diff options
author | Jorgen Lundman <lundman@lundman.net> | 2012-07-19 20:48:25 +0000 |
---|---|---|
committer | Wolfgang Denk <wd@denx.de> | 2012-08-09 23:42:20 +0200 |
commit | 4d3c95f5ea7c737a21cd6b9c59435ee693b3f127 (patch) | |
tree | d11c09245a46d3b0a55c0937874fb2debcb96490 /fs/zfs/zfs.c | |
parent | 753ac610880e6e563d0384bb114f8b41df89e520 (diff) | |
download | u-boot-imx-4d3c95f5ea7c737a21cd6b9c59435ee693b3f127.zip u-boot-imx-4d3c95f5ea7c737a21cd6b9c59435ee693b3f127.tar.gz u-boot-imx-4d3c95f5ea7c737a21cd6b9c59435ee693b3f127.tar.bz2 |
zfs: Add ZFS filesystem support
U-Boot port is based on sources forked from GRUB-0.97 by Sun in 2004,
which can be found here:
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/grub/grub-0.97/stage2/zfs-include/zfs.h
Released by Sun for GRUB under the license:
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
GRUB official releases include ZFS in version:
ftp://alpha.gnu.org/gnu/grub/grub-1.99~rc1.tar.gz
And patched against GRUB Bazaar repository for ashift fixes (4KB HDDs)
more conveniently found at github:
https://github.com/pendor/grub-zfs/commit/e7b6ef3ac3b9685ac4c394c897b1d4221b7381f1
Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Diffstat (limited to 'fs/zfs/zfs.c')
-rw-r--r-- | fs/zfs/zfs.c | 2395 |
1 files changed, 2395 insertions, 0 deletions
diff --git a/fs/zfs/zfs.c b/fs/zfs/zfs.c new file mode 100644 index 0000000..360f723 --- /dev/null +++ b/fs/zfs/zfs.c @@ -0,0 +1,2395 @@ +/* + * + * ZFS filesystem ported to u-boot by + * Jorgen Lundman <lundman at lundman.net> + * + * GRUB -- GRand Unified Bootloader + * Copyright (C) 1999,2000,2001,2002,2003,2004 + * Free Software Foundation, Inc. + * Copyright 2004 Sun Microsystems, Inc. + * + * GRUB is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * GRUB is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GRUB. If not, see <http://www.gnu.org/licenses/>. + * + */ + +#include <common.h> +#include <malloc.h> +#include <linux/stat.h> +#include <linux/time.h> +#include <linux/ctype.h> +#include <asm/byteorder.h> +#include "zfs_common.h" + +block_dev_desc_t *zfs_dev_desc; + +/* + * The zfs plug-in routines for GRUB are: + * + * zfs_mount() - locates a valid uberblock of the root pool and reads + * in its MOS at the memory address MOS. + * + * zfs_open() - locates a plain file object by following the MOS + * and places its dnode at the memory address DNODE. + * + * zfs_read() - read in the data blocks pointed by the DNODE. + * + */ + +#include <zfs/zfs.h> +#include <zfs/zio.h> +#include <zfs/dnode.h> +#include <zfs/uberblock_impl.h> +#include <zfs/vdev_impl.h> +#include <zfs/zio_checksum.h> +#include <zfs/zap_impl.h> +#include <zfs/zap_leaf.h> +#include <zfs/zfs_znode.h> +#include <zfs/dmu.h> +#include <zfs/dmu_objset.h> +#include <zfs/sa_impl.h> +#include <zfs/dsl_dir.h> +#include <zfs/dsl_dataset.h> + + +#define ZPOOL_PROP_BOOTFS "bootfs" + + +/* + * For nvlist manipulation. (from nvpair.h) + */ +#define NV_ENCODE_NATIVE 0 +#define NV_ENCODE_XDR 1 +#define NV_BIG_ENDIAN 0 +#define NV_LITTLE_ENDIAN 1 +#define DATA_TYPE_UINT64 8 +#define DATA_TYPE_STRING 9 +#define DATA_TYPE_NVLIST 19 +#define DATA_TYPE_NVLIST_ARRAY 20 + + +/* + * Macros to get fields in a bp or DVA. + */ +#define P2PHASE(x, align) ((x) & ((align) - 1)) +#define DVA_OFFSET_TO_PHYS_SECTOR(offset) \ + ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT) + +/* + * return x rounded down to an align boundary + * eg, P2ALIGN(1200, 1024) == 1024 (1*align) + * eg, P2ALIGN(1024, 1024) == 1024 (1*align) + * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align) + * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align) + */ +#define P2ALIGN(x, align) ((x) & -(align)) + +/* + * FAT ZAP data structures + */ +#define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ +#define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) +#define CHAIN_END 0xffff /* end of the chunk chain */ + +/* + * The amount of space within the chunk available for the array is: + * chunk size - space for type (1) - space for next pointer (2) + */ +#define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3) + +#define ZAP_LEAF_HASH_SHIFT(bs) (bs - 5) +#define ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs)) +#define LEAF_HASH(bs, h) \ + ((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) & \ + ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len))) + +/* + * The amount of space available for chunks is: + * block size shift - hash entry size (2) * number of hash + * entries - header space (2*chunksize) + */ +#define ZAP_LEAF_NUMCHUNKS(bs) \ + (((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) / \ + ZAP_LEAF_CHUNKSIZE - 2) + +/* + * The chunks start immediately after the hash table. The end of the + * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a + * chunk_t. + */ +#define ZAP_LEAF_CHUNK(l, bs, idx) \ + ((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx] +#define ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry) + + +/* + * Decompression Entry - lzjb + */ +#ifndef NBBY +#define NBBY 8 +#endif + + + +typedef int zfs_decomp_func_t(void *s_start, void *d_start, + uint32_t s_len, uint32_t d_len); +typedef struct decomp_entry { + char *name; + zfs_decomp_func_t *decomp_func; +} decomp_entry_t; + +typedef struct dnode_end { + dnode_phys_t dn; + zfs_endian_t endian; +} dnode_end_t; + +struct zfs_data { + /* cache for a file block of the currently zfs_open()-ed file */ + char *file_buf; + uint64_t file_start; + uint64_t file_end; + + /* XXX: ashift is per vdev, not per pool. We currently only ever touch + * a single vdev, but when/if raid-z or stripes are supported, this + * may need revision. + */ + uint64_t vdev_ashift; + uint64_t label_txg; + uint64_t pool_guid; + + /* cache for a dnode block */ + dnode_phys_t *dnode_buf; + dnode_phys_t *dnode_mdn; + uint64_t dnode_start; + uint64_t dnode_end; + zfs_endian_t dnode_endian; + + uberblock_t current_uberblock; + + dnode_end_t mos; + dnode_end_t mdn; + dnode_end_t dnode; + + uint64_t vdev_phys_sector; + + int (*userhook)(const char *, const struct zfs_dirhook_info *); + struct zfs_dirhook_info *dirinfo; + +}; + + + + +static int +zlib_decompress(void *s, void *d, + uint32_t slen, uint32_t dlen) +{ + if (zlib_decompress(s, d, slen, dlen) < 0) + return ZFS_ERR_BAD_FS; + return ZFS_ERR_NONE; +} + +static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = { + {"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */ + {"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */ + {"off", NULL}, /* ZIO_COMPRESS_OFF */ + {"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */ + {"empty", NULL}, /* ZIO_COMPRESS_EMPTY */ + {"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */ + {"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */ + {"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */ + {"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */ + {"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */ + {"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */ + {"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */ + {"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */ + {"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */ +}; + + + +static int zio_read_data(blkptr_t *bp, zfs_endian_t endian, + void *buf, struct zfs_data *data); + +static int +zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf, + size_t *size, struct zfs_data *data); + +/* + * Our own version of log2(). Same thing as highbit()-1. + */ +static int +zfs_log2(uint64_t num) +{ + int i = 0; + + while (num > 1) { + i++; + num = num >> 1; + } + + return i; +} + + +/* Checksum Functions */ +static void +zio_checksum_off(const void *buf __attribute__ ((unused)), + uint64_t size __attribute__ ((unused)), + zfs_endian_t endian __attribute__ ((unused)), + zio_cksum_t *zcp) +{ + ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); +} + +/* Checksum Table and Values */ +static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { + {NULL, 0, 0, "inherit"}, + {NULL, 0, 0, "on"}, + {zio_checksum_off, 0, 0, "off"}, + {zio_checksum_SHA256, 1, 1, "label"}, + {zio_checksum_SHA256, 1, 1, "gang_header"}, + {NULL, 0, 0, "zilog"}, + {fletcher_2_endian, 0, 0, "fletcher2"}, + {fletcher_4_endian, 1, 0, "fletcher4"}, + {zio_checksum_SHA256, 1, 0, "SHA256"}, + {NULL, 0, 0, "zilog2"}, +}; + +/* + * zio_checksum_verify: Provides support for checksum verification. + * + * Fletcher2, Fletcher4, and SHA256 are supported. + * + */ +static int +zio_checksum_verify(zio_cksum_t zc, uint32_t checksum, + zfs_endian_t endian, char *buf, int size) +{ + zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1; + zio_checksum_info_t *ci = &zio_checksum_table[checksum]; + zio_cksum_t actual_cksum, expected_cksum; + + if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) { + printf("zfs unknown checksum function %d\n", checksum); + return ZFS_ERR_NOT_IMPLEMENTED_YET; + } + + if (ci->ci_eck) { + expected_cksum = zec->zec_cksum; + zec->zec_cksum = zc; + ci->ci_func(buf, size, endian, &actual_cksum); + zec->zec_cksum = expected_cksum; + zc = expected_cksum; + } else { + ci->ci_func(buf, size, endian, &actual_cksum); + } + + if ((actual_cksum.zc_word[0] != zc.zc_word[0]) + || (actual_cksum.zc_word[1] != zc.zc_word[1]) + || (actual_cksum.zc_word[2] != zc.zc_word[2]) + || (actual_cksum.zc_word[3] != zc.zc_word[3])) { + return ZFS_ERR_BAD_FS; + } + + return ZFS_ERR_NONE; +} + +/* + * vdev_uberblock_compare takes two uberblock structures and returns an integer + * indicating the more recent of the two. + * Return Value = 1 if ub2 is more recent + * Return Value = -1 if ub1 is more recent + * The most recent uberblock is determined using its transaction number and + * timestamp. The uberblock with the highest transaction number is + * considered "newer". If the transaction numbers of the two blocks match, the + * timestamps are compared to determine the "newer" of the two. + */ +static int +vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) +{ + zfs_endian_t ub1_endian, ub2_endian; + if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC) + ub1_endian = LITTLE_ENDIAN; + else + ub1_endian = BIG_ENDIAN; + if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC) + ub2_endian = LITTLE_ENDIAN; + else + ub2_endian = BIG_ENDIAN; + + if (zfs_to_cpu64(ub1->ub_txg, ub1_endian) + < zfs_to_cpu64(ub2->ub_txg, ub2_endian)) + return -1; + if (zfs_to_cpu64(ub1->ub_txg, ub1_endian) + > zfs_to_cpu64(ub2->ub_txg, ub2_endian)) + return 1; + + if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian) + < zfs_to_cpu64(ub2->ub_timestamp, ub2_endian)) + return -1; + if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian) + > zfs_to_cpu64(ub2->ub_timestamp, ub2_endian)) + return 1; + + return 0; +} + +/* + * Three pieces of information are needed to verify an uberblock: the magic + * number, the version number, and the checksum. + * + * Currently Implemented: version number, magic number, label txg + * Need to Implement: checksum + * + */ +static int +uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data) +{ + int err; + zfs_endian_t endian = UNKNOWN_ENDIAN; + zio_cksum_t zc; + + if (uber->ub_txg < data->label_txg) { + debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n", + uber->ub_txg, data->label_txg); + return ZFS_ERR_BAD_FS; + } + + if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC + && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0 + && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION) + endian = LITTLE_ENDIAN; + + if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC + && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0 + && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION) + endian = BIG_ENDIAN; + + if (endian == UNKNOWN_ENDIAN) { + printf("invalid uberblock magic\n"); + return ZFS_ERR_BAD_FS; + } + + memset(&zc, 0, sizeof(zc)); + zc.zc_word[0] = cpu_to_zfs64(offset, endian); + err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian, + (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift)); + + if (!err) { + /* Check that the data pointed by the rootbp is usable. */ + void *osp = NULL; + size_t ospsize; + err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data); + free(osp); + + if (!err && ospsize < OBJSET_PHYS_SIZE_V14) { + printf("uberblock rootbp points to invalid data\n"); + return ZFS_ERR_BAD_FS; + } + } + + return err; +} + +/* + * Find the best uberblock. + * Return: + * Success - Pointer to the best uberblock. + * Failure - NULL + */ +static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data) +{ + const uint64_t sector = data->vdev_phys_sector; + uberblock_t *ubbest = NULL; + uberblock_t *ubnext; + unsigned int i, offset, pickedub = 0; + int err = ZFS_ERR_NONE; + + const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift); + const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift); + + for (i = 0; i < UBCOUNT; i++) { + ubnext = (uberblock_t *) (i * UBBYTES + ub_array); + offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES); + + err = uberblock_verify(ubnext, offset, data); + if (err) + continue; + + if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) { + ubbest = ubnext; + pickedub = i; + } + } + + if (ubbest) + debug("zfs Found best uberblock at idx %d, txg %llu\n", + pickedub, (unsigned long long) ubbest->ub_txg); + + return ubbest; +} + +static inline size_t +get_psize(blkptr_t *bp, zfs_endian_t endian) +{ + return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1) + << SPA_MINBLOCKSHIFT; +} + +static uint64_t +dva_get_offset(dva_t *dva, zfs_endian_t endian) +{ + return zfs_to_cpu64((dva)->dva_word[1], + endian) << SPA_MINBLOCKSHIFT; +} + +/* + * Read a block of data based on the gang block address dva, + * and put its data in buf. + * + */ +static int +zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf, + struct zfs_data *data) +{ + zio_gbh_phys_t *zio_gb; + uint64_t offset, sector; + unsigned i; + int err; + zio_cksum_t zc; + + memset(&zc, 0, sizeof(zc)); + + zio_gb = malloc(SPA_GANGBLOCKSIZE); + if (!zio_gb) + return ZFS_ERR_OUT_OF_MEMORY; + + offset = dva_get_offset(dva, endian); + sector = DVA_OFFSET_TO_PHYS_SECTOR(offset); + + /* read in the gang block header */ + err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb); + + if (err) { + free(zio_gb); + return err; + } + + /* XXX */ + /* self checksuming the gang block header */ + ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva), + dva_get_offset(dva, endian), bp->blk_birth, 0); + err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian, + (char *) zio_gb, SPA_GANGBLOCKSIZE); + if (err) { + free(zio_gb); + return err; + } + + endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; + + for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { + if (zio_gb->zg_blkptr[i].blk_birth == 0) + continue; + + err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data); + if (err) { + free(zio_gb); + return err; + } + buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian); + } + free(zio_gb); + return ZFS_ERR_NONE; +} + +/* + * Read in a block of raw data to buf. + */ +static int +zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf, + struct zfs_data *data) +{ + int i, psize; + int err = ZFS_ERR_NONE; + + psize = get_psize(bp, endian); + + /* pick a good dva from the block pointer */ + for (i = 0; i < SPA_DVAS_PER_BP; i++) { + uint64_t offset, sector; + + if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0) + continue; + + if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) { + err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data); + } else { + /* read in a data block */ + offset = dva_get_offset(&bp->blk_dva[i], endian); + sector = DVA_OFFSET_TO_PHYS_SECTOR(offset); + + err = zfs_devread(sector, 0, psize, buf); + } + + if (!err) { + /*Check the underlying checksum before we rule this DVA as "good"*/ + uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff; + + err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize); + if (!err) + return ZFS_ERR_NONE; + } + + /* If read failed or checksum bad, reset the error. Hopefully we've got some more DVA's to try.*/ + } + + if (!err) { + printf("couldn't find a valid DVA\n"); + err = ZFS_ERR_BAD_FS; + } + + return err; +} + +/* + * Read in a block of data, verify its checksum, decompress if needed, + * and put the uncompressed data in buf. + */ +static int +zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf, + size_t *size, struct zfs_data *data) +{ + size_t lsize, psize; + unsigned int comp; + char *compbuf = NULL; + int err; + + *buf = NULL; + + comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff; + lsize = (BP_IS_HOLE(bp) ? 0 : + (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1) + << SPA_MINBLOCKSHIFT)); + psize = get_psize(bp, endian); + + if (size) + *size = lsize; + + if (comp >= ZIO_COMPRESS_FUNCTIONS) { + printf("compression algorithm %u not supported\n", (unsigned int) comp); + return ZFS_ERR_NOT_IMPLEMENTED_YET; + } + + if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) { + printf("compression algorithm %s not supported\n", decomp_table[comp].name); + return ZFS_ERR_NOT_IMPLEMENTED_YET; + } + + if (comp != ZIO_COMPRESS_OFF) { + compbuf = malloc(psize); + if (!compbuf) + return ZFS_ERR_OUT_OF_MEMORY; + } else { + compbuf = *buf = malloc(lsize); + } + + err = zio_read_data(bp, endian, compbuf, data); + if (err) { + free(compbuf); + *buf = NULL; + return err; + } + + if (comp != ZIO_COMPRESS_OFF) { + *buf = malloc(lsize); + if (!*buf) { + free(compbuf); + return ZFS_ERR_OUT_OF_MEMORY; + } + + err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize); + free(compbuf); + if (err) { + free(*buf); + *buf = NULL; + return err; + } + } + + return ZFS_ERR_NONE; +} + +/* + * Get the block from a block id. + * push the block onto the stack. + * + */ +static int +dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf, + zfs_endian_t *endian_out, struct zfs_data *data) +{ + int idx, level; + blkptr_t *bp_array = dn->dn.dn_blkptr; + int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT; + blkptr_t *bp; + void *tmpbuf = 0; + zfs_endian_t endian; + int err = ZFS_ERR_NONE; + + bp = malloc(sizeof(blkptr_t)); + if (!bp) + return ZFS_ERR_OUT_OF_MEMORY; + + endian = dn->endian; + for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) { + idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1); + *bp = bp_array[idx]; + if (bp_array != dn->dn.dn_blkptr) { + free(bp_array); + bp_array = 0; + } + + if (BP_IS_HOLE(bp)) { + size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec, + dn->endian) + << SPA_MINBLOCKSHIFT; + *buf = malloc(size); + if (*buf) { + err = ZFS_ERR_OUT_OF_MEMORY; + break; + } + memset(*buf, 0, size); + endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; + break; + } + if (level == 0) { + err = zio_read(bp, endian, buf, 0, data); + endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; + break; + } + err = zio_read(bp, endian, &tmpbuf, 0, data); + endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; + if (err) + break; + bp_array = tmpbuf; + } + if (bp_array != dn->dn.dn_blkptr) + free(bp_array); + if (endian_out) + *endian_out = endian; + + free(bp); + return err; +} + +/* + * mzap_lookup: Looks up property described by "name" and returns the value + * in "value". + */ +static int +mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian, + int objsize, char *name, uint64_t * value) +{ + int i, chunks; + mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk; + + chunks = objsize / MZAP_ENT_LEN - 1; + for (i = 0; i < chunks; i++) { + if (strcmp(mzap_ent[i].mze_name, name) == 0) { + *value = zfs_to_cpu64(mzap_ent[i].mze_value, endian); + return ZFS_ERR_NONE; + } + } + + printf("couldn't find '%s'\n", name); + return ZFS_ERR_FILE_NOT_FOUND; +} + +static int +mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize, + int (*hook)(const char *name, + uint64_t val, + struct zfs_data *data), + struct zfs_data *data) +{ + int i, chunks; + mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk; + + chunks = objsize / MZAP_ENT_LEN - 1; + for (i = 0; i < chunks; i++) { + if (hook(mzap_ent[i].mze_name, + zfs_to_cpu64(mzap_ent[i].mze_value, endian), + data)) + return 1; + } + + return 0; +} + +static uint64_t +zap_hash(uint64_t salt, const char *name) +{ + static uint64_t table[256]; + const uint8_t *cp; + uint8_t c; + uint64_t crc = salt; + + if (table[128] == 0) { + uint64_t *ct; + int i, j; + for (i = 0; i < 256; i++) { + for (ct = table + i, *ct = i, j = 8; j > 0; j--) + *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); + } + } + + for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++) + crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF]; + + /* + * Only use 28 bits, since we need 4 bits in the cookie for the + * collision differentiator. We MUST use the high bits, since + * those are the onces that we first pay attention to when + * chosing the bucket. + */ + crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1); + + return crc; +} + +/* + * Only to be used on 8-bit arrays. + * array_len is actual len in bytes (not encoded le_value_length). + * buf is null-terminated. + */ +/* XXX */ +static int +zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian, + int blksft, int chunk, int array_len, const char *buf) +{ + int bseen = 0; + + while (bseen < array_len) { + struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array; + int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); + + if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) + return 0; + + if (memcmp(la->la_array, buf + bseen, toread) != 0) + break; + chunk = zfs_to_cpu16(la->la_next, endian); + bseen += toread; + } + return (bseen == array_len); +} + +/* XXX */ +static int +zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft, + int chunk, int array_len, char *buf) +{ + int bseen = 0; + + while (bseen < array_len) { + struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array; + int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); + + if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) + /* Don't use errno because this error is to be ignored. */ + return ZFS_ERR_BAD_FS; + + memcpy(buf + bseen, la->la_array, toread); + chunk = zfs_to_cpu16(la->la_next, endian); + bseen += toread; + } + return ZFS_ERR_NONE; +} + + +/* + * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the + * value for the property "name". + * + */ +/* XXX */ +static int +zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian, + int blksft, uint64_t h, + const char *name, uint64_t *value) +{ + uint16_t chunk; + struct zap_leaf_entry *le; + + /* Verify if this is a valid leaf block */ + if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) { + printf("invalid leaf type\n"); + return ZFS_ERR_BAD_FS; + } + if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) { + printf("invalid leaf magic\n"); + return ZFS_ERR_BAD_FS; + } + + for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian); + chunk != CHAIN_END; chunk = le->le_next) { + + if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) { + printf("invalid chunk number\n"); + return ZFS_ERR_BAD_FS; + } + + le = ZAP_LEAF_ENTRY(l, blksft, chunk); + + /* Verify the chunk entry */ + if (le->le_type != ZAP_CHUNK_ENTRY) { + printf("invalid chunk entry\n"); + return ZFS_ERR_BAD_FS; + } + + if (zfs_to_cpu64(le->le_hash, endian) != h) + continue; + + if (zap_leaf_array_equal(l, endian, blksft, + zfs_to_cpu16(le->le_name_chunk, endian), + zfs_to_cpu16(le->le_name_length, endian), + name)) { + struct zap_leaf_array *la; + + if (le->le_int_size != 8 || le->le_value_length != 1) { + printf("invalid leaf chunk entry\n"); + return ZFS_ERR_BAD_FS; + } + /* get the uint64_t property value */ + la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array; + + *value = be64_to_cpu(la->la_array64); + + return ZFS_ERR_NONE; + } + } + + printf("couldn't find '%s'\n", name); + return ZFS_ERR_FILE_NOT_FOUND; +} + + +/* Verify if this is a fat zap header block */ +static int +zap_verify(zap_phys_t *zap) +{ + if (zap->zap_magic != (uint64_t) ZAP_MAGIC) { + printf("bad ZAP magic\n"); + return ZFS_ERR_BAD_FS; + } + + if (zap->zap_flags != 0) { + printf("bad ZAP flags\n"); + return ZFS_ERR_BAD_FS; + } + + if (zap->zap_salt == 0) { + printf("bad ZAP salt\n"); + return ZFS_ERR_BAD_FS; + } + + return ZFS_ERR_NONE; +} + +/* + * Fat ZAP lookup + * + */ +/* XXX */ +static int +fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap, + char *name, uint64_t *value, struct zfs_data *data) +{ + void *l; + uint64_t hash, idx, blkid; + int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, + zap_dnode->endian) << DNODE_SHIFT); + int err; + zfs_endian_t leafendian; + + err = zap_verify(zap); + if (err) + return err; + + hash = zap_hash(zap->zap_salt, name); + + /* get block id from index */ + if (zap->zap_ptrtbl.zt_numblks != 0) { + printf("external pointer tables not supported\n"); + return ZFS_ERR_NOT_IMPLEMENTED_YET; + } + idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift); + blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))]; + + /* Get the leaf block */ + if ((1U << blksft) < sizeof(zap_leaf_phys_t)) { + printf("ZAP leaf is too small\n"); + return ZFS_ERR_BAD_FS; + } + err = dmu_read(zap_dnode, blkid, &l, &leafendian, data); + if (err) + return err; + + err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value); + free(l); + return err; +} + +/* XXX */ +static int +fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap, + int (*hook)(const char *name, + uint64_t val, + struct zfs_data *data), + struct zfs_data *data) +{ + zap_leaf_phys_t *l; + void *l_in; + uint64_t idx, blkid; + uint16_t chunk; + int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, + zap_dnode->endian) << DNODE_SHIFT); + int err; + zfs_endian_t endian; + + if (zap_verify(zap)) + return 0; + + /* get block id from index */ + if (zap->zap_ptrtbl.zt_numblks != 0) { + printf("external pointer tables not supported\n"); + return 0; + } + /* Get the leaf block */ + if ((1U << blksft) < sizeof(zap_leaf_phys_t)) { + printf("ZAP leaf is too small\n"); + return 0; + } + for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) { + blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))]; + + err = dmu_read(zap_dnode, blkid, &l_in, &endian, data); + l = l_in; + if (err) + continue; + + /* Verify if this is a valid leaf block */ + if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) { + free(l); + continue; + } + if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) { + free(l); + continue; + } + + for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) { + char *buf; + struct zap_leaf_array *la; + struct zap_leaf_entry *le; + uint64_t val; + le = ZAP_LEAF_ENTRY(l, blksft, chunk); + + /* Verify the chunk entry */ + if (le->le_type != ZAP_CHUNK_ENTRY) + continue; + + buf = malloc(zfs_to_cpu16(le->le_name_length, endian) + + 1); + if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk, + le->le_name_length, buf)) { + free(buf); + continue; + } + buf[le->le_name_length] = 0; + + if (le->le_int_size != 8 + || zfs_to_cpu16(le->le_value_length, endian) != 1) + continue; + + /* get the uint64_t property value */ + la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array; + val = be64_to_cpu(la->la_array64); + if (hook(buf, val, data)) + return 1; + free(buf); + } + } + return 0; +} + + +/* + * Read in the data of a zap object and find the value for a matching + * property name. + * + */ +static int +zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val, + struct zfs_data *data) +{ + uint64_t block_type; + int size; + void *zapbuf; + int err; + zfs_endian_t endian; + + /* Read in the first block of the zap object data. */ + size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, + zap_dnode->endian) << SPA_MINBLOCKSHIFT; + err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data); + if (err) + return err; + block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian); + + if (block_type == ZBT_MICRO) { + err = (mzap_lookup(zapbuf, endian, size, name, val)); + free(zapbuf); + return err; + } else if (block_type == ZBT_HEADER) { + /* this is a fat zap */ + err = (fzap_lookup(zap_dnode, zapbuf, name, val, data)); + free(zapbuf); + return err; + } + + printf("unknown ZAP type\n"); + return ZFS_ERR_BAD_FS; +} + +static int +zap_iterate(dnode_end_t *zap_dnode, + int (*hook)(const char *name, uint64_t val, + struct zfs_data *data), + struct zfs_data *data) +{ + uint64_t block_type; + int size; + void *zapbuf; + int err; + int ret; + zfs_endian_t endian; + + /* Read in the first block of the zap object data. */ + size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT; + err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data); + if (err) + return 0; + block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian); + + if (block_type == ZBT_MICRO) { + ret = mzap_iterate(zapbuf, endian, size, hook, data); + free(zapbuf); + return ret; + } else if (block_type == ZBT_HEADER) { + /* this is a fat zap */ + ret = fzap_iterate(zap_dnode, zapbuf, hook, data); + free(zapbuf); + return ret; + } + printf("unknown ZAP type\n"); + return 0; +} + + +/* + * Get the dnode of an object number from the metadnode of an object set. + * + * Input + * mdn - metadnode to get the object dnode + * objnum - object number for the object dnode + * buf - data buffer that holds the returning dnode + */ +static int +dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type, + dnode_end_t *buf, struct zfs_data *data) +{ + uint64_t blkid, blksz; /* the block id this object dnode is in */ + int epbs; /* shift of number of dnodes in a block */ + int idx; /* index within a block */ + void *dnbuf; + int err; + zfs_endian_t endian; + + blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec, + mdn->endian) << SPA_MINBLOCKSHIFT; + + epbs = zfs_log2(blksz) - DNODE_SHIFT; + blkid = objnum >> epbs; + idx = objnum & ((1 << epbs) - 1); + + if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn, + sizeof(*mdn)) == 0 + && objnum >= data->dnode_start && objnum < data->dnode_end) { + memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE); + buf->endian = data->dnode_endian; + if (type && buf->dn.dn_type != type) { + printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type); + return ZFS_ERR_BAD_FS; + } + return ZFS_ERR_NONE; + } + + err = dmu_read(mdn, blkid, &dnbuf, &endian, data); + if (err) + return err; + + free(data->dnode_buf); + free(data->dnode_mdn); + data->dnode_mdn = malloc(sizeof(*mdn)); + if (!data->dnode_mdn) { + data->dnode_buf = 0; + } else { + memcpy(data->dnode_mdn, mdn, sizeof(*mdn)); + data->dnode_buf = dnbuf; + data->dnode_start = blkid << epbs; + data->dnode_end = (blkid + 1) << epbs; + data->dnode_endian = endian; + } + + memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE); + buf->endian = endian; + if (type && buf->dn.dn_type != type) { + printf("incorrect dnode type\n"); + return ZFS_ERR_BAD_FS; + } + + return ZFS_ERR_NONE; +} + +/* + * Get the file dnode for a given file name where mdn is the meta dnode + * for this ZFS object set. When found, place the file dnode in dn. + * The 'path' argument will be mangled. + * + */ +static int +dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn, + struct zfs_data *data) +{ + uint64_t objnum, version; + char *cname, ch; + int err = ZFS_ERR_NONE; + char *path, *path_buf; + struct dnode_chain { + struct dnode_chain *next; + dnode_end_t dn; + }; + struct dnode_chain *dnode_path = 0, *dn_new, *root; + + dn_new = malloc(sizeof(*dn_new)); + if (!dn_new) + return ZFS_ERR_OUT_OF_MEMORY; + dn_new->next = 0; + dnode_path = root = dn_new; + + err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE, + &(dnode_path->dn), data); + if (err) { + free(dn_new); + return err; + } + + err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data); + if (err) { + free(dn_new); + return err; + } + if (version > ZPL_VERSION) { + free(dn_new); + printf("too new ZPL version\n"); + return ZFS_ERR_NOT_IMPLEMENTED_YET; + } + + err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data); + if (err) { + free(dn_new); + return err; + } + + err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data); + if (err) { + free(dn_new); + return err; + } + + path = path_buf = strdup(path_in); + if (!path_buf) { + free(dn_new); + return ZFS_ERR_OUT_OF_MEMORY; + } + + while (1) { + /* skip leading slashes */ + while (*path == '/') + path++; + if (!*path) + break; + /* get the next component name */ + cname = path; + while (*path && *path != '/') + path++; + /* Skip dot. */ + if (cname + 1 == path && cname[0] == '.') + continue; + /* Handle double dot. */ + if (cname + 2 == path && cname[0] == '.' && cname[1] == '.') { + if (dn_new->next) { + dn_new = dnode_path; + dnode_path = dn_new->next; + free(dn_new); + } else { + printf("can't resolve ..\n"); + err = ZFS_ERR_FILE_NOT_FOUND; + break; + } + continue; + } + + ch = *path; + *path = 0; /* ensure null termination */ + + if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) { + free(path_buf); + printf("not a directory\n"); + return ZFS_ERR_BAD_FILE_TYPE; + } + err = zap_lookup(&(dnode_path->dn), cname, &objnum, data); + if (err) + break; + + dn_new = malloc(sizeof(*dn_new)); + if (!dn_new) { + err = ZFS_ERR_OUT_OF_MEMORY; + break; + } + dn_new->next = dnode_path; + dnode_path = dn_new; + + objnum = ZFS_DIRENT_OBJ(objnum); + err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data); + if (err) + break; + + *path = ch; + } + + if (!err) + memcpy(dn, &(dnode_path->dn), sizeof(*dn)); + + while (dnode_path) { + dn_new = dnode_path->next; + free(dnode_path); + dnode_path = dn_new; + } + free(path_buf); + return err; +} + + +/* + * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname), + * e.g. pool/rootfs, or a given object number (obj), e.g. the object number + * of pool/rootfs. + * + * If no fsname and no obj are given, return the DSL_DIR metadnode. + * If fsname is given, return its metadnode and its matching object number. + * If only obj is given, return the metadnode for this object number. + * + */ +static int +get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname, + dnode_end_t *mdn, struct zfs_data *data) +{ + uint64_t objnum; + int err; + + err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT, + DMU_OT_OBJECT_DIRECTORY, mdn, data); + if (err) + return err; + + err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data); + if (err) + return err; + + err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data); + if (err) + return err; + + while (*fsname) { + uint64_t childobj; + char *cname, ch; + + while (*fsname == '/') + fsname++; + + if (!*fsname || *fsname == '@') + break; + + cname = fsname; + while (*fsname && !isspace(*fsname) && *fsname != '/') + fsname++; + ch = *fsname; + *fsname = 0; + + childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian); + err = dnode_get(mosmdn, childobj, + DMU_OT_DSL_DIR_CHILD_MAP, mdn, data); + if (err) + return err; + + err = zap_lookup(mdn, cname, &objnum, data); + if (err) + return err; + + err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data); + if (err) + return err; + + *fsname = ch; + } + return ZFS_ERR_NONE; +} + +static int +make_mdn(dnode_end_t *mdn, struct zfs_data *data) +{ + void *osp; + blkptr_t *bp; + size_t ospsize; + int err; + + bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp); + err = zio_read(bp, mdn->endian, &osp, &ospsize, data); + if (err) + return err; + if (ospsize < OBJSET_PHYS_SIZE_V14) { + free(osp); + printf("too small osp\n"); + return ZFS_ERR_BAD_FS; + } + + mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1; + memmove((char *) &(mdn->dn), + (char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE); + free(osp); + return ZFS_ERR_NONE; +} + +static int +dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn, + uint64_t *mdnobj, dnode_end_t *dn, int *isfs, + struct zfs_data *data) +{ + char *fsname, *snapname; + const char *ptr_at, *filename; + uint64_t headobj; + int err; + + ptr_at = strchr(fullpath, '@'); + if (!ptr_at) { + *isfs = 1; + filename = 0; + snapname = 0; + fsname = strdup(fullpath); + } else { + const char *ptr_slash = strchr(ptr_at, '/'); + + *isfs = 0; + fsname = malloc(ptr_at - fullpath + 1); + if (!fsname) + return ZFS_ERR_OUT_OF_MEMORY; + memcpy(fsname, fullpath, ptr_at - fullpath); + fsname[ptr_at - fullpath] = 0; + if (ptr_at[1] && ptr_at[1] != '/') { + snapname = malloc(ptr_slash - ptr_at); + if (!snapname) { + free(fsname); + return ZFS_ERR_OUT_OF_MEMORY; + } + memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1); + snapname[ptr_slash - ptr_at - 1] = 0; + } else { + snapname = 0; + } + if (ptr_slash) + filename = ptr_slash; + else + filename = "/"; + printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n", + fsname, snapname, filename); + } + + + err = get_filesystem_dnode(&(data->mos), fsname, dn, data); + + if (err) { + free(fsname); + free(snapname); + return err; + } + + headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian); + + err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data); + if (err) { + free(fsname); + free(snapname); + return err; + } + + if (snapname) { + uint64_t snapobj; + + snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian); + + err = dnode_get(&(data->mos), snapobj, + DMU_OT_DSL_DS_SNAP_MAP, mdn, data); + if (!err) + err = zap_lookup(mdn, snapname, &headobj, data); + if (!err) + err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data); + if (err) { + free(fsname); + free(snapname); + return err; + } + } + + if (mdnobj) + *mdnobj = headobj; + + make_mdn(mdn, data); + + if (*isfs) { + free(fsname); + free(snapname); + return ZFS_ERR_NONE; + } + err = dnode_get_path(mdn, filename, dn, data); + free(fsname); + free(snapname); + return err; +} + +/* + * For a given XDR packed nvlist, verify the first 4 bytes and move on. + * + * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) : + * + * encoding method/host endian (4 bytes) + * nvl_version (4 bytes) + * nvl_nvflag (4 bytes) + * encoded nvpairs: + * encoded size of the nvpair (4 bytes) + * decoded size of the nvpair (4 bytes) + * name string size (4 bytes) + * name string data (sizeof(NV_ALIGN4(string)) + * data type (4 bytes) + * # of elements in the nvpair (4 bytes) + * data + * 2 zero's for the last nvpair + * (end of the entire list) (8 bytes) + * + */ + +static int +nvlist_find_value(char *nvlist, char *name, int valtype, char **val, + size_t *size_out, size_t *nelm_out) +{ + int name_len, type, encode_size; + char *nvpair, *nvp_name; + + /* Verify if the 1st and 2nd byte in the nvlist are valid. */ + /* NOTE: independently of what endianness header announces all + subsequent values are big-endian. */ + if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN + && nvlist[1] != NV_BIG_ENDIAN)) { + printf("zfs incorrect nvlist header\n"); + return ZFS_ERR_BAD_FS; + } + + /* skip the header, nvl_version, and nvl_nvflag */ + nvlist = nvlist + 4 * 3; + /* + * Loop thru the nvpair list + * The XDR representation of an integer is in big-endian byte order. + */ + while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) { + int nelm; + + nvpair = nvlist + 4 * 2; /* skip the encode/decode size */ + + name_len = be32_to_cpu(*(uint32_t *) nvpair); + nvpair += 4; + + nvp_name = nvpair; + nvpair = nvpair + ((name_len + 3) & ~3); /* align */ + + type = be32_to_cpu(*(uint32_t *) nvpair); + nvpair += 4; + + nelm = be32_to_cpu(*(uint32_t *) nvpair); + if (nelm < 1) { + printf("empty nvpair\n"); + return ZFS_ERR_BAD_FS; + } + + nvpair += 4; + + if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) { + *val = nvpair; + *size_out = encode_size; + if (nelm_out) + *nelm_out = nelm; + return 1; + } + + nvlist += encode_size; /* goto the next nvpair */ + } + return 0; +} + +int +zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out) +{ + char *nvpair; + size_t size; + int found; + + found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0); + if (!found) + return 0; + if (size < sizeof(uint64_t)) { + printf("invalid uint64\n"); + return ZFS_ERR_BAD_FS; + } + + *out = be64_to_cpu(*(uint64_t *) nvpair); + return 1; +} + +char * +zfs_nvlist_lookup_string(char *nvlist, char *name) +{ + char *nvpair; + char *ret; + size_t slen; + size_t size; + int found; + + found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0); + if (!found) + return 0; + if (size < 4) { + printf("invalid string\n"); + return 0; + } + slen = be32_to_cpu(*(uint32_t *) nvpair); + if (slen > size - 4) + slen = size - 4; + ret = malloc(slen + 1); + if (!ret) + return 0; + memcpy(ret, nvpair + 4, slen); + ret[slen] = 0; + return ret; +} + +char * +zfs_nvlist_lookup_nvlist(char *nvlist, char *name) +{ + char *nvpair; + char *ret; + size_t size; + int found; + + found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, + &size, 0); + if (!found) + return 0; + ret = calloc(1, size + 3 * sizeof(uint32_t)); + if (!ret) + return 0; + memcpy(ret, nvlist, sizeof(uint32_t)); + + memcpy(ret + sizeof(uint32_t), nvpair, size); + return ret; +} + +int +zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name) +{ + char *nvpair; + size_t nelm, size; + int found; + + found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, + &size, &nelm); + if (!found) + return -1; + return nelm; +} + +char * +zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name, + size_t index) +{ + char *nvpair, *nvpairptr; + int found; + char *ret; + size_t size; + unsigned i; + size_t nelm; + + found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, + &size, &nelm); + if (!found) + return 0; + if (index >= nelm) { + printf("trying to lookup past nvlist array\n"); + return 0; + } + + nvpairptr = nvpair; + + for (i = 0; i < index; i++) { + uint32_t encode_size; + + /* skip the header, nvl_version, and nvl_nvflag */ + nvpairptr = nvpairptr + 4 * 2; + + while (nvpairptr < nvpair + size + && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr))) + nvlist += encode_size; /* goto the next nvpair */ + + nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */ + } + + if (nvpairptr >= nvpair + size + || nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2)) + >= nvpair + size) { + printf("incorrect nvlist array\n"); + return 0; + } + + ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2)) + + 3 * sizeof(uint32_t)); + if (!ret) + return 0; + memcpy(ret, nvlist, sizeof(uint32_t)); + + memcpy(ret + sizeof(uint32_t), nvpairptr, size); + return ret; +} + +static int +int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist) +{ + int err; + + *nvlist = malloc(VDEV_PHYS_SIZE); + /* Read in the vdev name-value pair list (112K). */ + err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist); + if (err) { + free(*nvlist); + *nvlist = 0; + return err; + } + return ZFS_ERR_NONE; +} + +/* + * Check the disk label information and retrieve needed vdev name-value pairs. + * + */ +static int +check_pool_label(struct zfs_data *data) +{ + uint64_t pool_state; + char *nvlist; /* for the pool */ + char *vdevnvlist; /* for the vdev */ + uint64_t diskguid; + uint64_t version; + int found; + int err; + + err = int_zfs_fetch_nvlist(data, &nvlist); + if (err) + return err; + + found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE, + &pool_state); + if (!found) { + free(nvlist); + printf("zfs pool state not found\n"); + return ZFS_ERR_BAD_FS; + } + + if (pool_state == POOL_STATE_DESTROYED) { + free(nvlist); + printf("zpool is marked as destroyed\n"); + return ZFS_ERR_BAD_FS; + } + + data->label_txg = 0; + found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG, + &data->label_txg); + if (!found) { + free(nvlist); + printf("zfs pool txg not found\n"); + return ZFS_ERR_BAD_FS; + } + + /* not an active device */ + if (data->label_txg == 0) { + free(nvlist); + printf("zpool is not active\n"); + return ZFS_ERR_BAD_FS; + } + + found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION, + &version); + if (!found) { + free(nvlist); + printf("zpool config version not found\n"); + return ZFS_ERR_BAD_FS; + } + + if (version > SPA_VERSION) { + free(nvlist); + printf("SPA version too new %llu > %llu\n", + (unsigned long long) version, + (unsigned long long) SPA_VERSION); + return ZFS_ERR_NOT_IMPLEMENTED_YET; + } + + vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE); + if (!vdevnvlist) { + free(nvlist); + printf("ZFS config vdev tree not found\n"); + return ZFS_ERR_BAD_FS; + } + + found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT, + &data->vdev_ashift); + free(vdevnvlist); + if (!found) { + free(nvlist); + printf("ZPOOL config ashift not found\n"); + return ZFS_ERR_BAD_FS; + } + + found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid); + if (!found) { + free(nvlist); + printf("ZPOOL config guid not found\n"); + return ZFS_ERR_BAD_FS; + } + + found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid); + if (!found) { + free(nvlist); + printf("ZPOOL config pool guid not found\n"); + return ZFS_ERR_BAD_FS; + } + + free(nvlist); + + printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n", + (unsigned long long) data->pool_guid, + (unsigned long long) data->pool_guid, + (unsigned long long) diskguid, + (unsigned long long) diskguid, + (unsigned long long) data->label_txg, + (unsigned long long) version, + (unsigned long long) data->vdev_ashift); + + return ZFS_ERR_NONE; +} + +/* + * vdev_label_start returns the physical disk offset (in bytes) of + * label "l". + */ +static uint64_t vdev_label_start(uint64_t psize, int l) +{ + return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ? + 0 : psize - + VDEV_LABELS * sizeof(vdev_label_t))); +} + +void +zfs_unmount(struct zfs_data *data) +{ + free(data->dnode_buf); + free(data->dnode_mdn); + free(data->file_buf); + free(data); +} + +/* + * zfs_mount() locates a valid uberblock of the root pool and read in its MOS + * to the memory address MOS. + * + */ +struct zfs_data * +zfs_mount(device_t dev) +{ + struct zfs_data *data = 0; + int label = 0, bestlabel = -1; + char *ub_array; + uberblock_t *ubbest; + uberblock_t *ubcur = NULL; + void *osp = 0; + size_t ospsize; + int err; + + data = malloc(sizeof(*data)); + if (!data) + return 0; + memset(data, 0, sizeof(*data)); + + ub_array = malloc(VDEV_UBERBLOCK_RING); + if (!ub_array) { + zfs_unmount(data); + return 0; + } + + ubbest = malloc(sizeof(*ubbest)); + if (!ubbest) { + zfs_unmount(data); + return 0; + } + memset(ubbest, 0, sizeof(*ubbest)); + + /* + * some eltorito stacks don't give us a size and + * we end up setting the size to MAXUINT, further + * some of these devices stop working once a single + * read past the end has been issued. Checking + * for a maximum part_length and skipping the backup + * labels at the end of the slice/partition/device + * avoids breaking down on such devices. + */ + const int vdevnum = + dev->part_length == 0 ? + VDEV_LABELS / 2 : VDEV_LABELS; + + /* Size in bytes of the device (disk or partition) aligned to label size*/ + uint64_t device_size = + dev->part_length << SECTOR_BITS; + + const uint64_t alignedbytes = + P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t)); + + for (label = 0; label < vdevnum; label++) { + uint64_t labelstartbytes = vdev_label_start(alignedbytes, label); + uint64_t labelstart = labelstartbytes >> SECTOR_BITS; + + debug("zfs reading label %d at sector %llu (byte %llu)\n", + label, (unsigned long long) labelstart, + (unsigned long long) labelstartbytes); + + data->vdev_phys_sector = labelstart + + ((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS); + + err = check_pool_label(data); + if (err) { + printf("zfs error checking label %d\n", label); + continue; + } + + /* Read in the uberblock ring (128K). */ + err = zfs_devread(data->vdev_phys_sector + + (VDEV_PHYS_SIZE >> SECTOR_BITS), + 0, VDEV_UBERBLOCK_RING, ub_array); + if (err) { + printf("zfs error reading uberblock ring for label %d\n", label); + continue; + } + + ubcur = find_bestub(ub_array, data); + if (!ubcur) { + printf("zfs No good uberblocks found in label %d\n", label); + continue; + } + + if (vdev_uberblock_compare(ubcur, ubbest) > 0) { + /* Looks like the block is good, so use it.*/ + memcpy(ubbest, ubcur, sizeof(*ubbest)); + bestlabel = label; + debug("zfs Current best uberblock found in label %d\n", label); + } + } + free(ub_array); + + /* We zero'd the structure to begin with. If we never assigned to it, + magic will still be zero. */ + if (!ubbest->ub_magic) { + printf("couldn't find a valid ZFS label\n"); + zfs_unmount(data); + free(ubbest); + return 0; + } + + debug("zfs ubbest %p in label %d\n", ubbest, bestlabel); + + zfs_endian_t ub_endian = + zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC + ? LITTLE_ENDIAN : BIG_ENDIAN; + + debug("zfs endian set to %s\n", !ub_endian ? "big" : "little"); + + err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data); + + if (err) { + printf("couldn't zio_read object directory\n"); + zfs_unmount(data); + free(ubbest); + return 0; + } + + if (ospsize < OBJSET_PHYS_SIZE_V14) { + printf("osp too small\n"); + zfs_unmount(data); + free(osp); + free(ubbest); + return 0; + } + + /* Got the MOS. Save it at the memory addr MOS. */ + memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE); + data->mos.endian = + (zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1; + memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t)); + + free(osp); + free(ubbest); + + return data; +} + +int +zfs_fetch_nvlist(device_t dev, char **nvlist) +{ + struct zfs_data *zfs; + int err; + + zfs = zfs_mount(dev); + if (!zfs) + return ZFS_ERR_BAD_FS; + err = int_zfs_fetch_nvlist(zfs, nvlist); + zfs_unmount(zfs); + return err; +} + +static int +zfs_label(device_t device, char **label) +{ + char *nvlist; + int err; + struct zfs_data *data; + + data = zfs_mount(device); + if (!data) + return ZFS_ERR_BAD_FS; + + err = int_zfs_fetch_nvlist(data, &nvlist); + if (err) { + zfs_unmount(data); + return err; + } + + *label = zfs_nvlist_lookup_string(nvlist, ZPOOL_CONFIG_POOL_NAME); + free(nvlist); + zfs_unmount(data); + return ZFS_ERR_NONE; +} + +static int +zfs_uuid(device_t device, char **uuid) +{ + struct zfs_data *data; + + data = zfs_mount(device); + if (!data) + return ZFS_ERR_BAD_FS; + + *uuid = malloc(17); /* %016llx + nil */ + if (!*uuid) + return ZFS_ERR_OUT_OF_MEMORY; + + /* *uuid = xasprintf ("%016llx", (long long unsigned) data->pool_guid);*/ + snprintf(*uuid, 17, "%016llx", (long long unsigned) data->pool_guid); + zfs_unmount(data); + + return ZFS_ERR_NONE; +} + +/* + * zfs_open() locates a file in the rootpool by following the + * MOS and places the dnode of the file in the memory address DNODE. + */ +int +zfs_open(struct zfs_file *file, const char *fsfilename) +{ + struct zfs_data *data; + int err; + int isfs; + + data = zfs_mount(file->device); + if (!data) + return ZFS_ERR_BAD_FS; + + err = dnode_get_fullpath(fsfilename, &(data->mdn), 0, + &(data->dnode), &isfs, data); + if (err) { + zfs_unmount(data); + return err; + } + + if (isfs) { + zfs_unmount(data); + printf("Missing @ or / separator\n"); + return ZFS_ERR_FILE_NOT_FOUND; + } + + /* We found the dnode for this file. Verify if it is a plain file. */ + if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) { + zfs_unmount(data); + printf("not a file\n"); + return ZFS_ERR_BAD_FILE_TYPE; + } + + /* get the file size and set the file position to 0 */ + + /* + * For DMU_OT_SA we will need to locate the SIZE attribute + * attribute, which could be either in the bonus buffer + * or the "spill" block. + */ + if (data->dnode.dn.dn_bonustype == DMU_OT_SA) { + void *sahdrp; + int hdrsize; + + if (data->dnode.dn.dn_bonuslen != 0) { + sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn); + } else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) { + blkptr_t *bp = &data->dnode.dn.dn_spill; + + err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data); + if (err) + return err; + } else { + printf("filesystem is corrupt :(\n"); + return ZFS_ERR_BAD_FS; + } + + hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp)); + file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET); + } else { + file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian); + } + + file->data = data; + file->offset = 0; + + return ZFS_ERR_NONE; +} + +uint64_t +zfs_read(zfs_file_t file, char *buf, uint64_t len) +{ + struct zfs_data *data = (struct zfs_data *) file->data; + int blksz, movesize; + uint64_t length; + int64_t red; + int err; + + if (data->file_buf == NULL) { + data->file_buf = malloc(SPA_MAXBLOCKSIZE); + if (!data->file_buf) + return -1; + data->file_start = data->file_end = 0; + } + + /* + * If offset is in memory, move it into the buffer provided and return. + */ + if (file->offset >= data->file_start + && file->offset + len <= data->file_end) { + memmove(buf, data->file_buf + file->offset - data->file_start, + len); + return len; + } + + blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec, + data->dnode.endian) << SPA_MINBLOCKSHIFT; + + /* + * Entire Dnode is too big to fit into the space available. We + * will need to read it in chunks. This could be optimized to + * read in as large a chunk as there is space available, but for + * now, this only reads in one data block at a time. + */ + length = len; + red = 0; + while (length) { + void *t; + /* + * Find requested blkid and the offset within that block. + */ + uint64_t blkid = (file->offset + red) / blksz; + free(data->file_buf); + data->file_buf = 0; + + err = dmu_read(&(data->dnode), blkid, &t, + 0, data); + data->file_buf = t; + if (err) + return -1; + + data->file_start = blkid * blksz; + data->file_end = data->file_start + blksz; + + movesize = MIN(length, data->file_end - (int) file->offset - red); + + memmove(buf, data->file_buf + file->offset + red + - data->file_start, movesize); + buf += movesize; + length -= movesize; + red += movesize; + } + + return len; +} + +int +zfs_close(zfs_file_t file) +{ + zfs_unmount((struct zfs_data *) file->data); + return ZFS_ERR_NONE; +} + +int +zfs_getmdnobj(device_t dev, const char *fsfilename, + uint64_t *mdnobj) +{ + struct zfs_data *data; + int err; + int isfs; + + data = zfs_mount(dev); + if (!data) + return ZFS_ERR_BAD_FS; + + err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj, + &(data->dnode), &isfs, data); + zfs_unmount(data); + return err; +} + +static void +fill_fs_info(struct zfs_dirhook_info *info, + dnode_end_t mdn, struct zfs_data *data) +{ + int err; + dnode_end_t dn; + uint64_t objnum; + uint64_t headobj; + + memset(info, 0, sizeof(*info)); + + info->dir = 1; + + if (mdn.dn.dn_type == DMU_OT_DSL_DIR) { + headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian); + + err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data); + if (err) { + printf("zfs failed here 1\n"); + return; + } + } + make_mdn(&mdn, data); + err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE, + &dn, data); + if (err) { + printf("zfs failed here 2\n"); + return; + } + + err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data); + if (err) { + printf("zfs failed here 3\n"); + return; + } + + err = dnode_get(&mdn, objnum, 0, &dn, data); + if (err) { + printf("zfs failed here 4\n"); + return; + } + + info->mtimeset = 1; + info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian); + + return; +} + +static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data) +{ + struct zfs_dirhook_info info; + dnode_end_t dn; + + memset(&info, 0, sizeof(info)); + + dnode_get(&(data->mdn), val, 0, &dn, data); + info.mtimeset = 1; + info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian); + info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS); + debug("zfs type=%d, name=%s\n", + (int)dn.dn.dn_type, (char *)name); + if (!data->userhook) + return 0; + return data->userhook(name, &info); +} + +static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data) +{ + struct zfs_dirhook_info info; + dnode_end_t mdn; + int err; + err = dnode_get(&(data->mos), val, 0, &mdn, data); + if (err) + return 0; + if (mdn.dn.dn_type != DMU_OT_DSL_DIR) + return 0; + + fill_fs_info(&info, mdn, data); + + if (!data->userhook) + return 0; + return data->userhook(name, &info); +} + +static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data) +{ + struct zfs_dirhook_info info; + char *name2; + int ret = 0; + dnode_end_t mdn; + int err; + + err = dnode_get(&(data->mos), val, 0, &mdn, data); + if (err) + return 0; + + if (mdn.dn.dn_type != DMU_OT_DSL_DATASET) + return 0; + + fill_fs_info(&info, mdn, data); + + name2 = malloc(strlen(name) + 2); + name2[0] = '@'; + memcpy(name2 + 1, name, strlen(name) + 1); + if (data->userhook) + ret = data->userhook(name2, &info); + free(name2); + return ret; +} + +int +zfs_ls(device_t device, const char *path, + int (*hook)(const char *, const struct zfs_dirhook_info *)) +{ + struct zfs_data *data; + int err; + int isfs; +#if 0 + char *label = NULL; + + zfs_label(device, &label); + if (label) + printf("ZPOOL label '%s'\n", + label); +#endif + + data = zfs_mount(device); + if (!data) + return ZFS_ERR_BAD_FS; + + data->userhook = hook; + + err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data); + if (err) { + zfs_unmount(data); + return err; + } + if (isfs) { + uint64_t childobj, headobj; + uint64_t snapobj; + dnode_end_t dn; + struct zfs_dirhook_info info; + + fill_fs_info(&info, data->dnode, data); + hook("@", &info); + + childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian); + headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian); + err = dnode_get(&(data->mos), childobj, + DMU_OT_DSL_DIR_CHILD_MAP, &dn, data); + if (err) { + zfs_unmount(data); + return err; + } + + + zap_iterate(&dn, iterate_zap_fs, data); + + err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data); + if (err) { + zfs_unmount(data); + return err; + } + + snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian); + + err = dnode_get(&(data->mos), snapobj, + DMU_OT_DSL_DS_SNAP_MAP, &dn, data); + if (err) { + zfs_unmount(data); + return err; + } + + zap_iterate(&dn, iterate_zap_snap, data); + } else { + if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) { + zfs_unmount(data); + printf("not a directory\n"); + return ZFS_ERR_BAD_FILE_TYPE; + } + zap_iterate(&(data->dnode), iterate_zap, data); + } + zfs_unmount(data); + return ZFS_ERR_NONE; +} |