint32_t), nvpairptr, size);
+ return ret;
+}
+
+static int
+int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist)
+{
+ int err;
+
+ *nvlist = malloc(VDEV_PHYS_SIZE);
+ /* Read in the vdev name-value pair list (112K). */
+ err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist);
+ if (err) {
+ free(*nvlist);
+ *nvlist = 0;
+ return err;
+ }
+ return ZFS_ERR_NONE;
+}
+
+/*
+ * Check the disk label information and retrieve needed vdev name-value pairs.
+ *
+ */
+static int
+check_pool_label(struct zfs_data *data)
+{
+ uint64_t pool_state;
+ char *nvlist; /* for the pool */
+ char *vdevnvlist; /* for the vdev */
+ uint64_t diskguid;
+ uint64_t version;
+ int found;
+ int err;
+
+ err = int_zfs_fetch_nvlist(data, &nvlist);
+ if (err)
+ return err;
+
+ found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE,
+ &pool_state);
+ if (!found) {
+ free(nvlist);
+ printf("zfs pool state not found\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ if (pool_state == POOL_STATE_DESTROYED) {
+ free(nvlist);
+ printf("zpool is marked as destroyed\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ data->label_txg = 0;
+ found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG,
+ &data->label_txg);
+ if (!found) {
+ free(nvlist);
+ printf("zfs pool txg not found\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ /* not an active device */
+ if (data->label_txg == 0) {
+ free(nvlist);
+ printf("zpool is not active\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION,
+ &version);
+ if (!found) {
+ free(nvlist);
+ printf("zpool config version not found\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ if (version > SPA_VERSION) {
+ free(nvlist);
+ printf("SPA version too new %llu > %llu\n",
+ (unsigned long long) version,
+ (unsigned long long) SPA_VERSION);
+ return ZFS_ERR_NOT_IMPLEMENTED_YET;
+ }
+
+ vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE);
+ if (!vdevnvlist) {
+ free(nvlist);
+ printf("ZFS config vdev tree not found\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT,
+ &data->vdev_ashift);
+ free(vdevnvlist);
+ if (!found) {
+ free(nvlist);
+ printf("ZPOOL config ashift not found\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid);
+ if (!found) {
+ free(nvlist);
+ printf("ZPOOL config guid not found\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid);
+ if (!found) {
+ free(nvlist);
+ printf("ZPOOL config pool guid not found\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ free(nvlist);
+
+ printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n",
+ (unsigned long long) data->pool_guid,
+ (unsigned long long) data->pool_guid,
+ (unsigned long long) diskguid,
+ (unsigned long long) diskguid,
+ (unsigned long long) data->label_txg,
+ (unsigned long long) version,
+ (unsigned long long) data->vdev_ashift);
+
+ return ZFS_ERR_NONE;
+}
+
+/*
+ * vdev_label_start returns the physical disk offset (in bytes) of
+ * label "l".
+ */
+static uint64_t vdev_label_start(uint64_t psize, int l)
+{
+ return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ?
+ 0 : psize -
+ VDEV_LABELS * sizeof(vdev_label_t)));
+}
+
+void
+zfs_unmount(struct zfs_data *data)
+{
+ free(data->dnode_buf);
+ free(data->dnode_mdn);
+ free(data->file_buf);
+ free(data);
+}
+
+/*
+ * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
+ * to the memory address MOS.
+ *
+ */
+struct zfs_data *
+zfs_mount(device_t dev)
+{
+ struct zfs_data *data = 0;
+ int label = 0, bestlabel = -1;
+ char *ub_array;
+ uberblock_t *ubbest;
+ uberblock_t *ubcur = NULL;
+ void *osp = 0;
+ size_t ospsize;
+ int err;
+
+ data = malloc(sizeof(*data));
+ if (!data)
+ return 0;
+ memset(data, 0, sizeof(*data));
+
+ ub_array = malloc(VDEV_UBERBLOCK_RING);
+ if (!ub_array) {
+ zfs_unmount(data);
+ return 0;
+ }
+
+ ubbest = malloc(sizeof(*ubbest));
+ if (!ubbest) {
+ zfs_unmount(data);
+ return 0;
+ }
+ memset(ubbest, 0, sizeof(*ubbest));
+
+ /*
+ * some eltorito stacks don't give us a size and
+ * we end up setting the size to MAXUINT, further
+ * some of these devices stop working once a single
+ * read past the end has been issued. Checking
+ * for a maximum part_length and skipping the backup
+ * labels at the end of the slice/partition/device
+ * avoids breaking down on such devices.
+ */
+ const int vdevnum =
+ dev->part_length == 0 ?
+ VDEV_LABELS / 2 : VDEV_LABELS;
+
+ /* Size in bytes of the device (disk or partition) aligned to label size*/
+ uint64_t device_size =
+ dev->part_length << SECTOR_BITS;
+
+ const uint64_t alignedbytes =
+ P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t));
+
+ for (label = 0; label < vdevnum; label++) {
+ uint64_t labelstartbytes = vdev_label_start(alignedbytes, label);
+ uint64_t labelstart = labelstartbytes >> SECTOR_BITS;
+
+ debug("zfs reading label %d at sector %llu (byte %llu)\n",
+ label, (unsigned long long) labelstart,
+ (unsigned long long) labelstartbytes);
+
+ data->vdev_phys_sector = labelstart +
+ ((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS);
+
+ err = check_pool_label(data);
+ if (err) {
+ printf("zfs error checking label %d\n", label);
+ continue;
+ }
+
+ /* Read in the uberblock ring (128K). */
+ err = zfs_devread(data->vdev_phys_sector +
+ (VDEV_PHYS_SIZE >> SECTOR_BITS),
+ 0, VDEV_UBERBLOCK_RING, ub_array);
+ if (err) {
+ printf("zfs error reading uberblock ring for label %d\n", label);
+ continue;
+ }
+
+ ubcur = find_bestub(ub_array, data);
+ if (!ubcur) {
+ printf("zfs No good uberblocks found in label %d\n", label);
+ continue;
+ }
+
+ if (vdev_uberblock_compare(ubcur, ubbest) > 0) {
+ /* Looks like the block is good, so use it.*/
+ memcpy(ubbest, ubcur, sizeof(*ubbest));
+ bestlabel = label;
+ debug("zfs Current best uberblock found in label %d\n", label);
+ }
+ }
+ free(ub_array);
+
+ /* We zero'd the structure to begin with. If we never assigned to it,
+ magic will still be zero. */
+ if (!ubbest->ub_magic) {
+ printf("couldn't find a valid ZFS label\n");
+ zfs_unmount(data);
+ free(ubbest);
+ return 0;
+ }
+
+ debug("zfs ubbest %p in label %d\n", ubbest, bestlabel);
+
+ zfs_endian_t ub_endian =
+ zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
+ ? LITTLE_ENDIAN : BIG_ENDIAN;
+
+ debug("zfs endian set to %s\n", !ub_endian ? "big" : "little");
+
+ err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data);
+
+ if (err) {
+ printf("couldn't zio_read object directory\n");
+ zfs_unmount(data);
+ free(ubbest);
+ return 0;
+ }
+
+ if (ospsize < OBJSET_PHYS_SIZE_V14) {
+ printf("osp too small\n");
+ zfs_unmount(data);
+ free(osp);
+ free(ubbest);
+ return 0;
+ }
+
+ /* Got the MOS. Save it at the memory addr MOS. */
+ memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
+ data->mos.endian =
+ (zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1;
+ memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t));
+
+ free(osp);
+ free(ubbest);
+
+ return data;
+}
+
+int
+zfs_fetch_nvlist(device_t dev, char **nvlist)
+{
+ struct zfs_data *zfs;
+ int err;
+
+ zfs = zfs_mount(dev);
+ if (!zfs)
+ return ZFS_ERR_BAD_FS;
+ err = int_zfs_fetch_nvlist(zfs, nvlist);
+ zfs_unmount(zfs);
+ return err;
+}
+
+static int
+zfs_label(device_t device, char **label)
+{
+ char *nvlist;
+ int err;
+ struct zfs_data *data;
+
+ data = zfs_mount(device);
+ if (!data)
+ return ZFS_ERR_BAD_FS;
+
+ err = int_zfs_fetch_nvlist(data, &nvlist);
+ if (err) {
+ zfs_unmount(data);
+ return err;
+ }
+
+ *label = zfs_nvlist_lookup_string(nvlist, ZPOOL_CONFIG_POOL_NAME);
+ free(nvlist);
+ zfs_unmount(data);
+ return ZFS_ERR_NONE;
+}
+
+static int
+zfs_uuid(device_t device, char **uuid)
+{
+ struct zfs_data *data;
+
+ data = zfs_mount(device);
+ if (!data)
+ return ZFS_ERR_BAD_FS;
+
+ *uuid = malloc(17); /* %016llx + nil */
+ if (!*uuid)
+ return ZFS_ERR_OUT_OF_MEMORY;
+
+ /* *uuid = xasprintf ("%016llx", (long long unsigned) data->pool_guid);*/
+ snprintf(*uuid, 17, "%016llx", (long long unsigned) data->pool_guid);
+ zfs_unmount(data);
+
+ return ZFS_ERR_NONE;
+}
+
+/*
+ * zfs_open() locates a file in the rootpool by following the
+ * MOS and places the dnode of the file in the memory address DNODE.
+ */
+int
+zfs_open(struct zfs_file *file, const char *fsfilename)
+{
+ struct zfs_data *data;
+ int err;
+ int isfs;
+
+ data = zfs_mount(file->device);
+ if (!data)
+ return ZFS_ERR_BAD_FS;
+
+ err = dnode_get_fullpath(fsfilename, &(data->mdn), 0,
+ &(data->dnode), &isfs, data);
+ if (err) {
+ zfs_unmount(data);
+ return err;
+ }
+
+ if (isfs) {
+ zfs_unmount(data);
+ printf("Missing @ or / separator\n");
+ return ZFS_ERR_FILE_NOT_FOUND;
+ }
+
+ /* We found the dnode for this file. Verify if it is a plain file. */
+ if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) {
+ zfs_unmount(data);
+ printf("not a file\n");
+ return ZFS_ERR_BAD_FILE_TYPE;
+ }
+
+ /* get the file size and set the file position to 0 */
+
+ /*
+ * For DMU_OT_SA we will need to locate the SIZE attribute
+ * attribute, which could be either in the bonus buffer
+ * or the "spill" block.
+ */
+ if (data->dnode.dn.dn_bonustype == DMU_OT_SA) {
+ void *sahdrp;
+ int hdrsize;
+
+ if (data->dnode.dn.dn_bonuslen != 0) {
+ sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn);
+ } else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
+ blkptr_t *bp = &data->dnode.dn.dn_spill;
+
+ err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data);
+ if (err)
+ return err;
+ } else {
+ printf("filesystem is corrupt :(\n");
+ return ZFS_ERR_BAD_FS;
+ }
+
+ hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp));
+ file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET);
+ } else {
+ file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian);
+ }
+
+ file->data = data;
+ file->offset = 0;
+
+ return ZFS_ERR_NONE;
+}
+
+uint64_t
+zfs_read(zfs_file_t file, char *buf, uint64_t len)
+{
+ struct zfs_data *data = (struct zfs_data *) file->data;
+ int blksz, movesize;
+ uint64_t length;
+ int64_t red;
+ int err;
+
+ if (data->file_buf == NULL) {
+ data->file_buf = malloc(SPA_MAXBLOCKSIZE);
+ if (!data->file_buf)
+ return -1;
+ data->file_start = data->file_end = 0;
+ }
+
+ /*
+ * If offset is in memory, move it into the buffer provided and return.
+ */
+ if (file->offset >= data->file_start
+ && file->offset + len <= data->file_end) {
+ memmove(buf, data->file_buf + file->offset - data->file_start,
+ len);
+ return len;
+ }
+
+ blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec,
+ data->dnode.endian) << SPA_MINBLOCKSHIFT;
+
+ /*
+ * Entire Dnode is too big to fit into the space available. We
+ * will need to read it in chunks. This could be optimized to
+ * read in as large a chunk as there is space available, but for
+ * now, this only reads in one data block at a time.
+ */
+ length = len;
+ red = 0;
+ while (length) {
+ void *t;
+ /*
+ * Find requested blkid and the offset within that block.
+ */
+ uint64_t blkid = (file->offset + red) / blksz;
+ free(data->file_buf);
+ data->file_buf = 0;
+
+ err = dmu_read(&(data->dnode), blkid, &t,
+ 0, data);
+ data->file_buf = t;
+ if (err)
+ return -1;
+
+ data->file_start = blkid * blksz;
+ data->file_end = data->file_start + blksz;
+
+ movesize = MIN(length, data->file_end - (int) file->offset - red);
+
+ memmove(buf, data->file_buf + file->offset + red
+ - data->file_start, movesize);
+ buf += movesize;
+ length -= movesize;
+ red += movesize;
+ }
+
+ return len;
+}
+
+int
+zfs_close(zfs_file_t file)
+{
+ zfs_unmount((struct zfs_data *) file->data);
+ return ZFS_ERR_NONE;
+}
+
+int
+zfs_getmdnobj(device_t dev, const char *fsfilename,
+ uint64_t *mdnobj)
+{
+ struct zfs_data *data;
+ int err;
+ int isfs;
+
+ data = zfs_mount(dev);
+ if (!data)
+ return ZFS_ERR_BAD_FS;
+
+ err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj,
+ &(data->dnode), &isfs, data);
+ zfs_unmount(data);
+ return err;
+}
+
+static void
+fill_fs_info(struct zfs_dirhook_info *info,
+ dnode_end_t mdn, struct zfs_data *data)
+{
+ int err;
+ dnode_end_t dn;
+ uint64_t objnum;
+ uint64_t headobj;
+
+ memset(info, 0, sizeof(*info));
+
+ info->dir = 1;
+
+ if (mdn.dn.dn_type == DMU_OT_DSL_DIR) {
+ headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian);
+
+ err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data);
+ if (err) {
+ printf("zfs failed here 1\n");
+ return;
+ }
+ }
+ make_mdn(&mdn, data);
+ err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
+ &dn, data);
+ if (err) {
+ printf("zfs failed here 2\n");
+ return;
+ }
+
+ err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data);
+ if (err) {
+ printf("zfs failed here 3\n");
+ return;
+ }
+
+ err = dnode_get(&mdn, objnum, 0, &dn, data);
+ if (err) {
+ printf("zfs failed here 4\n");
+ return;
+ }
+
+ info->mtimeset = 1;
+ info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
+
+ return;
+}
+
+static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data)
+{
+ struct zfs_dirhook_info info;
+ dnode_end_t dn;
+
+ memset(&info, 0, sizeof(info));
+
+ dnode_get(&(data->mdn), val, 0, &dn, data);
+ info.mtimeset = 1;
+ info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
+ info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS);
+ debug("zfs type=%d, name=%s\n",
+ (int)dn.dn.dn_type, (char *)name);
+ if (!data->userhook)
+ return 0;
+ return data->userhook(name, &info);
+}
+
+static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data)
+{
+ struct zfs_dirhook_info info;
+ dnode_end_t mdn;
+ int err;
+ err = dnode_get(&(data->mos), val, 0, &mdn, data);
+ if (err)
+ return 0;
+ if (mdn.dn.dn_type != DMU_OT_DSL_DIR)
+ return 0;
+
+ fill_fs_info(&info, mdn, data);
+
+ if (!data->userhook)
+ return 0;
+ return data->userhook(name, &info);
+}
+
+static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data)
+{
+ struct zfs_dirhook_info info;
+ char *name2;
+ int ret = 0;
+ dnode_end_t mdn;
+ int err;
+
+ err = dnode_get(&(data->mos), val, 0, &mdn, data);
+ if (err)
+ return 0;
+
+ if (mdn.dn.dn_type != DMU_OT_DSL_DATASET)
+ return 0;
+
+ fill_fs_info(&info, mdn, data);
+
+ name2 = malloc(strlen(name) + 2);
+ name2[0] = '@';
+ memcpy(name2 + 1, name, strlen(name) + 1);
+ if (data->userhook)
+ ret = data->userhook(name2, &info);
+ free(name2);
+ return ret;
+}
+
+int
+zfs_ls(device_t device, const char *path,
+ int (*hook)(const char *, const struct zfs_dirhook_info *))
+{
+ struct zfs_data *data;
+ int err;
+ int isfs;
+#if 0
+ char *label = NULL;
+
+ zfs_label(device, &label);
+ if (label)
+ printf("ZPOOL label '%s'\n",
+ label);
+#endif
+
+ data = zfs_mount(device);
+ if (!data)
+ return ZFS_ERR_BAD_FS;
+
+ data->userhook = hook;
+
+ err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data);
+ if (err) {
+ zfs_unmount(data);
+ return err;
+ }
+ if (isfs) {
+ uint64_t childobj, headobj;
+ uint64_t snapobj;
+ dnode_end_t dn;
+ struct zfs_dirhook_info info;
+
+ fill_fs_info(&info, data->dnode, data);
+ hook("@", &info);
+
+ childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian);
+ headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian);
+ err = dnode_get(&(data->mos), childobj,
+ DMU_OT_DSL_DIR_CHILD_MAP, &dn, data);
+ if (err) {
+ zfs_unmount(data);
+ return err;
+ }
+
+
+ zap_iterate(&dn, iterate_zap_fs, data);
+
+ err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data);
+ if (err) {
+ zfs_unmount(data);
+ return err;
+ }
+
+ snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian);
+
+ err = dnode_get(&(data->mos), snapobj,
+ DMU_OT_DSL_DS_SNAP_MAP, &dn, data);
+ if (err) {
+ zfs_unmount(data);
+ return err;
+ }
+
+ zap_iterate(&dn, iterate_zap_snap, data);
+ } else {
+ if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
+ zfs_unmount(data);
+ printf("not a directory\n");
+ return ZFS_ERR_BAD_FILE_TYPE;
+ }
+ zap_iterate(&(data->dnode), iterate_zap, data);
+ }
+ zfs_unmount(data);
+ return ZFS_ERR_NONE;
+}